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Abstract. This paper describes a face detection framework that is capable of processing images extremely rapidly
while achieving high detection rates. There are three key contributions. The first is the introduction of a new
image representation called the “Integral Image” which allows the features used by our detector to be computed
very quickly. The second is a simple and efficient classifier which is built using the AdaBoost learning algo-
rithm (Freund and Schapire, 1995) to select a small number of critical visual features from a very large set of
potential features. The third contribution is a method for combining classifiers in a “cascade” which allows back-
ground regions of the image to be quickly discarded while spending more computation on promising face-like
regions. A set of experiments in the domain of face detection is presented. The system yields face detection perfor-
mance comparable to the best previous systems (Sung and Poggio, 1998; Rowley et al., 1998; Schneiderman and
Kanade, 2000; Roth et al., 2000). Implemented on a conventional desktop, face detection proceeds at 15 frames per
second.
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1. Introduction21

This paper brings together new algorithms and insights22
to construct a framework for robust and extremely rapid23
visual detection. Toward this end we have constructed24
a frontal face detection system which achieves detec-25
tion and false positive rates which are equivalent to26
the best published results (Sung and Poggio, 1998;27
Rowley et al., 1998; Osuna et al., 1997a; Schneiderman28
and Kanade, 2000; Roth et al., 2000). This face detec-29
tion system is most clearly distinguished from previ-30
ous approaches in its ability to detect faces extremely31
rapidly. Operating on 384 by 288 pixel images, faces32
are detected at 15 frames per second on a conventional33
700 MHz Intel Pentium III. In other face detection34
systems, auxiliary information, such as image differ-35

ences in video sequences, or pixel color in color im- 36
ages, have been used to achieve high frame rates. Our 37
system achieves high frame rates working only with 38
the information present in a single grey scale image. 39
These alternative sources of information can also be in- 40
tegrated with our system to achieve even higher frame 41
rates. 42

There are three main contributions of our face detec- 43
tion framework. We will introduce each of these ideas 44
briefly below and then describe them in detail in sub- 45
sequent sections. 46

The first contribution of this paper is a new image 47
representation called an integral image that allows for 48
very fast feature evaluation. Motivated in part by the 49
work of Papageorgiou et al. (1998) our detection sys- 50
tem does not work directly with image intensities. Like 51
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these authors we use a set of features which are rem-52
iniscent of Haar Basis functions (though we will also53
use related filters which are more complex than Haar54
filters). In order to compute these features very rapidly55
at many scales we introduce the integral image repre-56
sentation for images (the integral image is very similar57
to the summed area table used in computer graphics58
(Crow, 1984) for texture mapping). The integral im-59
age can be computed from an image using a few op-60
erations per pixel. Once computed, any one of these61
Haar-like features can be computed at any scale or lo-62
cation in constant time.63

The second contribution of this paper is a simple64
and efficient classifier that is built by selecting a small65
number of important features from a huge library of po-66
tential features using AdaBoost (Freund and Schapire,67
1995). Within any image sub-window the total num-68
ber of Haar-like features is very large, far larger than69
the number of pixels. In order to ensure fast classifi-70
cation, the learning process must exclude a large ma-71
jority of the available features, and focus on a small72
set of critical features. Motivated by the work of Tieu73
and Viola (2000) feature selection is achieved using74
the AdaBoost learning algorithm by constraining each75
weak classifier to depend on only a single feature. As a76
result each stage of the boosting process, which selects77
a new weak classifier, can be viewed as a feature selec-78
tion process. AdaBoost provides an effective learning79
algorithm and strong bounds on generalization perfor-80
mance (Schapire et al., 1998).81

The third major contribution of this paper is a method82
for combining successively more complex classifiers83
in a cascade structure which dramatically increases the84
speed of the detector by focusing attention on promis-85
ing regions of the image. The notion behind focus86
of attention approaches is that it is often possible to87
rapidly determine where in an image a face might oc-88
cur (Tsotsos et al., 1995; Itti et al., 1998; Amit and89
Geman, 1999; Fleuret and Geman, 2001). More com-90
plex processing is reserved only for these promising91
regions. The key measure of such an approach is the92
“false negative” rate of the attentional process. It must93
be the case that all, or almost all, face instances are94
selected by the attentional filter.95

We will describe a process for training an extremely96
simple and efficient classifier which can be used as a97
“supervised” focus of attention operator.1 A face de-98
tection attentional operator can be learned which will99
filter out over 50% of the image while preserving 99%100
of the faces (as evaluated over a large dataset). This101

filter is exceedingly efficient; it can be evaluated in 20 102
simple operations per location/scale (approximately 60 103
microprocessor instructions). 104

Those sub-windows which are not rejected by the 105
initial classifier are processed by a sequence of classi- 106
fiers, each slightly more complex than the last. If any 107
classifier rejects the sub-window, no further processing 108
is performed. The structure of the cascaded detection 109
process is essentially that of a degenerate decision tree, 110
and as such is related to the work of Fleuret and Geman 111
(2001) and Amit and Geman (1999). 112

The complete face detection cascade has 38 classi- 113
fiers, which total over 80,000 operations. Nevertheless 114
the cascade structure results in extremely rapid average 115
detection times. On a difficult dataset, containing 507 116
faces and 75 million sub-windows, faces are detected 117
using an average of 270 microprocessor instructions 118
per sub-window. In comparison, this system is about 119
15 times faster than an implementation of the detection 120
system constructed by Rowley et al. (1998).2 121

An extremely fast face detector will have broad prac- 122
tical applications. These include user interfaces, im- 123
age databases, and teleconferencing. This increase in 124
speed will enable real-time face detection applications 125
on systems where they were previously infeasible. In 126
applications where rapid frame-rates are not necessary, 127
our system will allow for significant additional post- 128
processing and analysis. In addition our system can be 129
implemented on a wide range of small low power de- 130
vices, including hand-helds and embedded processors. 131
In our lab we have implemented this face detector on a 132
low power 200 mips Strong Arm processor which lacks 133
floating point hardware and have achieved detection at 134
two frames per second.

135

1.1. Overview 136

The remaining sections of the paper will discuss the 137
implementation of the detector, related theory, and ex- 138
periments. Section 2 will detail the form of the features 139
as well as a new scheme for computing them rapidly. 140
Section 3 will discuss the method in which these fea- 141
tures are combined to form a classifier. The machine 142
learning method used, a application of AdaBoost, also 143
acts as a feature selection mechanism. While the classi- 144
fiers that are constructed in this way have good compu- 145
tational and classification performance, they are far too 146
slow for a real-time classifier. Section 4 will describe a 147
method for constructing a cascade of classifiers which 148
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together yield an extremely reliable and efficient face149
detector. Section 5 will describe a number of experi-150
mental results, including a detailed description of our151
experimental methodology. Finally Section 6 contains152
a discussion of this system and its relationship to re-153
lated systems.154

2. Features155

Our face detection procedure classifies images based156
on the value of simple features. There are many moti-157
vations for using features rather than the pixels directly.158
The most common reason is that features can act to en-159
code ad-hoc domain knowledge that is difficult to learn160
using a finite quantity of training data. For this system161
there is also a second critical motivation for features:162
the feature-based system operates much faster than a163
pixel-based system.164

The simple features used are reminiscent of Haar165
basis functions which have been used by Papageorgiou166
et al. (1998). More specifically, we use three kinds of167
features. The value of a two-rectangle feature is the168
difference between the sum of the pixels within two169
rectangular regions. The regions have the same size170
and shape and are horizontally or vertically adjacent171
(see Fig. 1). A three-rectangle feature computes the172
sum within two outside rectangles subtracted from the173
sum in a center rectangle. Finally a four-rectangle fea-174
ture computes the difference between diagonal pairs of175
rectangles.176

Given that the base resolution of the detector is177
24 × 24, the exhaustive set of rectangle features is178

Figure 1. Example rectangle features shown relative to the enclos-
ing detection window. The sum of the pixels which lie within the
white rectangles are subtracted from the sum of pixels in the grey
rectangles. Two-rectangle features are shown in (A) and (B). Figure
(C) shows a three-rectangle feature, and (D) a four-rectangle feature.

quite large, 160,000. Note that unlike the Haar basis, 179
the set of rectangle features is overcomplete.3 180

2.1. Integral Image 181

Rectangle features can be computed very rapidly using 182
an intermediate representation for the image which we 183
call the integral image.4 The integral image at location 184
x, y contains the sum of the pixels above and to the left 185
of x, y, inclusive: 186

i i(x, y) =
∑

x ′≤x,y′≤y

i(x ′, y′),

where i i(x, y) is the integral image and i(x, y) is the 187
original image (see Fig. 2). Using the following pair of 188
recurrences: 189

s(x, y) = s(x, y − 1) + i(x, y) (1)

i i(x, y) = i i(x − 1, y) + s(x, y) (2)

(where s(x, y) is the cumulative row sum, s(x, −1) = 190
0, and i i(−1, y) = 0) the integral image can be com- 191
puted in one pass over the original image. 192

Using the integral image any rectangular sum can be 193
computed in four array references (see Fig. 3). Clearly 194
the difference between two rectangular sums can be 195
computed in eight references. Since the two-rectangle 196
features defined above involve adjacent rectangular 197
sums they can be computed in six array references, 198
eight in the case of the three-rectangle features, and 199
nine for four-rectangle features. 200

One alternative motivation for the integral im- 201
age comes from the “boxlets” work of Simard et al. 202

Figure 2. The value of the integral image at point (x, y) is the sum
of all the pixels above and to the left.
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Figure 3. The sum of the pixels within rectangle D can be computed
with four array references. The value of the integral image at location
1 is the sum of the pixels in rectangle A. The value at location 2 is
A + B, at location 3 is A + C , and at location 4 is A + B + C + D.
The sum within D can be computed as 4 + 1 − (2 + 3).

(1999). The authors point out that in the case of linear203
operations (e.g. f · g), any invertible linear operation204
can be applied to f or g if its inverse is applied to the205
result. For example in the case of convolution, if the206
derivative operator is applied both to the image and the207
kernel the result must then be double integrated:208

f ∗ g =
∫ ∫

( f ′ ∗ g′).

The authors go on to show that convolution can be209
significantly accelerated if the derivatives of f and g210
are sparse (or can be made so). A similar insight is that211
an invertible linear operation can be applied to f if its212
inverse is applied to g:213

( f ′′) ∗
( ∫ ∫

g

)
= f ∗ g.

Viewed in this framework computation of the rect-214
angle sum can be expressed as a dot product, i ·r , where215
i is the image and r is the box car image (with value216
1 within the rectangle of interest and 0 outside). This217
operation can be rewritten218

i · r =
( ∫ ∫

i

)
· r ′′.

The integral image is in fact the double integral of the219
image (first along rows and then along columns). The220
second derivative of the rectangle (first in row and then221
in column) yields four delta functions at the corners of222

the rectangle. Evaluation of the second dot product is 223
accomplished with four array accesses. 224

2.2. Feature Discussion 225

Rectangle features are somewhat primitive when 226
compared with alternatives such as steerable filters 227
(Freeman and Adelson, 1991; Greenspan et al., 1994). 228
Steerable filters, and their relatives, are excellent for the 229
detailed analysis of boundaries, image compression, 230
and texture analysis. While rectangle features are also 231
sensitive to the presence of edges, bars, and other sim- 232
ple image structure, they are quite coarse. Unlike steer- 233
able filters, the only orientations available are vertical, 234
horizontal and diagonal. Since orthogonality is not cen- 235
tral to this feature set, we choose to generate a very 236
large and varied set of rectangle features. Typically the 237
representation is about 400 times overcomplete. This 238
overcomplete set provides features of arbitrary aspect 239
ratio and of finely sampled location. Empirically it ap- 240
pears as though the set of rectangle features provide 241
a rich image representation which supports effective 242
learning. The extreme computational efficiency of rect- 243
angle features provides ample compensation for their 244
limitations. 245

In order to appreciate the computational advantage 246
of the integral image technique, consider a more con- 247
ventional approach in which a pyramid of images is 248
computed. Like most face detection systems, our de- 249
tector scans the input at many scales; starting at the 250
base scale in which faces are detected at a size of 251
24 × 24 pixels, a 384 by 288 pixel image is scanned 252
at 12 scales each a factor of 1.25 larger than the last. 253
The conventional approach is to compute a pyramid of 254
12 images, each 1.25 times smaller than the previous 255
image. A fixed scale detector is then scanned across 256
each of these images. Computation of the pyramid, 257
while straightforward, requires significant time. Imple- 258
mented efficiently on conventional hardware (using bi- 259
linear interpolation to scale each level of the pyramid) it 260
takes around .05 seconds to compute a 12 level pyramid 261
of this size (on an Intel PIII 700 MHz processor).5 262

In contrast we have defined a meaningful set of rect- 263
angle features, which have the property that a single 264
feature can be evaluated at any scale and location in a 265
few operations. We will show in Section 4 that effec- 266
tive face detectors can be constructed with as few as two 267
rectangle features. Given the computational efficiency 268
of these features, the face detection process can be com- 269
pleted for an entire image at every scale at 15 frames per 270
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second, about the same time required to evaluate the 12271
level image pyramid alone. Any procedure which re-272
quires a pyramid of this type will necessarily run slower273
than our detector.274

3. Learning Classification Functions275

Given a feature set and a training set of positive and276
negative images, any number of machine learning ap-277
proaches could be used to learn a classification func-278
tion. Sung and Poggio use a mixture of Gaussian model279
(Sung and Poggio, 1998). Rowley et al. (1998) use a280
small set of simple image features and a neural net-281
work. Osuna et al. (1997b) used a support vector ma-282
chine. More recently Roth et al. (2000) have proposed283
a new and unusual image representation and have used284
the Winnow learning procedure.285

Recall that there are 160,000 rectangle features as-286
sociated with each image sub-window, a number far287
larger than the number of pixels. Even though each288
feature can be computed very efficiently, computing289
the complete set is prohibitively expensive. Our hy-290
pothesis, which is borne out by experiment, is that a291
very small number of these features can be combined292
to form an effective classifier. The main challenge is to293
find these features.294

In our system a variant of AdaBoost is used both295
to select the features and to train the classifier (Freund296
and Schapire, 1995). In its original form, the AdaBoost297
learning algorithm is used to boost the classification298
performance of a simple learning algorithm (e.g., it299
might be used to boost the performance of a simple per-300
ceptron). It does this by combining a collection of weak301
classification functions to form a stronger classifier. In302
the language of boosting the simple learning algorithm303
is called a weak learner. So, for example the percep-304
tron learning algorithm searches over the set of possible305
perceptrons and returns the perceptron with the lowest306
classification error. The learner is called weak because307
we do not expect even the best classification function to308
classify the training data well (i.e. for a given problem309
the best perceptron may only classify the training data310
correctly 51% of the time). In order for the weak learner311
to be boosted, it is called upon to solve a sequence of312
learning problems. After the first round of learning, the313
examples are re-weighted in order to emphasize those314
which were incorrectly classified by the previous weak315
classifier. The final strong classifier takes the form of a316
perceptron, a weighted combination of weak classifiers317
followed by a threshold.6318

The formal guarantees provided by the AdaBoost 319
learning procedure are quite strong. Freund and 320
Schapire proved that the training error of the strong 321
classifier approaches zero exponentially in the number 322
of rounds. More importantly a number of results 323
were later proved about generalization performance 324
(Schapire et al., 1997). The key insight is that gen- 325
eralization performance is related to the margin of the 326
examples, and that AdaBoost achieves large margins 327
rapidly. 328

The conventional AdaBoost procedure can be eas- 329
ily interpreted as a greedy feature selection process. 330
Consider the general problem of boosting, in which a 331
large set of classification functions are combined using 332
a weighted majority vote. The challenge is to associate 333
a large weight with each good classification function 334
and a smaller weight with poor functions. AdaBoost is 335
an aggressive mechanism for selecting a small set of 336
good classification functions which nevertheless have 337
significant variety. Drawing an analogy between weak 338
classifiers and features, AdaBoost is an effective pro- 339
cedure for searching out a small number of good “fea- 340
tures” which nevertheless have significant variety. 341

One practical method for completing this analogy is 342
to restrict the weak learner to the set of classification 343
functions each of which depend on a single feature. 344
In support of this goal, the weak learning algorithm is 345
designed to select the single rectangle feature which 346
best separates the positive and negative examples (this 347
is similar to the approach of Tieu and Viola (2000) in 348
the domain of image database retrieval). For each fea- 349
ture, the weak learner determines the optimal threshold 350
classification function, such that the minimum num- 351
ber of examples are misclassified. A weak classifier 352
(h(x, f, p, θ )) thus consists of a feature ( f ), a thresh- 353
old (θ ) and a polarity (p) indicating the direction of the 354
inequality: 355

h(x, f, p, θ ) =
{

1 if p f (x) < pθ

0 otherwise

Here x is a 24 × 24 pixel sub-window of an image. 356
In practice no single feature can perform the classifi- 357

cation task with low error. Features which are selected 358
early in the process yield error rates between 0.1 and 359
0.3. Features selected in later rounds, as the task be- 360
comes more difficult, yield error rates between 0.4 and 361
0.5. Table 1 shows the learning algorithm. 362

The weak classifiers that we use (thresholded single 363
features) can be viewed as single node decision trees. 364
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Table 1. The boosting algorithm for learning a query online.
T hypotheses are constructed each using a single feature. The
final hypothesis is a weighted linear combination of the T hy-
potheses where the weights are inversely proportional to the
training errors.

• Given example images (x1, y1), . . . , (xn, yn) where
yi = 0, 1 for negative and positive examples respectively.

• Initialize weights w1,i = 1
2m , 1

2l for yi = 0, 1 respectively,
where m and l are the number of negatives and positives
respectively.

• For t = 1, . . . , T :

1. Normalize the weights, wt,i ← wt,i∑n
j=1 wt, j

2. Select the best weak classifier with respect to the
weighted error

εt = min f,p,θ

∑
i

wi | h(xi , f, p, θ ) − yi | .
See Section 3.1 for a discussion of an efficient
implementation.

3. Define ht (x) = h(x, ft , pt , θt ) where ft , pt , and θt

are the minimizers of εt .
4. Update the weights:

wt+1,i = wt,i β
1−ei
t

where ei = 0 if example xi is classified correctly, ei = 1
otherwise, and βt = εt

1−εt
.

• The final strong classifier is:

C(x) =

{
1

T∑
t=1

αt ht (x) ≥ 1

2

T∑
t=1

αt

0 otherwise

where αt = log 1
βt

Such structures have been called decision stumps in365
the machine learning literature. The original work of366
Freund and Schapire (1995) also experimented with367
boosting decision stumps.368

3.1. Learning Discussion369

The algorithm described in Table 1 is used to select key370
weak classifiers from the set of possible weak classi-371
fiers. While the AdaBoost process is quite efficient, the372
set of weak classifier is extraodinarily large. Since there373
is one weak classifier for each distinct feature/threshold374
combination, there are effectively KN weak classifiers,375
where K is the number of features and N is the num-376
ber of examples. In order to appreciate the dependency377
on N , suppose that the examples are sorted by a given378
feature value. With respect to the training process any379
two thresholds that lie between the same pair of sorted380
examples is equivalent. Therefore the total number of381

distinct thresholds is N . Given a task with N = 20000 382
and K = 160000 there are 3.2 billion distinct binary 383
weak classifiers. 384

The wrapper method can also be used to learn a per- 385
ceptron which utilizes M weak classifiers (John et al., 386
1994) The wrapper method also proceeds incremen- 387
tally by adding one weak classifier to the perceptron in 388
each round. The weak classifier added is the one which 389
when added to the current set yields a perceptron with 390
lowest error. Each round takes at least O(NKN) (or 60 391
Trillion operations); the time to enumerate all binary 392
features and evaluate each example using that feature. 393
This neglects the time to learn the perceptron weights. 394
Even so, the final work to learn a 200 feature classi- 395
fier would be something like O(MNKN) which is 1016 396
operations. 397

The key advantage of AdaBoost as a feature selec- 398
tion mechanism, over competitors such as the wrapper 399
method, is the speed of learning. Using AdaBoost a 400
200 feature classifier can be learned in O(MNK) or 401
about 1011 operations. One key advantage is that in 402
each round the entire dependence on previously se- 403
lected features is efficiently and compactly encoded 404
using the example weights. These weights can then be 405
used to evaluate a given weak classifier in constant time. 406

The weak classifier selection algorithm proceeds as 407
follows. For each feature, the examples are sorted based 408
on feature value. The AdaBoost optimal threshold for 409
that feature can then be computed in a single pass over 410
this sorted list. For each element in the sorted list, four 411
sums are maintained and evaluated: the total sum of 412
positive example weights T +, the total sum of negative 413
example weights T −, the sum of positive weights below 414
the current example S+ and the sum of negative weights 415
below the current example S−. The error for a threshold 416
which splits the range between the current and previous 417
example in the sorted list is: 418

e = min
(
S+ + (T − − S−), S− + (T + − S+)

,

or the minimum of the error of labeling all examples 419
below the current example negative and labeling the ex- 420
amples above positive versus the error of the converse. 421
These sums are easily updated as the search proceeds. 422

Many general feature selection procedures have been 423
proposed (see chapter 8 of Webb (1999) for a review). 424
Our final application demanded a very aggressive pro- 425
cess which would discard the vast majority of features. 426
For a similar recognition problem Papageorgiou et al. 427
(1998) proposed a scheme for feature selection based 428
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on feature variance. They demonstrated good results se-429
lecting 37 features out of a total 1734 features. While430
this is a significant reduction, the number of features431
evaluated for every image sub-window is still reason-432
ably large.433

Roth et al. (2000) propose a feature selection process434
based on the Winnow exponential perceptron learning435
rule. These authors use a very large and unusual feature436
set, where each pixel is mapped into a binary vector of d437
dimensions (when a particular pixel takes on the value438
x , in the range [0, d − 1], the x-th dimension is set to439
1 and the other dimensions to 0). The binary vectors440
for each pixel are concatenated to form a single binary441
vector with nd dimensions (n is the number of pixels).442
The classification rule is a perceptron, which assigns443
one weight to each dimension of the input vector. The444
Winnow learning process converges to a solution where445
many of these weights are zero. Nevertheless a very446
large number of features are retained (perhaps a few447
hundred or thousand).448

3.2. Learning Results449

While details on the training and performance of the450
final system are presented in Section 5, several sim-451
ple results merit discussion. Initial experiments demon-

Figure 4. Receiver operating characteristic (ROC) curve for the 200 feature classifier.

strated that a classifier constructed from 200 features 452
would yield reasonable results (see Fig. 4). Given a 453
detection rate of 95% the classifier yielded a false pos- 454
itive rate of 1 in 14084 on a testing dataset. This is 455
promising, but for a face detector to be practical for 456
real applications, the false positive rate must be closer 457
to 1 in 1,000,000. 458

For the task of face detection, the initial rectangle 459
features selected by AdaBoost are meaningful and eas- 460
ily interpreted. The first feature selected seems to focus 461
on the property that the region of the eyes is often darker 462
than the region of the nose and cheeks (see Fig. 5). This 463
feature is relatively large in comparison with the detec- 464
tion sub-window, and should be somewhat insensitive 465
to size and location of the face. The second feature se- 466
lected relies on the property that the eyes are darker 467
than the bridge of the nose. 468

In summary the 200-feature classifier provides ini- 469
tial evidence that a boosted classifier constructed from 470
rectangle features is an effective technique for face de- 471
tection. In terms of detection, these results are com- 472
pelling but not sufficient for many real-world tasks. In 473
terms of computation, this classifier is very fast, re- 474
quiring 0.7 seconds to scan an 384 by 288 pixel im- 475
age. Unfortunately, the most straightforward tech- 476
nique for improving detection performance, adding
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Figure 5. The first and second features selected by AdaBoost. The
two features are shown in the top row and then overlayed on a typ-
ical training face in the bottom row. The first feature measures the
difference in intensity between the region of the eyes and a region
across the upper cheeks. The feature capitalizes on the observation
that the eye region is often darker than the cheeks. The second feature
compares the intensities in the eye regions to the intensity across the
bridge of the nose.

features to the classifier, directly increases computation477
time.478

4. The Attentional Cascade479

This section describes an algorithm for constructing a480
cascade of classifiers which achieves increased detec-481
tion performance while radically reducing computation482
time. The key insight is that smaller, and therefore more483
efficient, boosted classifiers can be constructed which484
reject many of the negative sub-windows while detect-485
ing almost all positive instances. Simpler classifiers are486
used to reject the majority of sub-windows before more487
complex classifiers are called upon to achieve low false488
positive rates.489

Stages in the cascade are constructed by training490
classifiers using AdaBoost. Starting with a two-feature491
strong classifier, an effective face filter can be obtained492
by adjusting the strong classifier threshold to mini-493
mize false negatives. The initial AdaBoost threshold,494
1
2

∑T
t=1 αt , is designed to yield a low error rate on the495

training data. A lower threshold yields higher detec-496
tion rates and higher false positive rates. Based on per-497
formance measured using a validation training set, the498
two-feature classifier can be adjusted to detect 100% of499
the faces with a false positive rate of 50%. See Fig. 5 for500
a description of the two features used in this classifier.501

The detection performance of the two-feature clas-502
sifier is far from acceptable as a face detection system.503
Nevertheless the classifier can significantly reduce the504

number of sub-windows that need further processing 505
with very few operations: 506

1. Evaluate the rectangle features (requires between 6 507
and 9 array references per feature). 508

2. Compute the weak classifier for each feature (re- 509
quires one threshold operation per feature). 510

3. Combine the weak classifiers (requires one multiply 511
per feature, an addition, and finally a threshold). 512

A two feature classifier amounts to about 60 mi- 513
croprocessor instructions. It seems hard to imagine 514
that any simpler filter could achieve higher rejection 515
rates. By comparison, scanning a simple image tem- 516
plate would require at least 20 times as many operations 517
per sub-window. 518

The overall form of the detection process is that of 519
a degenerate decision tree, what we call a “cascade” 520
(Quinlan, 1986) (see Fig. 6). A positive result from 521
the first classifier triggers the evaluation of a second 522
classifier which has also been adjusted to achieve very 523
high detection rates. A positive result from the second 524
classifier triggers a third classifier, and so on. A negative 525
outcome at any point leads to the immediate rejection 526
of the sub-window. 527

The structure of the cascade reflects the fact that 528
within any single image an overwhelming majority of 529
sub-windows are negative. As such, the cascade at- 530
tempts to reject as many negatives as possible at the 531
earliest stage possible. While a positive instance will 532

Figure 6. Schematic depiction of a the detection cascade. A series
of classifiers are applied to every sub-window. The initial classifier
eliminates a large number of negative examples with very little pro-
cessing. Subsequent layers eliminate additional negatives but require
additional computation. After several stages of processing the num-
ber of sub-windows have been reduced radically. Further processing
can take any form such as additional stages of the cascade (as in our
detection system) or an alternative detection system.
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trigger the evaluation of every classifier in the cascade,533
this is an exceedingly rare event.534

Much like a decision tree, subsequent classifiers are535
trained using those examples which pass through all536
the previous stages. As a result, the second classifier537
faces a more difficult task than the first. The examples538
which make it through the first stage are “harder” than539
typical examples. The more difficult examples faced540
by deeper classifiers push the entire receiver operat-541
ing characteristic (ROC) curve downward. At a given542
detection rate, deeper classifiers have correspondingly543
higher false positive rates.544

4.1. Training a Cascade of Classifiers545

The cascade design process is driven from a set of de-546
tection and performance goals. For the face detection547
task, past systems have achieved good detection rates548
(between 85 and 95 percent) and extremely low false549
positive rates (on the order of 10−5 or 10−6). The num-550
ber of cascade stages and the size of each stage must551
be sufficient to achieve similar detection performance552
while minimizing computation.553

Given a trained cascade of classifiers, the false pos-554
itive rate of the cascade is555

F =
K∏

i=1

fi ,

where F is the false positive rate of the cascaded clas-556
sifier, K is the number of classifiers, and fi is the false557
positive rate of the i th classifier on the examples that558
get through to it. The detection rate is559

D =
K∏

i=1

di ,

where D is the detection rate of the cascaded classifier,560
K is the number of classifiers, and di is the detection561
rate of the i th classifier on the examples that get through562
to it.563

Given concrete goals for overall false positive and564
detection rates, target rates can be determined for each565
stage in the cascade process. For example a detection566
rate of 0.9 can be achieved by a 10 stage classifier if567
each stage has a detection rate of 0.99 (since 0.9 ≈568
0.9910). While achieving this detection rate may sound569
like a daunting task, it is made significantly easier by the570
fact that each stage need only achieve a false positive571
rate of about 30% (0.3010 ≈ 6 × 10−6).572

The number of features evaluated when scanning 573
real images is necessarily a probabilistic process. Any 574
given sub-window will progress down through the cas- 575
cade, one classifier at a time, until it is decided that 576
the window is negative or, in rare circumstances, the 577
window succeeds in each test and is labelled positive. 578
The expected behavior of this process is determined 579
by the distribution of image windows in a typical test 580
set. The key measure of each classifier is its “positive 581
rate”, the proportion of windows which are labelled as 582
potentially containing a face. The expected number of 583
features which are evaluated is: 584

N = n0 +
K∑

i=1

(
ni

∏
j<i

p j

)

where N is the expected number of features evaluated, 585
K is the number of classifiers, pi is the positive rate of 586
the i th classifier, and ni are the number of features in the 587
i th classifier. Interestingly, since faces are extremely 588
rare, the “positive rate” is effectively equal to the false 589
positive rate. 590

The process by which each element of the cascade 591
is trained requires some care. The AdaBoost learning 592
procedure presented in Section 3 attempts only to min- 593
imize errors, and is not specifically designed to achieve 594
high detection rates at the expense of large false positive 595
rates. One simple, and very conventional, scheme for 596
trading off these errors is to adjust the threshold of the 597
perceptron produced by AdaBoost. Higher thresholds 598
yield classifiers with fewer false positives and a lower 599
detection rate. Lower thresholds yield classifiers with 600
more false positives and a higher detection rate. It is 601
not clear, at this point, whether adjusting the threshold 602
in this way preserves the training and generalization 603
guarantees provided by AdaBoost. 604

The overall training process involves two types of 605
tradeoffs. In most cases classifiers with more features 606
will achieve higher detection rates and lower false pos- 607
itive rates. At the same time classifiers with more fea- 608
tures require more time to compute. In principle one 609
could define an optimization framework in which 610

• the number of classifier stages, 611
• the number of features, ni , of each stage, 612
• the threshold of each stage 613

are traded off in order to minimize the expected num- 614
ber of features N given a target for F and D. Unfortu- 615
nately finding this optimum is a tremendously difficult 616
problem. 617
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Table 2. The training algorithm for building a cascaded detector.

• User selects values for f , the maximum acceptable false
positive rate per layer and d, the minimum acceptable detection
rate per layer.

• User selects target overall false positive rate, Ftarget .
• P = set of positive examples
• N = set of negative examples
• F0 = 1.0; D0 = 1.0
• i = 0
• while Fi > Ftarget

– i ← i + 1
– ni = 0; Fi = Fi−1

– while Fi > f × Fi−1

∗ ni ← ni + 1
∗ Use P and N to train a classifier with ni features using

AdaBoost
∗ Evaluate current cascaded classifier on validation set to

determine Fi and Di .
∗ Decrease threshold for the i th classifier until the current

cascaded classifier has a detection rate of at least
d × Di−1 (this also affects Fi )

– N ← ∅
– If Fi > Ftarget then evaluate the current cascaded detector on

the set of non-face images and put any false detections into
the set N

In practice a very simple framework is used to pro-618
duce an effective classifier which is highly efficient.619
The user selects the maximum acceptable rate for fi620
and the minimum acceptable rate for di . Each layer of621
the cascade is trained by AdaBoost (as described in622
Table 1) with the number of features used being in-623
creased until the target detection and false positive rates624
are met for this level. The rates are determined by test-625
ing the current detector on a validation set. If the overall626
target false positive rate is not yet met then another layer627
is added to the cascade. The negative set for training628
subsequent layers is obtained by collecting all false de-629
tections found by running the current detector on a set630
of images which do not contain any instances of faces.631
This algorithm is given more precisely in Table 2.632

4.2. Simple Experiment633

In order to explore the feasibility of the cascade ap-634
proach two simple detectors were trained: a mono-635
lithic 200-feature classifier and a cascade of ten636
20-feature classifiers. The first stage classifier in the637
cascade was trained using 5000 faces and 10000 non-638
face sub-windows randomly chosen from non-face im-639
ages. The second stage classifier was trained on the640

same 5000 faces plus 5000 false positives of the first 641
classifier. This process continued so that subsequent 642
stages were trained using the false positives of the pre- 643
vious stage. 644

The monolithic 200-feature classifier was trained on 645
the union of all examples used to train all the stages 646
of the cascaded classifier. Note that without reference 647
to the cascaded classifier, it might be difficult to se- 648
lect a set of non-face training examples to train the 649
monolithic classifier. We could of course use all possi- 650
ble sub-windows from all of our non-face images, but 651
this would make the training time impractically long. 652
The sequential way in which the cascaded classifier is 653
trained effectively reduces the non-face training set by 654
throwing out easy examples and focusing on the “hard” 655
ones. 656

Figure 7 gives the ROC curves comparing the per- 657
formance of the two classifiers. It shows that there is 658
little difference between the two in terms of accuracy. 659
However, there is a big difference in terms of speed. 660
The cascaded classifier is nearly 10 times faster since 661
its first stage throws out most non-faces so that they are 662
never evaluated by subsequent stages. 663

4.3. Detector Cascade Discussion 664

There is a hidden benefit of training a detector as a se- 665
quence of classifiers which is that the effective number 666
of negative examples that the final detector sees can be 667
very large. One can imagine training a single large clas- 668
sifier with many features and then trying to speed up 669
its running time by looking at partial sums of features 670
and stopping the computation early if a partial sum is 671
below the appropriate threshold. One drawback of such 672
an approach is that the training set of negative exam- 673
ples would have to be relatively small (on the order of 674
10,000 to maybe 100,000 examples) to make training 675
feasible. With the cascaded detector, the final layers of 676
the cascade may effectively look through hundreds of 677
millions of negative examples in order to find a set of 678
10,000 negative examples that the earlier layers of the 679
cascade fail on. So the negative training set is much 680
larger and more focused on the hard examples for a 681
cascaded detector. 682

A notion similar to the cascade appears in the face 683
detection system described by Rowley et al. (1998). 684
Rowley et al. trained two neural networks. One network 685
was moderately complex, focused on a small region of 686
the image, and detected faces with a low false positive 687
rate. They also trained a second neural network which 688
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Figure 7. ROC curves comparing a 200-feature classifier with a cascaded classifier containing ten 20-feature classifiers. Accuracy is not
significantly different, but the speed of the cascaded classifier is almost 10 times faster.

was much faster, focused on a larger regions of the689
image, and detected faces with a higher false positive690
rate. Rowley et al. used the faster second network to691
prescreen the image in order to find candidate regions692
for the slower more accurate network. Though it is693
difficult to determine exactly, it appears that Rowley694
et al.’s two network face system is the fastest existing695
face detector.7 Our system uses a similar approach, but696
it extends this two stage cascade to include 38 stages.697

The structure of the cascaded detection process is698
essentially that of a degenerate decision tree, and as699
such is related to the work of Amit and Geman (1999).700
Unlike techniques which use a fixed detector, Amit and701
Geman propose an alternative point of view where un-702
usual co-occurrences of simple image features are used703
to trigger the evaluation of a more complex detection704
process. In this way the full detection process need not705
be evaluated at many of the potential image locations706
and scales. While this basic insight is very valuable,707
in their implementation it is necessary to first evaluate708
some feature detector at every location. These features709
are then grouped to find unusual co-occurrences. In710
practice, since the form of our detector and the fea-711
tures that it uses are extremely efficient, the amortized712
cost of evaluating our detector at every scale and lo-713

cation is much faster than finding and grouping edges 714
throughout the image. 715

In recent work Fleuret and Geman (2001) have pre- 716
sented a face detection technique which relies on a 717
“chain” of tests in order to signify the presence of a 718
face at a particular scale and location. The image prop- 719
erties measured by Fleuret and Geman, disjunctions 720
of fine scale edges, are quite different than rectangle 721
features which are simple, exist at all scales, and are 722
somewhat interpretable. The two approaches also differ 723
radically in their learning philosophy. Because Fleuret 724
and Geman’s learning process does not use negative 725
examples their approach is based more on density es- 726
timation, while our detector is purely discriminative. 727
Finally the false positive rate of Fleuret and Geman’s 728
approach appears to be higher than that of previous ap- 729
proaches like Rowley et al. and this approach. In the 730
published paper the included example images each had 731
between 2 and 10 false positives. For many practical 732
tasks, it is important that the expected number of false 733
positives in any image be less than one (since in many 734
tasks the expected number of true positives is less than 735
one as well). Unfortunately the paper does not report 736
quantitative detection and false positive results on stan- 737
dard datasets. 738
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5. Results739

This section describes the final face detection system.740
The discussion includes details on the structure and741
training of the cascaded detector as well as results on742
a large real-world testing set.743

5.1. Training Dataset744

The face training set consisted of 4916 hand labeled745
faces scaled and aligned to a base resolution of 24 by746
24 pixels. The faces were extracted from images down-747
loaded during a random crawl of the world wide web.748
Some typical face examples are shown in Fig. 8. The749
training faces are only roughly aligned. This was done750
by having a person place a bounding box around each751
face just above the eyebrows and about half-way be-752
tween the mouth and the chin. This bounding box was753
then enlarged by 50% and then cropped and scaled to754
24 by 24 pixels. No further alignment was done (i.e.755
the eyes are not aligned). Notice that these examples756
contain more of the head than the examples used by757

Figure 8. Example of frontal upright face images used for training.

Rowley et al. (1998) or Sung and Poggio (1998). Ini- 758
tial experiments also used 16 by 16 pixel training im- 759
ages in which the faces were more tightly cropped, 760
but got slightly worse results. Presumably the 24 by 761
24 examples include extra visual information such as 762
the contours of the chin and cheeks and the hair line 763
which help to improve accuracy. Because of the nature 764
of the features used, the larger sized sub-windows do 765
not slow performance. In fact, the additional informa- 766
tion contained in the larger sub-windows can be used 767
to reject non-faces earlier in the detection cascade. 768

5.2. Structure of the Detector Cascade 769

The final detector is a 38 layer cascade of classifiers 770
which included a total of 6060 features. 771

The first classifier in the cascade is constructed us- 772
ing two features and rejects about 50% of non-faces 773
while correctly detecting close to 100% of faces. The 774
next classifier has ten features and rejects 80% of non- 775
faces while detecting almost 100% of faces. The next 776
two layers are 25-feature classifiers followed by three 777
50-feature classifiers followed by classifiers with a
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variety of different numbers of features chosen accord-778
ing to the algorithm in Table 2. The particular choices779
of number of features per layer was driven through780
a trial and error process in which the number of fea-781
tures were increased until a significant reduction in the782
false positive rate could be achieved. More levels were783
added until the false positive rate on the validation set784
was nearly zero while still maintaining a high correct785
detection rate. The final number of layers, and the size786
of each layer, are not critical to the final system perfor-787
mance. The procedure we used to choose the number788
of features per layer was guided by human intervention789
(for the first 7 layers) in order to reduce the training time790
for the detector. The algorithm described in Table 2 was791
modified slightly to ease the computational burden by792
specifying a minimum number of features per layer by793
hand and by adding more than 1 feature at a time. In794
later layers, 25 features were added at a time before795
testing on the validation set. This avoided having to796
test the detector on the validation set for every single797
feature added to a classifier.798

The non-face sub-windows used to train the first799
level of the cascade were collected by selecting ran-800
dom sub-windows from a set of 9500 images which801
did not contain faces. The non-face examples used to802
train subsequent layers were obtained by scanning the803
partial cascade across large non-face images and col-804
lecting false positives. A maximum of 6000 such non-805
face sub-windows were collected for each layer. There806
are approximately 350 million non-face sub-windows807
contained in the 9500 non-face images.808

Training time for the entire 38 layer detector was on809
the order of weeks on a single 466 MHz AlphaStation810
XP900. We have since parallelized the algorithm to811
make it possible to train a complete cascade in about a812
day.813

5.3. Speed of the Final Detector814

The speed of the cascaded detector is directly related815
to the number of features evaluated per scanned sub-816
window. As discussed in Section 4.1, the number of fea-817
tures evaluated depends on the images being scanned.818
Since a large majority of the sub-windows are dis-819
carded by the first two stages of the cascade, an av-820
erage of 8 features out of a total of 6060 are eval-821
uated per sub-window (as evaluated on the MIT +822
CMU (Rowley et al., 1998). On a 700 Mhz Pentium823
III processor, the face detector can process a 384 by824
288 pixel image in about .067 seconds (using a starting825

scale of 1.25 and a step size of 1.5 described below). 826
This is roughly 15 times faster than the Rowley-Baluja- 827
Kanade detector (Rowley et al., 1998) and about 600 828
times faster than the Schneiderman-Kanade detector 829
(Schneiderman and Kanade, 2000). 830

5.4. Image Processing 831

All example sub-windows used for training were vari- 832
ance normalized to minimize the effect of different 833
lighting conditions. Normalization is therefore neces- 834
sary during detection as well. The variance of an image 835
sub-window can be computed quickly using a pair of 836
integral images. Recall that σ 2 = m2 − 1

N

∑
x2, where 837

σ is the standard deviation, m is the mean, and x is 838
the pixel value within the sub-window. The mean of a 839
sub-window can be computed using the integral image. 840
The sum of squared pixels is computed using an integral 841
image of the image squared (i.e. two integral images 842
are used in the scanning process). During scanning the 843
effect of image normalization can be achieved by post 844
multiplying the feature values rather than operating on 845
the pixels. 846

5.5. Scanning the Detector 847

The final detector is scanned across the image at multi- 848
ple scales and locations. Scaling is achieved by scaling 849
the detector itself, rather than scaling the image. This 850
process makes sense because the features can be eval- 851
uated at any scale with the same cost. Good detection 852
results were obtained using scales which are a factor of 853
1.25 apart. 854

The detector is also scanned across location. Sub- 855
sequent locations are obtained by shifting the window 856
some number of pixels �. This shifting process is af- 857
fected by the scale of the detector: if the current scale is 858
s the window is shifted by [s�], where [] is the round- 859
ing operation. 860

The choice of � affects both the speed of the de- 861
tector as well as accuracy. Since the training images 862
have some translational variability the learned detector 863
achieves good detection performance in spite of small 864
shifts in the image. As a result the detector sub-window 865
can be shifted more than one pixel at a time. However, 866
a step size of more than one pixel tends to decrease the 867
detection rate slightly while also decreasing the number 868
of false positives. We present results for two different 869
step sizes. 870
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5.6. Integration of Multiple Detections871

Since the final detector is insensitive to small changes872
in translation and scale, multiple detections will usually873
occur around each face in a scanned image. The same874
is often true of some types of false positives. In practice875
it often makes sense to return one final detection per876
face. Toward this end it is useful to postprocess the877
detected sub-windows in order to combine overlapping878
detections into a single detection.879

In these experiments detections are combined in a880
very simple fashion. The set of detections are first par-881
titioned into disjoint subsets. Two detections are in the882
same subset if their bounding regions overlap. Each883
partition yields a single final detection. The corners of884
the final bounding region are the average of the corners885
of all detections in the set.886

In some cases this postprocessing decreases the num-887
ber of false positives since an overlapping subset of888
false positives is reduced to a single detection.889

5.7. Experiments on a Real-World Test Set890

We tested our system on the MIT + CMU frontal face891
test set (Rowley et al., 1998). This set consists of 130892

Figure 9. ROC curves for our face detector on the MIT + CMU test set. The detector was run once using a step size of 1.0 and starting scale
of 1.0 (75,081,800 sub-windows scanned) and then again using a step size of 1.5 and starting scale of 1.25 (18,901,947 sub-windows scanned).
In both cases a scale factor of 1.25 was used.

images with 507 labeled frontal faces. A ROC curve 893
showing the performance of our detector on this test 894
set is shown in Fig. 9. To create the ROC curve the 895
threshold of the perceptron on the final layer classifier 896
is adjusted from +∞ to −∞. Adjusting the threshold to 897
+∞ will yield a detection rate of 0.0 and a false positive 898
rate of 0.0. Adjusting the threshold to −∞, however, 899
increases both the detection rate and false positive rate, 900
but only to a certain point. Neither rate can be higher 901
than the rate of the detection cascade minus the final 902
layer. In effect, a threshold of −∞ is equivalent to re- 903
moving that layer. Further increasing the detection and 904
false positive rates requires decreasing the threshold 905
of the next classifier in the cascade. Thus, in order to 906
construct a complete ROC curve, classifier layers are 907
removed. We use the number of false positives as op- 908
posed to the rate of false positives for the x-axis of 909
the ROC curve to facilitate comparison with other sys- 910
tems. To compute the false positive rate, simply divide 911
by the total number of sub-windows scanned. For the 912
case of � = 1.0 and starting scale = 1.0, the number 913
of sub-windows scanned is 75,081,800. For � = 1.5 914
and starting scale = 1.25, the number of sub-windows 915
scanned is 18,901,947. 916

Unfortunately, most previous published results on 917
face detection have only included a single operating
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Table 3. Detection rates for various numbers of false positives on the MIT + CMU test set containing 130
images and 507 faces.

False detections

Detector 10 31 50 65 78 95 167 422

Viola-Jones 76.1% 88.4% 91.4% 92.0% 92.1% 92.9% 93.9% 94.1%

Viola-Jones (voting) 81.1% 89.7% 92.1% 93.1% 93.1% 93.2% 93.7% –

Rowley-Baluja-Kanade 83.2% 86.0% – – – 89.2% 90.1% 89.9%

Schneiderman-Kanade – – – 94.4% – – – –

Roth-Yang-Ahuja – – – – (94.8%) – – –

regime (i.e. single point on the ROC curve). To make918
comparison with our detector easier we have listed our919
detection rate for the same false positive rate reported920
by the other systems. Table 3 lists the detection rate921
for various numbers of false detections for our system922
as well as other published systems. For the Rowley-923
Baluja-Kanade results (Rowley et al., 1998), a number924
of different versions of their detector were tested yield-925
ing a number of different results. While these various926
results are not actually points on a ROC curve for a927
particular detector, they do indicate a number of dif-928
ferent performance points that can be achieved with929
their approach. They did publish ROC curves for two930
of their detectors, but these ROC curves did not rep-931
resent their best results. For the Roth-Yang-Ahuja de-932
tector (Roth et al., 2000), they reported their result on933
the MIT + CMU test set minus 5 images containing934
line drawn faces removed. So their results are for a sub-935
set of the MIT + CMU test set containing 125 images936
with 483 faces. Presumably their detection rate would937
be lower if the full test set was used. The parenthe-938
ses around their detection rate indicates this slightly939
different test set. The Sung and Poggio face detec-940
tor (Sung and Poggio, 1998) was tested on the MIT941
subset of the MIT + CMU test set since the CMU942
portion did not exist yet. The MIT test set contains943
23 images with 149 faces. They achieved a detection944
rate of 79.9% with 5 false positives. Our detection945
rate with 5 false positives is 77.8% on the MIT test946
set.947

Figure 10 shows the output of our face detector on948
some test images from the MIT + CMU test set.949

5.7.1. A Simple Voting Scheme Further Improves950
Results. The best results were obtained through the951
combination of three detectors trained using different952
initial negative examples, slightly different weighting953

on negative versus positive errors, and slightly different 954
criteria for trading off false positives for classifier size. 955
These three systems performed similarly on the final 956
task, but in some cases errors were different. The detec- 957
tion results from these three detectors were combined 958
by retaining only those detections where at least 2 out 959
of 3 detectors agree. This improves the final detection 960
rate as well as eliminating more false positives. Since 961
detector errors are not uncorrelated, the combination 962
results in a measurable, but modest, improvement over 963
the best single detector. 964

5.7.2. Failure Modes. By observing the performance 965
of our face detector on a number of test images we have 966
noticed a few different failure modes. 967

The face detector was trained on frontal, upright 968
faces. The faces were only very roughly aligned so 969
there is some variation in rotation both in plane and out 970
of plane. Informal observation suggests that the face 971
detector can detect faces that are tilted up to about ±15 972
degrees in plane and about ±45 degrees out of plane 973
(toward a profile view). The detector becomes unreli- 974
able with more rotation than this. 975

We have also noticed that harsh backlighting in 976
which the faces are very dark while the background 977
is relatively light sometimes causes failures. It is in- 978
teresting to note that using a nonlinear variance nor- 979
malization based on robust statistics to remove out- 980
liers improves the detection rate in this situation. The 981
problem with such a normalization is the greatly in- 982
creased computational cost within our integral image 983
framework. 984

Finally, our face detector fails on significantly oc- 985
cluded faces. If the eyes are occluded for example, the 986
detector will usually fail. The mouth is not as important 987
and so a face with a covered mouth will usually still be 988
detected. 989
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Figure 10. Output of our face detector on a number of test images from the MIT + CMU test set.

6. Conclusions990

We have presented an approach for face detection991
which minimizes computation time while achieving992
high detection accuracy. The approach was used to con-993
struct a face detection system which is approximately994
15 times faster than any previous approach. Preliminary995
experiments, which will be described elsewhere, show996
that highly efficient detectors for other objects, such as997
pedestrians or automobiles, can also be constructed in998
this way.999

This paper brings together new algorithms, represen- 1000
tations, and insights which are quite generic and may 1001
well have broader application in computer vision and 1002
image processing. 1003

The first contribution is a new a technique for com- 1004
puting a rich set of image features using the integral 1005
image. In order to achieve true scale invariance, almost 1006
all face detection systems must operate on multiple 1007
image scales. The integral image, by eliminating the 1008
need to compute a multi-scale image pyramid, reduces 1009
the initial image processing required for face detection 1010
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significantly. Using the integral image, face detection1011
is completed in almost the same time as it takes for an1012
image pyramid to be computed.1013

While the integral image should also have immedi-1014
ate use for other systems which have used Haar-like1015
features such as Papageorgiou et al. (1998), it can fore-1016
seeably have impact on any task where Haar-like fea-1017
tures may be of value. Initial experiments have shown1018
that a similar feature set is also effective for the task1019
of parameter estimation, where the expression of a1020
face, the position of a head, or the pose of an object is1021
determined.1022

The second contribution of this paper is a simple1023
and efficient classifier built from computationally ef-1024
ficient features using AdaBoost for feature selection.1025
This classifier is clearly an effective one for face detec-1026
tion and we are confident that it will also be effective in1027
other domains such as automobile or pedestrian detec-1028
tion. Furthermore, the idea of an aggressive and effec-1029
tive technique for feature selection should have impact1030
on a wide variety of learning tasks. Given an effective1031
tool for feature selection, the system designer is free to1032
define a very large and very complex set of features as1033
input for the learning process. The resulting classifier1034
is nevertheless computationally efficient, since only a1035
small number of features need to be evaluated during1036
run time. Frequently the resulting classifier is also quite1037
simple; within a large set of complex features it is more1038
likely that a few critical features can be found which1039
capture the structure of the classification problem in a1040
straightforward fashion.1041

The third contribution of this paper is a technique for1042
constructing a cascade of classifiers which radically1043
reduces computation time while improving detection1044
accuracy. Early stages of the cascade are designed to1045
reject a majority of the image in order to focus subse-1046
quent processing on promising regions. One key point1047
is that the cascade presented is quite simple and ho-1048
mogeneous in structure. Previous approaches for at-1049
tentive filtering, such as Itti et al. (1998) propose a1050
more complex and heterogeneous mechanism for fil-1051
tering. Similarly Amit and Geman (1999) propose a1052
hierarchical structure for detection in which the stages1053
are quite different in structure and processing. A ho-1054
mogeneous system, besides being easy to implement1055
and understand, has the advantage that simple tradeoffs1056
can be made between processing time and detection1057
performance.1058

Finally this paper presents a set of detailed exper-1059
iments on a difficult face detection dataset which has1060

been widely studied. This dataset includes faces under 1061
a very wide range of conditions including: illumina- 1062
tion, scale, pose, and camera variation. Experiments on 1063
such a large and complex dataset are difficult and time 1064
consuming. Nevertheless systems which work under 1065
these conditions are unlikely to be brittle or limited to a 1066
single set of conditions. More importantly conclusions 1067
drawn from this dataset are unlikely to be experimental 1068
artifacts. 1069
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Notes 1077

1. Supervised refers to the fact that the attentional operator is trained 1078
to detect examples of a particular class.

2. Henry Rowley very graciously supplied us with implementations 1079
of his detection system for direct comparison. Reported results 1080
are against his fastest system. It is difficult to determine from 1081
the published literature, but the Rowley-Baluja-Kanade detector 1082
is widely considered the fastest detection system and has been 1083
heavily tested on real-world problems.

3. A complete basis has no linear dependence between basis ele- 1084
ments and has the same number of elements as the image space, 1085
in this case 576. The full set of 160,000 features is many times 1086
over-complete.

4. There is a close relation to “summed area tables” as used in graph- 1087
ics (Crow, 1984). We choose a different name here in order to em- 1088
phasize its use for the analysis of images, rather than for texture 1089
mapping.

5. The availability of custom hardware and the appearance of spe- 1090
cial instruction sets like Intel MMX can change this analysis. 1091
It is nevertheless instructive to compare performance assuming 1092
conventional software algorithms.

6. In the case where the weak learner is a perceptron learning al- 1093
gorithm, the final boosted classifier is a two layer perceptron. A 1094
two layer perceptron is in principle much more powerful than any 1095
single layer perceptron.

7. Among other published face detection systems some are poten- 1096
tially faster. These have either neglected to discuss performance 1097
in detail, or have never published detection and false positive rates 1098
on a large and difficult training set.
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