Advanced Machine Learning Lecture 2

Linear Regression

29.10.2015

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

Topics of This Lecture

- Recap: Important Concepts from ML Lecture
 - > Probability Theory
 - Bayes Decision Theory
 - Maximum Likelihood Estimation
 - Bayesian Estimation
- · A Probabilistic View on Regression
 - > Least-Squares Estimation as Maximum Likelihood
 - Predictive Distribution
 - Maximum-A-Posteriori (MAP) Estimation
 - » Bayesian Curve Fitting
- Discussion

B. Leibe

Recap: The Rules of Probability

Basic rules

Sum Rule $p(X) = \sum_{Y} p(X, Y)$

 ${\bf Product \; Rule} \qquad p(X,Y) = p(Y|X)p(X)$

· From those, we can derive

Bayes' Theorem $p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$

where $p(X) = \sum p(X|Y)p(Y)$

Leibe

Recap: Bayes Decision Theory

- Concept 1: Priors (a priori probabilities)
 - What we can tell about the probability before seeing the data.
 - > wnat we

P(a)=0.75 P(b)=0.25

$$C_1 = a$$

$$p\left(C_{1}\right) = 0.75$$

$$C_2 = b$$

$$p(C_2) = 0.25$$

• In general: $\sum_{k} p(C_k) = 1$

de credit: Bernt Schiele

Recap: Bayes Decision Theory • Concept 2: Conditional probabilities • Let x be a feature vector. • x measures/describes certain properties of the input. • E.g. number of black pixels, aspect ratio, ... • $p(x|C_k)$ describes its likelihood for class C_k .

Recap: Bayes Decision Theory

- Concept 3: Posterior probabilities
- $p(C_{\iota} | x)$
- We are typically interested in the a posteriori probability, i.e. the probability of class C_k given the measurement vector x.
- · Bayes' Theorem:

$$p(C_k \mid x) = \frac{p(x \mid C_k) p(C_k)}{p(x)} = \frac{p(x \mid C_k) p(C_k)}{\sum_{i} p(x \mid C_i) p(C_i)}$$

Interpretation

$$Posterior = \frac{Likelihood \times Prior}{Normalization \ Factor}$$

Recap: Gaussian (or Normal) Distribution

One-dimensional case

- \blacktriangleright Mean μ

Multi-dimensional case

- » Mean u
- Covariance Σ

Side Note

Notation

In many situations, it will be preferable to work with the inverse of the covariance matrix Σ :

$$\boldsymbol{\Lambda} = \boldsymbol{\Sigma}^{-1}$$

- We call Λ the precision matrix.
- > We can therefore also write the Gaussian as

$$\mathcal{N}(x|\mu,\lambda^{-1}) = \frac{1}{\sqrt{2\pi}\lambda^{-1/2}} \exp\left\{-\frac{\lambda}{2}(x-\mu)^2\right\}$$

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Lambda}^{-1}) = \frac{1}{(2\pi)^{D/2}|\boldsymbol{\Lambda}|^{-1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Lambda}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

Recap: Parametric Methods

Given

- Data $X=\{x_1,x_2,\ldots,x_N\}$
- > Parametric form of the distribution with parameters $\boldsymbol{\theta}$
- E.g. for Gaussian distrib.: $\theta = (\mu, \sigma)$

Learning

 \succ Estimation of the parameters heta

• Likelihood of θ

 \triangleright Probability that the data X have indeed been generated from a probability density with parameters heta

$$L(\theta) = p(X|\theta)$$

Recap: Maximum Likelihood Approach

- · Computation of the likelihood
 - Single data point: $p(x_n|\theta) = \mathcal{N}(x_n|\mu,\sigma^2)$
 - Assumption: all data points $X = \{x_1, \dots, x_n\}$ are independent

$$L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$

$$L(\theta) = p(X|\theta) = \prod_{n=1}^N p(x_n|\theta)$$
 > Log-likelihood
$$E(\theta) = -\ln L(\theta) = -\sum_{n=1}^N \ln p(x_n|\theta)$$

- Estimation of the parameters θ (Learning)
 - > Maximize the likelihood (=minimize the negative log-likelihood)

$$\frac{\partial}{\partial \theta} E(\theta) = -\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \theta} p(x_n | \theta)}{p(x_n | \theta)} \stackrel{!}{=} 0$$

Recap: Maximum Likelihood Approach

· Applying ML to estimate the parameters of a Gaussian, we obtain

$$\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

"sample mean"

• In a similar fashion, we get

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \hat{\mu})^2$$

"sample variance"

- $\hat{\theta} = (\hat{\mu}, \hat{\sigma})$ is the Maximum Likelihood estimate for the parameters of a Gaussian distribution.
- · This is a very important result.
- · Unfortunately, it is biased...

Recap: Maximum Likelihood - Limitations

- Maximum Likelihood has several significant limitations
 - It systematically underestimates the variance of the distribution!
 - E.g. consider the case

 $N = 1, X = \{x_1\}$

 \overline{x}

⇒ Maximum-likelihood estimate:

- > We say ML overfits to the observed data.
- We will still often use ML, but it is important to know about this effect.

Recap: Deeper Reason

- · Maximum Likelihood is a Frequentist concept
 - In the Frequentist view, probabilities are the frequencies of random, repeatable events.
 - These frequencies are fixed, but can be estimated more precisely when more data is available.
- · This is in contrast to the Bayesian interpretation
 - In the Bayesian view, probabilities quantify the uncertainty about certain states or events.
 - This uncertainty can be revised in the light of new evidence,
- Bayesians and Frequentists do not like each other too well...

Recap: Bayesian Approach to Learning

Conceptual shift

- Maximum Likelihood views the true parameter vector $\boldsymbol{\theta}$ to be unknown, but fixed.
- In Bayesian learning, we consider $\boldsymbol{\theta}$ to be a random variable.
- This allows us to use knowledge about the parameters heta
 - \succ i.e. to use a prior for θ
 - Training data then converts this prior distribution on $\boldsymbol{\theta}$ into a posterior probability density.

The prior thus encodes knowledge we have about the type of distribution we expect to see for $\boldsymbol{\theta}\text{.}$

Recap: Bayesian Learning Approach

- · Bayesian view:
 - > Consider the parameter vector θ as a random variable.
 - \succ When estimating the parameters, what we compute is

$$p(x|X) = \int p(x,\theta|X)d\theta \qquad \begin{array}{c} \text{Assumption: given θ, this} \\ \text{doesn't depend on X anymore} \end{array}$$

$$p(x, \theta|X) = p(x|\theta, X)p(\theta|X)$$

$$p(x|X) = \int \underbrace{p(x|\theta)p(\theta|X)d\theta}$$

This is entirely determined by the parameter θ (i.e. by the parametric form of the pdf).

Recap: Bayesian Learning Approach

· Inserting this above, we obtain

$$p(x|X) = \int \frac{p(x|\theta)L(\theta)p(\theta)}{p(X)}d\theta = \int \frac{p(x|\theta)L(\theta)p(\theta)}{\int L(\theta)p(\theta)d\theta}d\theta$$

3

Maximum Likelihood Regression

 $\log p(\mathbf{t}|\mathbf{X},\mathbf{w},\beta) \ = \ -\frac{\beta}{2} \sum^N \{t_n - y(\mathbf{x}_n,\mathbf{w})\}^2 + \frac{N}{2} \log \beta - \frac{N}{2} \log(2\pi)$ $= -\frac{\beta}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \phi(\mathbf{x}_n) \right\}^2 + \frac{N}{2} \log \beta - \frac{N}{2} \log(2\pi)$

• Gradient w.r.t. w:

$$\nabla_{\mathbf{w}} \log p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = -\beta \sum_{n=1}^{N} (t_n - \mathbf{w}^T \phi(\mathbf{x}_n)) \phi(\mathbf{x}_n)$$

Maximum Likelihood Regression

 $\nabla_{\mathbf{w}} \log p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = -\beta \sum_{n=1}^{N} (t_n - \mathbf{w}^T \phi(\mathbf{x}_n)) \phi(\mathbf{x}_n)$

Setting the gradient to zero:

$$\begin{aligned} 0 &= -\beta \sum_{n=1}^{N} (t_n - \mathbf{w}^T \phi(\mathbf{x}_n)) \phi(\mathbf{x}_n) \\ \Leftrightarrow & \sum_{n=1}^{N} t_n \phi(\mathbf{x}_n) = \left[\sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^T \right] \mathbf{w} \\ \Leftrightarrow & \Phi \mathbf{t} = \Phi \Phi^T \mathbf{w} \qquad \qquad \Phi = [\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_n)] \\ \Leftrightarrow & \mathbf{w}_{\mathrm{ML}} = (\Phi \Phi^T)^{-1} \Phi \mathbf{t} \end{aligned}$$

⇒ Least-squares regression is equivalent to Maximum Likelihood

under the assumption of Gaussian noise.

Role of the Precision Parameter

• Also use ML to determine the precision parameter β :

$$\log p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \phi(\mathbf{x}_n) \right\}^2 + \frac{N}{2} \log \beta - \frac{N}{2} \log(2\pi)$$

• Gradient w.r.t. β :

$$\nabla_{\beta} \log p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = -\frac{1}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \phi(\mathbf{x}_n) \right\}^2 + \frac{N}{2} \frac{1}{\beta}$$

$$\frac{1}{\beta_{\mathrm{ML}}} = \frac{1}{N} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \phi(\mathbf{x}_n) \right\}^2$$

 \Rightarrow The inverse of the noise precision is given by the residual variance of the target values around the regression function.

Predictive Distribution

• Having determined the parameters w and β , we can now make predictions for new values of x.

$$p(t|\mathbf{X}, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1})$$

- This means
 - Rather than giving a point estimate, we can now also give an estimate of the estimation uncertainty.

What else can we do in the Bayesian view of regression?

MAP: A Step Towards Bayesian Estimation...

- Introduce a prior distribution over the coefficients w.
 - > For simplicity, assume a zero-mean Gaussian distribution

 $p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^T\mathbf{w}\right\}$

- New hyperparameter $\boldsymbol{\alpha}$ controls the distribution of model parameters.
- · Express the posterior distribution over w.
- Using Bayes' theorem:

$$p(\mathbf{w}|\mathbf{X}, \mathbf{t}, \beta, \alpha) \propto p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta)p(\mathbf{w}|\alpha)$$

- > We can now determine w by maximizing the posterior.
- This technique is called maximum-a-posteriori (MAP).

MAP Solution

· Minimize the negative logarithm

$$-\log p(\mathbf{w}|\mathbf{X}, \mathbf{t}, \beta, \alpha) \propto -\log p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) - \log p(\mathbf{w}|\alpha)$$
$$-\log p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \frac{\beta}{2} \sum_{n=1}^{N} \{y(\mathbf{x}_{n}, \mathbf{w}) - t_{n}\}^{2} + \text{const}$$
$$-\log p(\mathbf{w}|\alpha) = \frac{\alpha}{2} \mathbf{w}^{T} \mathbf{w} + \text{const}$$

• The MAP solution is therefore the solution of

$$\frac{\beta}{2} \sum_{n=1}^{N} \{y(\mathbf{x}_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^T \mathbf{w}$$

 \Rightarrow Maximizing the posterior distribution is equivalent to minimizing the regularized sum-of-squares error (with $\lambda=\dfrac{\alpha}{\beta}$).

Results of Probabilistic View on Regression

- · Better understanding what linear regression means
 - Least-squares regression is equivalent to ML estimation under the assumption of Gaussian noise.
 - ⇒ We can use the predictive distribution to give an uncertainty estimate on the prediction.
 - ⇒ But: known problem with ML that it tends towards overfitting.
 - L2-regularized regression (Ridge regression) is equivalent to MAP estimation with a Gaussian prior on the parameters w.
 - ⇒ The prior controls the parameter values to reduce overfitting.
 - ⇒ This gives us a tool to explore more general priors.
- But still no full Bayesian Estimation yet
 - > Should integrate over all values of $\ensuremath{\mathbf{w}}$ instead of just making a point estimate,

B. Leibe

RWTHAACHEN UNIVERSITY

Bayesian Curve Fitting

Given

- > Training data points:
 - data points: $\mathbf{X} \,=\, [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{d imes n}$
- > Associated function values:
- $\mathbf{t} = [t_1, \dots, t_n]^T$
- Evaluate the predictive distribution

$$p(t|x, \mathbf{X}, \mathbf{t}) \ = \ \int \underbrace{p(t|x, \mathbf{w})} \underbrace{p(\mathbf{w}|\mathbf{X}, \mathbf{t})} d\mathbf{w}$$

What we just computed for MAP

> Noise distribition - again assume a Gaussian here

$$p(t|x, \mathbf{w}) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

 $_{\rm >}$ Assume that parameters α and β are fixed and known for now. $_{\rm B.\,Leibe}$

Bayesian Curve Fitting

 Under those assumptions, the posterior distribution is a Gaussian and can be evaluated analytically:

$$p(t|x, \mathbf{X}, \mathbf{t}) = \mathcal{N}(t|m(x), s^2(x))$$

> where the mean and variance are given by

$$m(x) = \beta \phi(x)^T \mathbf{S} \sum_{n=1}^{N} \phi(\mathbf{x}_n) t_n$$

$$s(x)^2 = \beta^{-1} + \phi(x)^T \mathbf{S} \phi(x)$$

ightarrow and ${f S}$ is the regularized covariance matrix

$$\mathbf{S}^{-1} = \alpha \mathbf{I} + \beta \sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^{T}$$

B. Leibe

ACHEN

Analyzing the result

Analyzing the variance of the predictive distribution

$$s(x)^2 = \beta^{-1} + \phi(x)^T \mathbf{S}\phi(x)$$

Uncertainty in the predicted value due to noise on the target variables (expressed already in ML) Uncertainty in the parameters w (consequence of Bayesian treatment)

. Leibe

RWTHAACHE UNIVERSIT

Topics of This Lecture

- Recap: Important Concepts from ML Lecture
 - Probability Theory
 - Bayes Decision Theory
 - > Maximum Likelihood Estimation
 - > Bayesian Estimation
- A Probabilistic View on Regression
 - > Least-Squares Estimation as Maximum Likelihood
 - > Predictive Distribution
 - > Maximum-A-Posteriori (MAP) Estimation
 - » Bayesian Curve Fitting
- Discussion

Discussion

- We now have a better understanding of regression
 - > Least-squares regression: Assumption of Gaussian noise
 - ⇒ We can now also plug in different noise models and explore how they affect the error function.
 - > L2 regularization as a Gaussian prior on parameters w.
 - ⇒ We can now also use different regularizers and explore what they mean.
 - ⇒ Next lecture...
 - > General formulation with basis functions $\phi(\mathbf{x})$.
 - ⇒ We can now also use different basis functions.

Loibo

RWTHAACHE LINIVERSIT

Discussion

- · General regression formulation
 - In principle, we can perform regression in arbitrary spaces and with many different types of basis functions
 - > However, there is a caveat... Can you see what it is?
- Example: Polynomial curve fitting, ${\it M}=3$

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{D} w_i x_i + \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j + \sum_{i=1}^{D} \sum_{j=1}^{D} \sum_{k=1}^{D} w_{ijk} x_i x_j x_k$$

- \Rightarrow Number of coefficients grows with $D^M!$
- ⇒ The approach becomes quickly unpractical for high dimensions.
- > This is known as the curse of dimensionality.
- > We will encounter some ways to deal with this later.

B. Leibe

References and Further Reading

 More information on linear regression can be found in Chapters 1.2.5-1.2.6 and 3.1-3.1.4 of

> Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

B. Leibe