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Topics of This Lecture

¢ Recap: Important Concepts from ML Lecture
» Probability Theory
» Bayes Decision Theory
» Maximum Likelihood Estimation
» Bayesian Estimation

* A Probabilistic View on Regression
» Least-Squares Estimation as Maximum Likelihood
~ Predictive Distribution
> Maximum-A-Posteriori (MAP) Estimation
» Bayesian Curve Fitting

¢ Discussion

B. Leibe
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Recap: Bayes Decision Theory

e Concept 1: Priors (a priori probabilities) p(Ck)

> What we can tell about the probability before seeing the data.
» Example: ?

aababaaba
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abaaaabba
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C = p(C,)=0.75
C,=b p(C,)=0.25
* In general: Z p(Ck ) =1
k
ibe >
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This Lecture: Advanced Machine Learning

fiX SR

ap

* Regression Approaches
» Linear Regression T
» Regularization (Ridge, Lasso) s .,f'
» Gaussian Processes

¢ Learning with Latent Variables
» EM and Generalizations
» Approximate Inference

¢ Deep Learning
» Neural Networks
» CNNs, RNNs, RBMs, etc.

B. Leibe

Recap: The Rules of Probability

e Basic rules

Sum Rule

p(X) =3 p(X,Y)

v

Product Rule p(X,Y) =p(Y|X)p(X)

* From those, we can derive

p(X[Y)p(Y)
p(X)

PX) =3 pX[V)p(Y)

v

Bayes’ Theorem p(Y|X)=

where

B. Leibe
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RWTH ACHET
Recap: Bayes Decision Theory

» Concept 2: Conditional probabilities p ( X| Ck)
» Let z be a feature vector.
» z measures/describes certain properties of the input.
- E.g. number of black pixels, aspect ratio, ...
» p(z|C,) describes its likelihood for class C,.

p(x|a)

T p(x|b)

ide credit: Bernt Schiele B. Leibe
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Recap: Bayes Decision Theory

e Concept 3: Posterior probabilities

p(Cc 1)
» We are typically interested in the a posteriori probability, i.e.
the probability of class C, given the measurement vector z.

¢ Bayes’ Theorem:

p(C,1X)= p(xfk()x;)(ck)

_ _p(xIc)p(C)
2 p(xIc)p(C)

¢ Interpretation
Likelihood x Prior
Normalization Factor

Posterior =

Slide credit: Bernt Schiele B. Leibe
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Recap: Gaussian (or Normal) Distribution

¢ One-dimensional case
> Mean p

» Variance o2 /
(x —p)?
exp { 257

Nizlp,0?)

1
Nl %) = ——

RWTHACHEN

¢ Multi-dimensional case
> Mean u
» Covariance ¥

N(x|p, %) = WQXP {*%(x —p) TS (x - H)}

B. Leibe Image source: C.M, Bishop,

9
00

Recap: Parametric Methods

¢ Given
. Data X = {z1,22,..., TN}
» Parametric form of the distribution
with parameters ¢
(1,0)

» E.g. for Gaussian distrib.: 0 =

e Learning
» Estimation of the parameters 0

¢ Likelihood of ¢
» Probability that the data X have indeed been generated from a
probability density with parameters 6
L(6) = p(X|0)

Slide adanted from Rernt Schiele. B. Leibe

Advanced Machine Learning, Winter’15

Advanced Machine Learning, Winter’15

RWTHACHE
Recap: Bayes Decision Theory
p%&P(X |b) Likelihood
X
p(x|a)p(a
D(X | b) p(b) Likelihood x Prior
X

Decision boundary

p (a | X) / p (b | X) Posterior — szellh.ood.x Prior
7\ NormalizationFactor|
X
Slide credit: Bernt Schiele B. Leibe 8
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Side Note

¢ Notation

» In many situations, it will be preferable to work with the inverse
of the covariance matrix 3:

A=3%"

» We call A the precision matrix.

» We can therefore also write the Gaussian as

1 A .
Nl A = —— expd =2 — )2
b A7) »er.)rl«v”‘”{ zlr =

. 1 1 "
N(x|p, AL = —LZ'F)”"Z A exp {7§(x — ) A(x - ,u,)}

B. Leibe
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Recap: Maximum Likelihood Approach

¢ Computation of the likelihood
» Single data point: p(In|9) =N (ETS o )

» Assumption: all data points X = {zl,.. ,z,} are independent

Hp nl0)
— Zlnp(zn|9)
n=1

¢ Estimation of the parameters ¢ (Learning)
» Maximize the likelihood (=minimize the negative log-likelihood)
= Take the derivative and set it to zero.

iv: 5P (@n|f) Ly
:vnw

B. Leibe

L(0) = p(X|0) =

» Log-likelihood
E@)=—-InL(9) =

ide credit: Bernt Schiele
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Recap: Maximum Likelihood - Limitations

¢ Applying ML to estimate the parameters of a Gaussian,

¢ Maximum Likelihood has several significant limitations
we obtain

It systematically underestimates the variance of the distribution!
» E.g. consider the case

h= = Z Tn “sample mean” N = 1, X = {ifl}

= Maximum-likelihood estimate:
&2 1 ~\2

=5 (xn — 1) “sample variance”

e 0= (@1,6) is the Maximum Likelihood estimate for the
parameters of a Gaussian distribution.

¢ This is a very important result.
¢ Unfortunately, it is biased...

B. Leibe

» We say ML overfits to the observed data.

» We will still often use ML, but it is important to know about this
effect.
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Slide adapted from Bernt Schiele B. Leibe
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Recap: Deeper Reason Recap: Bayesian Approach to Learning

¢ Maximum Likelihood is a Frequentist concept
» In the Frequentist view, probabilities are the frequencies of
random, repeatable events.
» These frequencies are fixed, but can be estimated more
precisely when more data is available.

¢ Conceptual shift

> Maximum Likelihood views the true parameter vector 6 to be
unknown, but fixed.

» In Bayesian learning, we consider 6 to be a random variable.

¢ This allows us to use knowledge about the parameters 0
» i.e. to use a prior for ¢ posterior

» Training data then converts this p(®1x)
prior distribution on 6 into prior
a posterior probability density. p(8)

e This is in contrast to the Bayesian interpretation

» In the Bayesian view, probabilities quantify the uncertainty
about certain states or events.

» This uncertainty can be revised in the light of new evidence.

=

¢ Bayesians and Frequentists do not like /7\
each other too well...

» The prior thus encodes knowledge we have about the type of
distribution we expect to see for 6.
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Recap: Bayesian Learning Approach

¢ Bayesian view: _
» Consider the parameter vector ¢ as a random variable. Pl X) = /p(z\@)p(ﬂX)d@
ol PO _ 0)
p(X) p(X)

» When estimating the parameters, what we compute is

p(z|X) = /p(z, 0|X)do Assumption: given 0, this

doesn’t depend on X anymore

(@, 01X) = p(=]6, X)p(6] X)

o0 = [ oCxiop0)d — [ Lowi0)a0
pla]X) = / p(z10)p(6]X)d0
%/_/

This is entirely determined by the parameter 6
(i.e. by the parametric form of the pdf).

¢ Inserting this above, we obtain

o) LOW6) [ o)L
ol = | o / TIO0
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Slide adapted from Bernt Schiele B. Leibe ide credit: Rernt Schiele B. Leibe
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Recap: Bayesian Learning Approach Topics of This Lecture

* Discussion Likelihood of the parametric

form 6 given the data set X.

Estimate for z based on
parametric form 6

Prior for the
parameters 6

¢ A Probabilistic View on Regression

p(:r|X) = Wdﬂ » Least-Squares Estimation as Maximum Likelihood
J L(0)p(0)do ~ Predictive Distribution
SV

» Maximum-A-Posteriori (MAP) Estimation
» Bayesian Curve Fitting

I

Normalization: integrate
over all possible values of

» The more uncertain we are about ¢, the more we average over
all possible parameter values.

Advanced Machine Learning, Winter’15
Advanced Machine Learning, Winter’15

B. Leibe
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Curve Fitting Revisited Probabilistic Regression
¢ In the last lecture, we’ve looked at curve fitting in terms

¢ First assumption:
of error minimization...

» Our target function values ¢ are generated by adding noise to
the ideal function estimate:

Target function ___» t = y(x, w)_H‘\\ Noise
value / \

Regression function Input value Weights or
parameters

¢ Now: View the problem from a probabilistic perspective
» Goal is to make predictions for target variable ¢
given new value for input variable x.
» Basis: training set x = (z,, ..., )7
with target values t =(¢,, ..., ty)".

» We express our uncertainty over the value of the target variable

¢ Second assumption:
using a probability distribution

» The noise is Gaussian distributed.

Advanced Machine Learning, Winter’15
Advanced Machine Learning, Winter’15

p(flﬂigw: r‘j) p(t|x‘w‘i3) =J\."(i‘|y(x‘w):ﬂ_l)
Mean Variance
2 (/3 precision) 2
B. Leibe

ide adapted from Bernt Schiele B. Leibe
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Visualization: Gaussian Noise Probabilistic Regression
e Given
. Training data points: X = [X1,...,Xn) € R
t » Associated function values: t = [tl,..‘,tn]T

¢ Conditional likelihood (assuming i.i.d. data)
N N
X, w,3) = [ [ N(ta|y(x., w). 374 = T Nt |who(x,). 374
p(6X,w, 3) = [[ M (taly(xn, w). 870 = T Mta|w? é(x,), 87

n=1 n=1 /

= Maximize w.r.t. w, Generalized linear
regression function

y(wo, w)

To T
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B. Leibe lmage source: CM, Bishop, 2004

ide adapted from Berpt Schiele B. Leibe
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Maximum Likelihood Regression

¢ Simplify the log-likelihood
N

logp(t|X, w. ) = > log N (tuly(xa. w),67")

n=1

Niz|p, 871 =

g{log(

Sum-of-squares error

ey ?{mx,,..w)

y(xn, W)} + 31053

Constants

Slide adapted from Bernt Schiele 8. Leibe

RWTH CHE
Maximum Likelihood Regression

N

B " (tn — who(x,))o(x,)

n=L

¢ Setting the gradient to zero:

0 = BZ n— W @xuj) (x Xp)

n=1

N N
& Y taolx,) = [Z O(x,,)o(x,,)l} w
n=1 n=1
[6(x1); - -, ()]

¥—— Same as in least-squares
regression!
= Least-squares regression is equivalent to Maximum Likelihood
under the assumption of Gaussian noise.

Vwlogp(t|/X,w,3) =

o dt=ed'w ®=
& war = (@@7) '@t

28

Slide adapted from Bernt Schiele B. Leibe
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RWTH ACHET
Predictive Distribution
» Having determined the parameters w and 3, we can
now make predictions for new values of x.

P(X wr, Bur) = N (ty(x, war). Byr)

¢ This means
> Rather than giving a point
estimate, we can now also
give an estimate of the
estimation uncertainty. or

* What else can we do in the
Bayesian view of regression? x !

30
Image source: .M, Bishop, 200d

B. Leibe
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Maximum Likelihood Regression

logp(t| X, w,4) = —= Z{{,, —y(x,,w

nl

w)} +—lug 17%100(2 )

N ) .
A5 T, 2 N N .
= 752{{” - W a)(x“]} +?lug_.1‘—710g(27r

n=1

e Gradient w.r.t. w:
N

BY (e — who(x))0(x,)

n=1

Vi logp(t/X,w,3) =

B. Leibe

RWTHACHE
Role of the Precision Parameter

¢ Also use ML to determlne the precision parameter 0:

2 Z{f” —w (J(x,, } + — h)i1 j— l log(2m
n=1

log p(t|X, w, 7)) =

o Gradient w.r.t. (:

Valogp(t|X,w.3) =

ra| —

N
N1
;{t” w cbx“} + = T3

1 T 2
B, N Z {tn w! ()}
. n=1

= The inverse of the noise precision is given by the residual
variance of the target values around the regression function.

B. Leibe
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MAP: A Step Towards Bayesian Estimation...

¢ Introduce a prior distribution over the coefficients w.
» For simplicity, assume a zero-mean Gaussian distribution

(M+1)/2 -
wla) = N(w|0, a7 'T) = (%) exp {—%WI W}

» New hyperparameter « controls the distribution of model
parameters.

¢ Express the posterior distribution over w.
» Using Bayes’ theorem:
p(wlX,t,3,0) x p(t| X, w, B)p(w|a)
» We can now determine w by maximizing the posterior.
» This technique is called maximum-a-posteriori (MAP).

B. Leibe
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MAP Solution

¢ Minimize the negative logarithm
—logp(w|X,t,3,a) x —logp(t|X, w, 3) — logp(w|a)
. 3 3 N ) |
logp(t|X,w,3) = 0 ”Z:;{y(x,,_.w) t,}” + const

—~logp(wla) = %WTW + const
¢ The MAP solution is therefore the solution of

] ~ 2 @ g
§Z{y(x,,~W)—tn} +gwiw

n=1

= Maximizing the posterior distribution is equivalent to p
minimizing the regularized sum-of-squares error (with A\ = — ).

B. Leibe e
RWTH/CHEN
Bayesian Curve Fitting
¢ Given
. Training data points: X = [x1,...,%,] € R¥X"
» Associated function values: t = [tl,...,t"]T

» Our goal is to predict the value of ¢ for a new point x.

¢ Evaluate the predictive distribution

What we just computed for MAP
> Noise distribition - again assume a Gaussian here
r a—1
p(tle, w) = N(tly(x,w),57)

» Assume that parameters « and (3 are fixed and known for now.

34
B. Leibe
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RWTH/ACHEN
Analyzing the result

¢ Analyzing the variance of the predictive distribution
s()? = 871 + o(2)" S¢(2)

Uncertainty in the predicted
value due to noise on the
target variables
(expressed already in ML)

Uncertainty in the parameters w
(consequence of Bayesian
treatment)

B. Leibe
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Results of Probabilistic View on Regression

¢ Better understanding what linear regression means

» Least-squares regression is equivalent to ML estimation under
the assumption of Gaussian noise.

= We can use the predictive distribution to give an uncertainty
estimate on the prediction.

= But: known problem with ML that it tends towards overfitting.

» L2-regularized regression (Ridge regression) is equivalent to
MAP estimation with a Gaussian prior on the parameters w.

= The prior controls the parameter values to reduce overfitting.
= This gives us a tool to explore more general priors.

¢ But still no full Bayesian Estimation yet

» Should integrate over all values of w instead of just making a
point estimate.

B. Leibe

RWTH/JCHET]
Bayesian Curve Fitting

¢ Under those assumptions, the posterior distribution is a
Gaussian and can be evaluated analytically:

p(t|z, X, t) = N(tlm(z), s* ()
» where the mean and variance are given by

N
m(x) = B6(x)'S Y o(x,)tn

n=1
s(x)? = 87 + ¢(x)" So(x)
» and S is the regularized covariance matrix
N

St =al+ 8 lxn)o(x,)"

n=1

B. Leibe
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RWTH/ACHEN
Bayesian Predictive Distribution

¢ Important difference to previous example
» Uncertainty may vary with test point z!

37
Image source: C.M, Bishop, 200

B. Leibe
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Topics of This Lecture

o Discussion

B. Leibe

Discussion

¢ General regression formulation

» In principle, we can perform regression in arbitrary spaces
and with many different types of basis functions

» However, there is a caveat... Can you see what it is?

o Example: Polynomial curve fitting, M =3
D DD

D DD
y(x, w) =wg + Z Wiy + Z ZU'U;J:,IJ + ZZ Zu‘ukw!xj T
i=1

i=1 j=1 i=1 j=1 k=1

= Number of coefficients grows with D!
= The approach becomes quickly unpractical for high dimensions.
» This is known as the curse of dimensionality.

> We will encounter some ways to deal with this later.
40

B. Leibe
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RWTHACIEN
Discussion

¢ We now have a better understanding of regression
» Least-squares regression: Assumption of Gaussian noise

= We can now also plug in different noise models and explore how
they affect the error function.

» L2 regularization as a Gaussian prior on parameters w.

= We can now also use different regularizers and explore what
they mean.

= Next lecture...

» General formulation with basis functions ¢(x).
= We can now also use different basis functions.

B. Leibe
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References and Further Reading

¢ More information on linear regression can be found in
Chapters 1.2.5-1.2.6 and 3.1-3.1.4 of

RS e
I ,x:s-
Christopher M. Bishop

Pattern Recognition and Machine Learning
Springer, 2006
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