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Abstract. The appearance of an object is composed of local structure. This local structure can be
described and characterized by a vector of local features measured by local operators such as Gaussian
derivatives or Gabor filters. This article presents a technique where appearances of objects are represented
by the joint statistics of such local neighborhood operators. As such, this represents a new class of
appearance based techniques for computer vision. Based on joint statistics, the paper develops techniques
for the identification of multiple objects at arbitrary positions and orientations in a cluttered scene.
Experiments show that these techniques can identify over 100 objects in the presence of major occlusions.

Most remarkably, the techniques have low complexity and therefore run in real-time.

1. Introduction

The paper proposes a framework for the statistical
representation of the appearance of arbitrary 3D
objects. This representation consists of a prob-
ability density function or joint statistics of local
appearance as measured by a vector of robust local
shape descriptors. The object representations are
acquired automatically (learned) from sample im-
ages. Multidimensional histograms are introduced
as a practical and reliable means for the approxi-
mation of the probability density function for local
appearance. An important result of this paper is
that the representation based on joint statistics
of local neighborhood operators provides a reli-
able means for the representation and recognition
of large sets of objects (over 100 objects) at ar-

bitrary 3D positions and orientations in cluttered
scenes.

Three different, recognition algorithms are pro-
posed within this framework and evaluated experi-
mentally. The first algorithm compares the proba-
bility distribution of local neighborhood operators
of a test image to the distributions of learned ob-
jects. Recognition is achieved by applying statis-
tical divergence measurements which can be seen
as a generalization of the color indexing scheme of
Swain and Ballard [Swain and Ballard, 1991]. The
second recognition algorithm calculates probabil-
ities for the presence of objects based on a small
number of vectors of local neighborhood opera-
tors. The experiments demonstrate that in the
typical case, a small number of vectors is sufficient
to obtain the correct object hypothesis from a
database of 100 objects. In particular, experimen-
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tal results show the robustness of the approach to
partial occlusion. The most remarkable property
of the the algorithm is that it relies on neither the
calculation of correspondence nor figure ground
segmentation of the object in the scene.

The second algorithm is extended to recognize
multiple objects in cluttered scenes by using lo-
cal appearance hashing. The capacity of the al-
gorithm to recognize objects in cluttered scenes
without relying on the calculation of correspon-
dence is demonstrated experimentally. Due to its
low complexity this algorithms runs on a stan-
dard Silicon Graphics O2-machine at 10Hz using
the OpenGL-extension for real-time convolution
of images.

It has been shown that the segmentation prob-
lem has exponential complexity' in the size of the
image considering no knowledge about the scene
and in particular assuming no knowledge about
which objects might be in the scene [Tsotsos,
1989]. However, the task-oriented visual search
as e.g. in the case of segmenting objects know-
ing which objects are in the scene, has only linear
complexity. The probabilistic algorithm of section
6 and its extension in section 8 calculate object
hypotheses with linear complexity (in the number
of used image measurements and number of ob-
jects). This low complexity is mostly due to the
fact that no correspondence and no segmentation
are calculated. In that sense, this paper proposes
algorithms with linear complexity in order to ob-
tain object hypotheses which can be used subse-
quently by a segmentation algorithm with linear
complexity.

The next section briefly discusses closely related
object recognition work. Since we use Gaussian
derivatives throughout this paper we introduce
them in section 3. Section 4 derives a general
statistical object representation framework based
on the statistics of local neighborhood operators.
Section 5 introduces histogram matching as the
first algorithm for the recognition of objects. Even
though histogram matching enables the discrimi-
nation between 100 objects, the nature of the ap-
proach is global. Section 6 therefore proposes a
local recognition algorithm which calculates prob-
abilities of objects based on a small number of vec-
tors of neighborhood operators. The comparison
of experimental results shows that this algorithm

is highly robust to partial occlusion. This enables
us to define in section 8 an algorithm based on lo-
cal appearance hashing which is particularly suited
for the recognition of multiple objects in cluttered
scenes.

2. Related object recognition work

This section briefly discusses closely related ob-
ject recognition work (see [Object representation,
1996] [Pope, 1995] [Grimson and Huttenlocher,
editors, 1992] [Grimson and Huttenlocher, editors,
1991] for more comprehensive reviews).

2.1.  Histogram based approaches

Swain and Ballard [Swain and Ballard, 1991]
have proposed to represent an object by its color
histogram (approximating its color distribution).
Objects are identified by matching a color his-
togram from an image region with a color his-
togram from a sample of the object. Their tech-
nique has been shown to be remarkably robust to
changes in the object’s orientation, changes of the
scale of the object, partial occlusion or changes of
the viewing position. Even changes in the shape
of an object do not necessarily degrade the perfor-
mance of their method. The robustness to scale
and rotation are mainly provided by the use of
color. The robustness to changes in viewing angle
and to partial occlusion are due to the use to his-
togram matching. However, the major drawback
of their method is its sensitivity to lighting con-
ditions such as the color and the intensity of the
light source. Also, many object classes cannot be
described by color alone.

In order to reduce the sensitivity to illumina-
tion intensity changes several authors have in-
troduced color invariances. [Healey and Slater,
1994] for example calculate moment invariants of
the entire color histogram (assuming a constant
intensity change over the entire image). [Funt
and Finlayson, 1995] use derivatives of the log-
arithms of the color channels in order to provide
illumination invariant features (assuming a locally
constant illumination). More recently [Finlayson
et al., 1998] introduced a color image normaliza-
tion which is invariant to light intensity and light
color changes. Another interesting extension [En-
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nesser and Medioni, 1995] uses local color his-
tograms of the test image in order to deal with
more cluttered scenes.

Since not all objects can be described and rec-
ognized by color alone, color histograms have been
combined with geometric information (e.g. [Slater
and Healey, 1995] [Matas et al., 1995]). In par-
ticular, the SEEMORE-system [Mel, 1997] uses
102 different feature channels which are each sub-
sampled and summed over a pre-segmented image
region. The 102 channels compromise color, in-
tensity, corner, contour shape and Gabor-derived
texture features. Strikingly good experimental re-
sults are given on a database of 100 pre-segmented
objects of various types. Most interestingly, a cer-
tain ability to generalize outside the database has
been observed.

The color histogram approach is an attractive
method for object recognition, because of its sim-
plicity, speed and robustness. Many image re-
trieval system use color histograms among other
cues (e.g. [Flickner et al., 1995] [Belongie et al.,
1998]) which is motivated by the fact that many
images contain characteristic colors. Since many
objects cannot be described by color alone this
paper generalizes the color histogram approach to
multidimensional receptive field histograms. Such
receptive fields may capture local structure, shape
or any other local characteristic appropriate to de-
scribe the local appearance of an object.

2.2.  Object recognition based on local character-
1stics

[Lamdan and Wolfson, 1988] introduces geomet-
ric hashing as a general framework for recognizing
overlapping and partially occluded objects. Ob-
ject models consist of sets of interest points. The
representation of the sets is made invariant to an
affine transformation by using three points as an
affine basis?. In order to reduce the calculation
time and the complexity of recognition all possi-
ble triplets of interest points are used as basis and
the coordinates of the remaining interest points
are stored in a hashtable. During recognition sets
of interest points are extracted from the scene and
used for indexing into the hashtable and voting
for object models. Recognition therefore becomes
a point matching task. [Grimson et al., 1994] pro-

vide a theoretical analysis of the sensitivity of geo-
metric hashing. The main result is that the prob-
ability of false positives (during voting) increases
considerably in the presence of moderate noise in
the data points. An improved probabilistic voting
scheme addresses this issue [Rigoutsos and Hum-
mel, 1993].

The robustness and the repeatability of the
interest point detector in the presence of affine
transformations is crucial [Schmid et al., 1998].
By using only point features the algorithm may
result in a large number of false positives. There-
fore, [Lamdan et al., 1988] [Wolfson, 1990] use not
only interest points but also other features. How-
ever, the feature choice is limited since they re-
quire invariance to affine transformations.

[Ballard and Wixson, 1993] and [Rao and Bal-
lard, 1995] propose to represent objects (or object
patches) by a high—dimensional “iconic” feature
vector. Such high-dimensional object representa-
tions have the favorable property that they can
be subjected to considerable noise before they are
confused with the vectorial representation of other
objects. More specifically, the feature vector in-
cludes 45 responses of nine oriented Gaussian fil-
ters at five different scales (9 x 5 = 45). Using
the steerability of Gaussian derivatives [Freeman
and Adelson, 1991], the feature vector is made
rotational invariant. During training and object
recognition a figure ground segmentation is per-
formed and the vectors are stored in a generalized
version of Karneva’s sparse distributed memory.

One drawback of the proposed feature vector
is its relatively large support (about 128 x 128
pixels®) which makes the approach sensitive to oc-
clusion. Reducing the support of the feature vec-
tor would compromise on the uniqueness of the
filter response. [Ballard and Rao, 1994] introduce
a separate algorithm which can account for par-
tial occlusions. The basic idea is to reconstruct an
image patch approximately by a pseudo inverse
transformation from a single feature vector. By
masking the occluded parts the reconstructed im-
age can be compared with the observation in the
image.

[Rao and Ballard, 1997] propose a predictive
Kalman filter hierarchy which combines input-
driven bottom-up signals with the expectation-
driven top-down signals. This architecture can be
seen as a hierarchy of local representations which
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are learned simultaneously. It is used to imple-
ment a dynamic recognition algorithm using pat-
tern completion during occlusions. The hierarchy
is used to explain neural responses of a monkey
freely viewing a natural scene.

A reliable object recognition algorithm has been
proposed in [Schmid and Mohr, 1997]. Each
interest point in an image is described by a
nine—dimensional rotational invariant vector of lo-
cal characteristics based on Gaussian derivatives,
originally proposed in [Koenderink and Doorn,
1987]. Finally, the vector responses of all inter-
est points of an image are stored in a hash table
indexed by the nine-dimensional vector. In this
sense the approach is a synthesis of the two previ-
ous ones: local representation by a hash table and
rich description of local structure by a vector of
local characteristics.

The principal application of the approach is the
correspondence problem between a test image and
the stored images in the hash table. In addi-
tion, the approach is suitable for object (or image)
recognition which can seen as a correspondence
problem. By applying the interest point detector
to a test image and by calculating the vector re-
sponses for the interest points the algorithm votes
for different images (or objects). The voting tech-
nique is made more selective by combining the vec-
tor responses with geometrical invariants between
different interest points . Another possibility for
improvement is the use of a probabilistic voting
scheme [Mohr et al., 1997].

Impressive experimental results have been pre-
sented on a database of several hundred objects.
Nevertheless, arguably the weakest point of the
approach is the application of an interest point
detector [Schmid et al., 1998]. The success of the
approach relies on the repeatability of the interest
point detector over different images and viewing
conditions which is difficult to achieve, particu-
larly in unconstrained environments

2.3.  Figenvector approaches

Recently many researchers [Sirovich and Kirby,
1987] [Turk and Pentland, 1991] [Murase and
Nayar, 1995] [Moghaddam and Pentland, 1995]
[Ohba and Tkeuchi, 1996] have used the Karhunen—
Loeve transformation [Fukunaga, 1990] for the

calculation of eigenpictures in the context of ob-
ject recognition. The main advantage of this ap-
proach is the representation of each image by a
small number of coefficients, which can be stored
and searched efficiently. Even though very suc-
cessful, the approach has two major drawbacks:
the first drawback is due to the fact that any
change of individual pixel values, caused for exam-
ple by translation, by scale change, by image plane
rotation or by illumination changes, will change
the eigenvector representation of an image.

Two principal possibilities exist in order to deal
with this difficulty: either each image is normal-
ized prior to projection onto the eigenspace or
the eigenspace is calculated under consideration
of all possible changes. Even though a power-
ful normalization function can be implemented in
the special case of face recognition it is difficult
to assume such a function in the general case of
3D—-object recognition. In the general case of 3D—
object recognition a pre-segmentation step is as-
sumed prior to the projection onto the eigenspace
[Murase and Nayar, 1995]. The second major
drawback of the approach is that the modeling of
each image is global, which makes the approach
sensitive to partial occlusion.

3. Vector of local neighborhood operators

Measurements of local object appearance can be
obtained by a multi—dimensional vector of local
neighborhood operators. The neighborhood op-
erators which we employ below are not restricted
to a particular family of objects nor does the ap-
proach rely on the use of a particular set of fea-
tures. Nevertheless, it is necessary to formulate
minimal requirements. The first requirement is
the locality of the features. As we have shortly
mentioned in section 2, global features are sensi-
tive to partial occlusion as well as local image dis-
turbances such as specular reflections. The sec-
ond requirement concerns the sensitivity of the
features. We can list three categories concerning
the sensitivity of features:

invariance: invariant features are considered
constant with respect to certain transforma-
tions (such as affine and projective transfor-
mations),



Recognition without Correspondence using Multidimensional Receptive Field Histograms 35

equivariance: the values of equivariant features
are a function of a certain transformation,

robustness: the values of robust features change
slowly in the presence of certain transforma-
tions. Such features are often called quasi-
invariant.

The invariance of features is the most powerful
property yet the most difficult to obtain in real-
ity. Whenever possible we should use invariant
features. Unfortunately invariant features typi-
cally impose unacceptable restrictions on the set
of object classes which can be recognized. Fur-
thermore, most invariant local features are based
on the calculation of higher order derivatives and
thus create practical problems related to instabil-
ity, as well as locality problems. Either of these
constraints would limit the generality of our ap-
proach. Consequently, we find it necessary to re-
lax the requirement of invariance.

Equivariant features vary as a function of a cer-
tain transformation. An example is the equivari-
ant property of Gaussian derivatives with respect
to image plane rotations and scale changes. Un-
fortunately, equivariance is restricted to certain
classes of image structure, and can not be ob-
tained in a general manner.

In general, robustness or quasi-invariance can
be attained more easily. Robust features will
change slowly and in a predictable manner with re-
spect to changes of the object’s appearance. Many
local features exist which are robust to appearance
changes such as viewing position, illumination and
scale. In our experiments, we only employ features
which can be calculated locally and which are ro-
bust with respect to image noise, blur, image plane
rotation and scale.

Section 3.1 introduces Gaussian derivatives,
their steerability with respect to image plane
rotation and the equivariance property to scale
change. Gaussian derivatives are widely used
in computer vision. Their popularity is due to
their generality (eigenpictures of large numbers of
image patches resemble derivatives of Gaussians
[Rao and Ballard, 1995]), their capacity to model
the response of neural cells [Young, 1986] and the
existence of a recursive implementation [Deriche,
1987]. Furthermore, Gaussian derivatives (as well

as Gabor filters) are robust to scale changes of
approximately +20% [Schmid and Mohr, 1997].
Gabor filters [Gabor, 1946] [Westelius, 1992]
[Daugman, 1993] satisfy the same constraints as
Gaussian filters (robustness, steerability to im-
age plane rotation, equivariance to scale changes).
During earlier experiments (not reported below)
Gabor filters obtained almost identical results as
Gaussian derivatives. Even though color has not
been used in our experiments, invariant color de-
scriptors [Nagao, 1995] [Funt and Finlayson, 1995]
provide a natural extension of the proposed sta-
tistical object representation technique described
below. One can also consider the use of texture
features [Haralick, 1979] [Mao and Jain, 1992] or
low—level geometric features and perceptual sig-
nificant groups thereof [Pope and Lowe, 1996].

3.1. Gaussian derivatives

Gaussian derivatives are widely used in the litera-
ture and well understood [Freeman and Adelson,
1991] [Rao and Ballard, 1995]. By using Gaus-
sian derivatives we can explicitly select the scale.
Additionally, we can “steer” the derivative to ar-
bitrary orientations: it is possible to calculate the
nth order Gaussian derivative of the orientation
¢ based on a linear combination of a finite num-
ber of nth order derivatives. This section de-
scribes Gaussian derivatives in general, develops
the equivariance property to scale and finally sum-
marizes the “steerability” to image plane rotation.
Given the Gaussian distribution G7(z, y):

22492

G (x,y) =e 27 (1)

The nth order Gaussian derivative in direction
7= (cos ¢ sing)T is defined by:

n

7 ole) = 3G ,0) @

In this article we use Gaussian derivatives up
to the second order. Therefore, we will introduce
a particular notation for the derivatives used. We
define the r—axis parallel to the vector o = (1 0)%,
which corresponds to ¢ = 0°. The y-axis is
defined by ¢ = 90° and is therefore parallel to
#= (0 1)T. The derivatives in z— and y—direction
are given by:
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xr
Gilz,y) = Gloo(ay) = ——G(z,y) (3)
Gy(z,y) =

Based on these first order derivatives we can de-
fine the magnitude Mag(z,y) of the first Gaussian
derivative:

Mag(z,y) = \/(G%(x,y))2 +(Gy(z,y))? (5)

Based on two second order derivatives GZ,(z,y)
and G, (z,y) the well known Laplace operator
Lap(z,y) can be defined:

o y g
G1,90° (CU,?J) = _EG (3572/) (4)
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Lap(z,y) = G, (z,y) + Gy (z,y) (8

3.2.  Equivariance of Gaussian derivatives to
scale

As mentioned above local neighborhood operators
should be calculated at an particular scale. Given
a two—dimensional function p(z,y) and its scaled
version f(z,y) = p(sz,sy) analysis tells us:

fz,y) = p(sz,sy) (9)
@) = saplnsy) (10

9 (z,y) = s o (sz,sy) (11)

Following the above equations, the nth order
derivative of the function f can be calculated on
the basis of the nth order derivative of p(sz, sy).
This calculation assumes exact knowledge of the
function p. In computer vision the exact knowl-
edge of p cannot in general be assumed. By using
Gaussian derivatives the nth order derivative of
p(sz,sy) can be calculated based on p(z,y). In
the following we show this property for the first
order derivative. We define the first order deriva-
tive of f as:

%f(m,y) =Gl(ey) * fley)  (12)

where GJ(z,y) is the Gaussian derivative (see
equation 3) and « is the convolution operator.
Therefore we obtain (together with equation 10):

6% (z,y) = sa%p(sw,sy) (13)
sGy(z,y) xp(sz,sy)  (14)
= sG7°(x,y) *p(x,y)  (15)

The equation shows that we can calculate the
first order derivative of f on the basis of the first
order derivative of p(zx,y), which we call the adap-
tation of the Gaussian derivative to scale. In a
similar way we obtain an equation for the adapta-
tion of the nth order derivative to scale:

n
o fay) = "G () xpley) (10

Following this equation, we can calculate the
nth order derivative of a function f(z,y) directly
based on function p(z,y) (when f is a scaled ver-
sion of p: f(x,y) = p(sz,sy)). In order to employ
this property the scale factor s must be known,
which cannot in general be assumed. Usually we
calculate the derivative for different values of s.
Additionally, the support for the calculation of the
nth order derivative of p has to be adapted. This
is expressed by the adaptation of the standard de-
viation os of the Gaussian filter.

We call the adaptation of the Gaussian deriva-
tives to scale changes by the factor s the equivari-
ance property of the Gaussian derivatives to scale.
As expected, the equivariance to scale is not only
true for neighborhood operators based on Gaus-
sian derivatives. The same property holds, for
example, for Gabor filters due to their Gaussian
envelope.

3.8.  Steerability of Gaussian derivatives to im-
age plane rotation

In order to calculate the filter response (for ex-
ample for a Gaussian filter) at an arbitrary ori-
entation ¢ the corresponding version of the filter
can be calculated. If the orientation is not known
beforehand or if a particular filter response has to
be calculated for many different orientations, it is
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desirable to define a finite set of basis filters and
an interpolation rule, which allows the calculation
of the filter response based only on the response of
the basis set. [Freeman and Adelson, 1991] show
that the minimal number of interpolation func-
tions for the nth order Gaussian derivative is n+1.
This correspond e.g. to the well known interpola-
tion rule for the first order Gaussian derivative:

G1,5 = cos oGy + sin oGy (17)

4. Statistical object representation

The appearance of an object is composed of local
structure. This local structure can be described
and characterized by a vector of local neighbor-
hood operators. We propose to represent 3D
objects by the joint statistics of local structure,
which can be calculated reliably from sample im-
ages of the objects. The probability function of an
object and therefore the object’s model is learned
automatically.

Let’s assume we have chosen a fixed measure-
ment set M = Upmy composed of vectors my, of lo-
cal neighborhood operators. The probability den-
sity function over the measurement set M for a
certain object o, varies with the changes of the
appearance of the object which should be mod-
eled within the probability density function. Five
categories of possible changes can be listed (see
figure 1):

Similarity transformation: three translational
degrees of freedom (t,, t, and t.) and one
rotational degree of freedom (r.) can be iden-
tified (see figure 1).

3D transformation of the object: two rota-
tional degrees of freedom (r, and r,) exist in
addition to the similarity transformation (see
figure 1).

Scene changes: this includes partial occlusion
and background change.

Light conditions: this includes changes in the
intensity, color and direction of the light
source.

Imaging conditions: different types of signal
disturbance as signal noise, quantization er-
ror and blur.

By writing the probability density function of
the object 0,, parameterized by variables of these
changes, we obtain:

p(Mlon, R, T,S,L,T) (18)

where M is the set of local image measurements
myg, oy is the label of an object (or object class), R
describes the three rotational degrees of freedom,
T the three translational degrees of freedom, S
the scene changes, L the light changes and I the
imaging conditions.

In general it is difficult to obtain a reliable esti-
mate of such a high—dimensional probability den-
sity function. The difficulty is due to the fact
that the number of training examples is exponen-
tial in the number of dimensions of the density
function [Intrator and Gold, 1993]. The most ef-
fective way to reduce the number of free parame-
ters is to choose local image measurements which
are invariant to different parameters. Such in-
variant properties are used by many researchers
[Burkhardt and Zisserman, 1992] [Mundy and Zis-
serman, 1992] [Mundy et al., 1993] and applied
successfully in various ways. Unfortunately the
obtained invariants are very restrictive to certain
types of objects. Robust or quasi-invariant lo-
cal image measurements are often an alternative

2D image

Fig. 1. Different components of rotation and translation
of a 3D object
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since they are less restrictive than invariants and
since we can typically identify a reasonable range
of changes where their values are near constant.

One category of changes, the imaging condi-
tions, is characterized by changes which cannot be
controlled in general. In this case the approach re-
lies on the fact that local descriptors can be calcu-
lated robustly with respect to such changes. The
analysis of the robustness therefore demands spe-
cial consideration. [Schiele, 1997] examines the
robustness of local image measurements and dif-
ferent normalization techniques in the presence of
different, sources of noise. For the second cate-
gory, the light conditions, exist many normaliza-
tion techniques but none of them is satisfactory
for the general case. Currently, we are using an
energy normalization technique of the filter out-
put which has shown to provide good results in
the presence of different light condition changes.

Scene changes due to partial occlusion and back-
ground change are difficult to model. One possibil-
ity is to include partial occlusion and background
change in the estimation process of the probabil-
ity density function. [Hornegger and Niemann,
1995] propose to model partial occlusion as a par-
ticular object: the background. By introducing a
probability for the background — which is directly
related to the observed portion of the object —
the probability of the presence of an object can
be calculated. The recognition process therefore
estimates not only the object’s label and its pose
but also the portion of occlusion. Recognition be-
comes an iterative optimization process, which is
elegant but relatively time consuming. In contrast
to this approach we propose in section 6 a proba-
bilistic object recognition approach which is able
to recognize objects by the observation of a small
portion of the object. This algorithm makes the
recognition process not only fast but also robust
to partial occlusion. As a result we do not have to
consider partial occlusion in the modeling of the
probability density function of an object. In our
context, background changes are considered as a
special case of partial occlusion.

The correspondence problem between the ob-
ject model and a test image is in general diffi-
cult and time consuming. In order to avoid this
problem we do not represent the two translational
parameters t, and ¢, in the probability density

function. Several advantages motivate this choice:
First of all and as just mentioned the translational
correspondence problem does not exist. Secondly
the estimation of the probability density functions
becomes feasible. The estimation becomes feasi-
ble because of the dimensionality reduction of the
density function and also because of the amount
of training samples which is provided by images of
an object. A typical 512 x 512 image of an object
provides about 500 = 250,000 training samples
for the estimation of the probability density func-
tion of the object.

The third translational parameter t, can be
treated directly by the transformation of the im-
age pattern. Throughout the article we employ
the equivariance property of local descriptors to
scale in order to account for ¢,. The image plane
rotation parameter r, can be accounted for by us-
ing local descriptors, which are invariant to r..
Such invariants have been used for example by
[Schmid and Mohr, 1997]. The main disadvantage
of these local descriptors is that rotational infor-
mation is lost. Another disadvantage is the un-
derlying assumption that all rotations are equally
probable, which cannot in general be assumed. In
the context of this work we use both image plane
rotation invariant and variant local descriptors. In
the case of variant descriptors, image plane rota-
tion is managed by the rotational steerability of
local descriptors.

The two rotational degrees of freedom r, and
ry represent a viewpoint change of the observer.
Several authors [Burns et al., 1990] [Clemens and
Jacobs, 1991] show that the non—existence of view-
point invariant descriptors for the general case.
Nevertheless, useful descriptors exist in special
cases [Mundy and Zisserman, 1992] [Mundy et al.,
1993]. As mentioned earlier we do not want to re-
strict our approach to such specialized invariants.
We model therefore the two parameters r, and 7,
in the probability density function.

What remains from the original probability den-
sity function (equation 18) are three components
of the rotation and one component of the transla-
tion:

p(M|0narmarya7°27tz) (19)

By considering an L—dimensional vector my, of
local image measurements the statistical repre-
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sentation of an object o, is given by an L + 4—
dimensional probability density function. In the
case of image plane rotation invariant descrip-
tors the representation is given by an L + 3-
dimensional probability density function.

4.1. Representation by multidimensional his-
tograms

Different possibilities exist in order to estimate
and represent the probability density function
(equation 19) of an object. Typically, paramet-
ric and non-parametric estimation schemes can
be distinguished. Parametric estimators assume a
certain type of distribution as for example a poi-
son distribution or a Gaussian distribution. The
learning therefore becomes an estimation of the
parameter of the assumed distribution. Horneg-
ger and Niemann [Hornegger and Niemann, 1995]
use parameterized mixtures of multivariate Gaus-
sian distributions including a feature transform.
Their statistical model consider the statistical be-
havior of features, feature matching, as well as the
projection from the model into the image space.
The assumption of a mixture of Gaussian distribu-
tions has been shown to be appropriate for point
features but cannot be assumed for more general
local image measurements.

The other principal possibility is a non—
parametric estimator for the probability density
function. In the context of high—dimensional den-
sity functions essentially two methods can be ap-
plied: histogramming and kernel function esti-
mates [Popat and Picard, 1994]. The main advan-
tage of histogramming is that the training samples
are well represented. This property is desirable in
our context since we aim to show that the pro-
posed statistical object representation provides a
reliable and discriminant means for the recogni-
tion of a large number of objects. This implies
that the representation should preserve all infor-
mation and in particular the discriminant infor-
mation and therefore motivates the choice of his-
tograms. On the other hand kernel functions typ-
ically allow the generalization from training sam-
ples. However, in our case the use of kernel func-
tions only made a marginal difference with respect
to generalization. This is mainly due to the fact

that the number of training samples is sufficiently
large in order to obtain a reliable estimate of the
probability density function using histograms.

Consequently, we represent the probability den-
sity function of a certain object by several multi-
dimensional histograms over the measurement set
M. As an example figure 2 shows two-dimensional
histograms of two different objects each corre-
sponding to a particular viewpoint, image rotation
and scale. The histogram of a particular view-
point (r, ry), at a particular image plane rotation
r, and at a certain scale t, is given by:

H(M|op,r3,7y,75,t) (20)

In order to obtain these histograms we have to
take several images of the object. The number
of training images can be reduced considerably
by using the steerability to image plane rotation
and the equivariance property of local image mea-
surements to scale changes. The steerability and
equivariance property of Gaussian derivatives is
described in section 3. That implies that we can
take a single image per viewpoint (r, r,) and cal-
culate several histograms which correspond to dif-
ferent image plane rotations r, and scales ¢, of the
object.

The histograms of different viewpoints have to
be estimated from several images of the object cor-
responding to several viewpoints (represented by
ry and ry). [Schiele, 1997] examines the number
of histograms which are needed for the represen-
tation of a 3D object. We concluded from ex-
periments that a small number of histograms are
sufficient in order to obtain high recognition rates.

It is worth mentioning that using multidimen-
sional histograms is not the most efficient repre-
sentation of a density function. The representa-
tion by a parameterized distribution for exam-
ple would be more efficient since only a certain
and typically small number of parameters needs
to be stored. The dilemma is due to the tradeoff
between representational efficiency and ability to
discriminate. A basic goal of the article is to show
that the representation of objects by the probabil-
ity density function of their local image measure-
ments contains enough discriminant information
for the recognition of a variety of objects. There-
fore we do not want to compromise on the ability
to discriminate and have chosen multidimensional
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Fig. 2. Two-dimensional histograms of two objects corresponding to a particular viewpoint, image plane rotation and
scale. The image measurement is given by the Magnitude of the first derivative and the Laplace operator. The resolution

of each histogram axis is 32.

histograms for the estimation and representation
of the probability function. Furthermore, multidi-
mensional histograms provide us with a reliable es-
timate of the probability density function without
being computational expensive. They also allow
us to define simple and fast algorithms for recogni-
tion as histogram matching (section 5) and prob-
abilistic object recognition algorithms (sections 6
and 8).

5. Histogram matching for recognition

Using a probability density function as an ob-
ject representation allows the use of divergence
functions from information theory and statistics
[Basseville, 1996] directly for object recognition.
Among these are e.g. the KL-divergence and the
x2-divergence. We have experimentally compared
such divergences to several histogram matching
functions used in the computer vision literature
[Schiele, 1997].

Let’s assume the histogram of a test image is
signified by @ = Ujq;. Let V' = Uju; be a his-
togram from the object database. i is the L-
dimensional index vector of a histogram, where

L is the number of dimensions of a measurement
vector my, and therefore the number of dimensions
of the histogram. v; (respectively ¢;) corresponds
to the value of a particular cell of histogram V'
(respectively Q).

The intersection-measurement [Swain and Bal-
lard, 1991] has been introduced for the compari-
son of color histograms. The intersection of two
histograms V' and @ is defined by:

V)= Zmin(qi,vi) (21)

The intuitive motivation for this measurement
is the calculation of the common part (the inter-
section) of two histograms V' and (). The main
advantage of this measurement is that background
pixels are neglected explicitly, which may occur
in the test histogram @ but do not occur in the
database histogram V.

In their original work Swain and Ballard re-
ported the need for a sparse color distribution in
the histogram in order to distinguish different, ob-
jects. Our experiments have verified this result. A
sparse distribution can be achieved by using high
dimensional histograms. In this case the tradeoff
between the ability to discriminate objects and
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Fig. 3. 25 of the 103 database objects use in the experiments.

stability with respect to perturbations becomes
an important issue [Califano and Mohan, 1993].
A second inconvenience of the intersection is that
all histogram cells are treated equally and should
therefore be equally probable. This is approxi-
mately true for color histograms but cannot be
assumed for the more general case of multidimen-
sional receptive field histograms.

The x2-divergence is among the most prominent
divergences used in statistics [Basseville, 1996] to
assess the “dissimilarity” between two probabil-
ity density functions. Two different ways of cal-
culation of the y2-divergence may be considered

[Press et al., 1992]. The first — x2(Q, V) — assumes
exact knowledge of the model histogram V:

s e )?

@ =0 g

. 1
1
The second calculation - x2,(Q, V) — compares
two observed histograms (neither is theoretically
derived). This second y?—divergence is more ap-
propriate in our context, since we do not as-
sume exact knowledge of the model histogram V.

X2,(Q, V) is defined by:

@)=Y BT g

gi + vi

As we concluded from experiments [Schiele,
1997], these two y>—divergence provide better
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recognition results for most cases than the inter-
section measurement with respect to image distor-
tions due to appearance changes, additive Gaus-
sian noise and blur. Even though quadratic dis-
tances [Hafner et al., 1995] were typically outper-
formed by intersection and x2, the Mahalanobis
distance — as a special case of quadratic distances
— sometimes obtains comparable results [Schiele,
1997].

Object recognition by means of histogram
matching has been shown to be robust to ap-
pearance changes such as viewpoint changes, scale
changes and image noise [Schiele, 1997]. This ro-
bustness is due to the fact that the proposed rep-
resentation uses the entire appearance of the ob-
ject rather than a small number of interest points.
The appearance of objects is represented robustly
by means of statistics of local neighborhood op-
erators. As we will see in experiments (section
7) histogram matching also achieves a certain ro-
bustness to partial occlusion. However, histogram
matching relies on some sort of pre-segmentation
of the object. The next section proposes a prob-
abilistic object recognition algorithm which cal-
culates object hypotheses based on small image
regions. This algorithm can be used successfully
without using any pre-segmentation step.

6. Probabilistic recognition without cor-
respondence

This section develops a probabilistic recognition
technique which is based on single, arbitrarily cho-
sen measurement vectors in the image. From such
single measurement vectors the probability of the
presence of each database object is calculated.
The most noteworthy property of the algorithm
is that the technique does not rely on the calcula-
tion of the correspondence between the test-image
and the object database. In the following section,
recognition results are given as a function of the
visible object portion in order to show the robust-
ness of the proposed probabilistic object recogni-
tion algorithm with respect to partial occlusion.

In the context of probabilistic object recognition
we are interested in the calculation of the proba-
bility of an object o, given a local image region
R: p(op|R). In our context, the most local re-

gion consists of a single local measurement vector
my. This probability p(o,|my) can be calculated
by the Bayes rule:

p(mk|on)p(0n) _ p(mk|on)p(0n)/
p(my) Zi p(mk|0i)p(0i>

p(0n|mk) = 24)

with

* p(o0,) the a priori probability of object oy,

* p(my) the a priori probability of measurement
vector my (= filter output combination),

* p(myglo,) the probability density function of
object 0,. This density function can be esti-
mated by the multidimensional receptive field
histogram of an object 0, normalized by its
size.

Typically, one single measurement vector will
not be sufficient for the recognition of objects.
Using two local measurement vectors my, and m;
from the same object o, we can calculate the prob-
ability of object o, by:

p(mg A mj|0n)p(0n) /
plopme Am;) =
(Ol A1) = 5 ol A mlop(on)
Under the assumption of independence of my,
and m; we obtain:

25)

p(mk |0n)p(mj |0n)p(0n)(
plop|me Am;) = 26
Onkme Ami) = S ot lonpms oo
Having K independent local measurement vec-

tors my, me,...,mg we can calculate the proba-
bility of each object o, by:

o me) — p(/\k mk|0n)p(0n) 9
ponl \me) = =R mdopton 20
Hk p(mk|on)p(0n) (28)
>i [ p(mu]oi)p(o:)

In our context the local measurement vectors
my, correspond to multidimensional receptive field
vectors (for example two-dimensional vectors of
the first Gaussian derivatives in the z— and y—
directions). Therefore, K local measurement vec-
tors my, correspond to K receptive field vectors
typically chosen from the same region of the im-
age. It is worth mentioning that equation 28 as-
sumes that all K measurement vectors come from
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the same object. This corresponds to an inherent
consistency test which, as we will discuss later,
is very powerful. However, regions with multiple
objects may act as distractors to the algorithm.
Experiments will show that already a small num-
ber of measurement vectors and therefore a small
visible portion of an object provide reliable ob-
ject hypotheses. More specifically, a visible object
portion of 10% - 20% is generally enough in order
to obtain good object hypotheses. That implies
that the number of image regions containing a sin-
gle object nearly always outnumbers the image re-
gions containing multiple objects. The algorithm
of section 8 makes use of this fact for the recogni-
tion of multiple objects in cluttered scenes where
no pre-segmentation of the objects is assumed or
used.

The a priori probabilities p(o,) of occurrence
for each object 0, cannot be determined from
the multidimensional receptive field histograms.
These a priori probabilities depend upon the con-
text and the given environment. Typically, they
are constant for a certain context and/or environ-
ment. In the experiment of section 7 we assume
that all objects are equally probable and do have
a priori probabilities p(o,) = %, with N the num-
ber of objects. Under this assumption equation 28
simplifies to:

p(0n| /\mk) _ Hkp(mk|0n) (29)
k

B ZZ Hk p(mk|0i)

As mentioned above, the probability density
function p(my|o,) for an object oy, is directly given
by its normalized multidimensional receptive field
histogram. Therefore equation 29 shows a calcu-
lation of the probability for each object o,, entirely
based on the multidimensional receptive field his-
tograms of N objects.

It is important to note that the locations of
the measurement vectors can be chosen arbitrar-
ily. This is due to the fact that the position (¢, and
t,) of the measurement vectors are not represented
in the object model (see section 4). Consequently
the technique is fast (only a certain number of lo-
cal receptive field vectors have to be calculated)
and robust to partial occlusion (the approach is
strictly local). Furthermore, the technique works
without calculation of the correspondence between
the object database and the test image.

7. Experimental results

The section describes an experiment using a
database of 2130 images of 103 different objects.
Figure 3 shows some of the database objects.
We have taken 690 different images of 83 objects
where each of the images correspond to a different
scale and different rotation of the object in front of
the camera. See figure 5 for examples of different
scales. The remaining 1440 images come from the
Columbia image database which contains 72 view-
points of 20 different objects [Murase and Nayar,
1995].

In this experiment we use six—dimensional his-
tograms of the filter combination Dz-Dy (first
Gaussian derivative in # and y directions) at three
different scales with o1 = 0, 0o = 20 and o3 = 40.
The resolution per histogram axis is 24 (see for de-
tails of the estimation section 7.1).

The training set for the 83 objects contains one
image for each object. For each of these images
we calculate a set of histograms corresponding
to different scales and image plane rotations of
the object. By making use of the steerability of
the Gaussian derivatives we calculate histograms
which correspond to different image plane rota-
tions from a single image per object. Similarly
we use the equivariance property of the Gaussian
derivatives to scale changes to obtain histograms
which correspond to different scales of an object.
We calculate histograms of 6 different scales cov-
ering the approximate scale factor of 2.2 for the
test images. For each of these scales we also cal-
culate histograms for 18 different image rotations
covering 360° degrees image plane rotation*. The
overall number of histograms for the 83 objects is
therefore 83 x 18 x 6 = 8964 histograms. These
histograms are stored in the histogram database.

The Columbia image database has been created
by [Murase and Nayar, 1995] and used by sev-
eral researchers including [Rao and Ballard, 1995]
[Schmid and Mohr, 1997]. As mentioned above,
the database contains 72 viewpoints for each of
the 20 objects. The viewpoints are 5° apart. Typ-
ically, every other viewpoint is taken as training
image and the remaining images are taken as test
set. The training set as well as the test set contain
720 images. For each training image we calcu-
late one histogram corresponding to the particu-
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lar rotation and scale of the object. This adds 720
histograms to the histogram database. The total
number of histograms in the database is therefore
8964 + 720 = 9684.

The test set contains the remaining images of
the 83 objects which is 690 — 83 = 607 and 720
images of the Columbia image database. The to-
tal number of test images is therefore 1327. The
entire test set is independent of the training im-
ages.

In order to recognize the objects in the test im-
ages we calculate one six-dimensional histogram
with ¢ = 2.0 per test image. The support of these
histograms is varied (from about 20% to 100% vis-
ibility of the objects) in order to test the robust-
ness of the approach to partial occlusion. Since
the objects are centered in the image we have cal-
culated the histograms of a centered support re-
gion. This corresponds to the ideal case that the
object position is approximately known. Figure 4
shows the recognition results obtained by two dif-
ferent histogram comparison measurements: ng
and N (see section 5). The recognition result is
shown as a function of the visible portion of the
objects.

Figure 4 shows a 100% recognition provided by
both comparison measurements using the entire
object as support for the histogram calculation.
By using only 62% of the object the intersection
measurement still provides 100% recognition. In
this case xj, obtains 99.3% recognition. In the
case of 33% visibility of the object, N provides a
recognition of 94% and ng obtains 84% recogni-
tion. The experiment emphasizes in particular the
expected robustness of the intersection measure-
ment N with respect to partial occlusion.

This initial experiment shows the applicability
of histogram matching for object identification in
the presence of scale changes, image plane rota-
tion, viewpoint changes and partial occlusion. In
particular, these results emphasize that multidi-
mensional histograms represent the appearances
of objects reliably enough in order to discriminate
100 objects.

In order to apply the probabilistic object recog-
nition algorithm (equation 29), K independent
measurement vectors my, have to be chosen from
a test image. As mentioned above, two assump-
tions underlying equation 29 have to be consid-
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Fig. /. Experimental results for 1327 test images of 103
objects. Comparison of probabilistic object recognition
and recognition by histogram matching: X(QIU (chstwo) and
N (inter)

ered: firstly, all measurement vectors are assumed
to correspond to the same object and secondly,
the K measurement vectors my, are assumed to be
independent. The second assumption, the inde-
pendence of the measurement vectors, is fulfilled
by using a fixed distance of 4 pixels between each
measurement vector corresponding to 201, which
is sufficient to assume independence from a signal
processing point of view. The first assumption is
satisfied here by using test images containing only
one object and choosing the measurement vectors
from a central region of the test images. The re-
ported results therefore correspond to the ideal
case that all K measurements come from the same
object. In general there is no trivial way in which
to satisfy the first assumption. Nevertheless, the
experimental results reported below indicate that
a small object portion is sufficient for a good ob-
ject hypothesis. This property of the algorithm is
used in section 8 in order to extend the algorithm
for the recognition of multiple objects in cluttered
scenes and without segmentation.

Figure 4 and table 1 summarize the recognition
results of the probabilistic object recognition algo-
rithm. A visible object portion of approximately
62% is sufficient for the recognition of all 1327 test
images (the same result as for histogram match-
ing). With 33.6% visibility the recognition rate is
above 99% (10 errors in total). Using 13.5% of
the object the recognition rate is still above 90%.
The recognition rate is 76% with only 6.8% visi-
bility of the object. This can be explained by the
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Fig. 5. Six different scale-images for 2 objects which are part of the test-set.

Table 1. Experimental results with 103 objects
radius [o1] 1 5 10 15 20 25 30 35 40
object portion [%] 2.2 6.8 13.5 225 336 47.0 625 80.1 100.0
number of image measurements 1 25 100 225 400 625 900 1225 1600
recognition [%)] 13.3  76.2 90.8 96.2 99.3 99.9 100 100 100
errors for the 83 objects 577 274 122 51 10 1 0 0 0
errors for Columbia database 573 42 0 0 0 0 0 0 0

fact that each single vector contains discriminant
information. This is stressed also by a recognition
of approximately 13% with only a single measure-
ment vector.

Since we use the same six—dimensional feature
vectors as for the recognition by histogram match-
ing as for the probabilistic recognition algorithm,
we can directly compare the results of both algo-
rithms in figure 4. As we can see the robustness to
partial occlusion is significantly increased by ap-
plying the probabilistic object recognition scheme.

We can conclude that the proposed probabilis-
tic object recognition approach is capable of dis-
criminating 103 objects in the presence of signifi-
cant scale changes, image plane rotation and view-
point changes. Furthermore, the approach is ro-
bust with respect to partial occlusion since a small
portion of the object is sufficient in order to obtain
a good object hypothesis. As mentioned earlier,
the recognition results have been obtained with-

out any correspondence calculation between the
test images and the database.

7.1.  Implementation details

For the experiments described in this section the
resolution of each histogram axis has been 24.
Therefore the theoretical number of cells for a six-
dimensional histogram is in the order of 108 cells.
Due to the dependencies between the different di-
mensions of the histogram axes and due to the
fact that not all theoretical possible pixel-values
are observed in real images, the number of non-
zero histogram cells (for all 9684 histograms) is in
the order of 10°. This is number is still too large
to be estimated from a typical 512 x 512 image
which contains about 2 x 10° pixels. However, by
using an appropriate bias for the histograms (in
our case a uniform prior) we can effectively de-
crease the number of cells to be estimated below
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the order of 10°. This prior is important to en-
sure a reliable estimate of the multidimensional
histograms. In reality, however, the exact amount
of the prior only has a secondary effect [Schiele,
1997] on the performance of the algorithm.

The test-set contains also images of different
scales (see figure 5 for two examples). In order
to calculate histograms of filter responses at ar-
bitrary scales we apply two principles: firstly we
use the equivariance property of Gaussian deriva-
tives to scale and secondly we adapt the radius of
the support region of a histogram as a function of
scale. The equivariance property is described in
section 3.2. In order to calculate the histogram of
vectors of Gaussian derivatives of a set of image
positions, we need to adapt the image positions
of the vectors. This can be done for example
by the adaptation of the distances between im-
age positions, which would include interpolation
between pixels. Due to the computational cost
of interpolation, we prefer to leave the pixel dis-
tances constant and to adapt the support region
for the calculation of the histogram. The radius
of the support region needs to be multiplied by
the scale. This adaptation of the support region
is computationally inexpensive but compromises
the precision in particular for small scales. There-
fore histograms corresponding to different scales
of an image are calculated on different support
regions and contain different numbers of entries.
In order to make such histograms comparable the
overall sum of the histogram entries needs to be
normalized.

For histograms steered to different rotations,
the support region should be circular. In con-
trast to a circular support region, a square re-
gion — using the same radius as half side-length of
the square — contains about 20% more measure-
ment vectors which is advantageous for the small
radii used here (see above). Fortunately, impreci-
sion due to square support regions are introduced
only for the borders of the objects. In this exper-
iment we use square, small and centered support
regions. The size of the support regions is limited
by the image sizes. Since we calculate histograms
at different scales of objects the maximal possible
radius of the support region is 400;. This radius
corresponds to a radius of 59 pixels (for oy = 1.48)
and 120 pixels (for o1 = 3.0). Therefore the sup-

port region of the histograms differs up to a factor
2

of 4 » 152902 . The centering of the support region

can be seen as a figure—ground segmentation for

learning an object model.

8. Multiple object recognition in cluttered
scenes

In the previous section we applied the proba-
bilistic algorithm for the recognition of single ob-
jects in the presence of partial occlusion. As men-
tioned earlier hashtable based recognition systems
are very suited for the recognition of multiple ob-
jects in cluttered scenes. Motivated by the re-
sults of the preceding section we can define an
algorithm for the recognition of multiple objects
which employs local image regions or local appear-
ances of objects for probabilistic voting for ob-
jects. Since this resembles to use local appearance
as index of a hashtable we will call this algorithm
local appearance hashing.

The upper part of figure 6 shows the stan-
dard hash-table approach: for each feature vec-
tor m; the approach votes for a certain subset
of objects denoted by wote(o,|m;): this vote is
one if object o, could correspond to the fea-
ture vector m; and zero otherwise. The votes
for an object are summed over the entire image:
votes(o,|Image) = ), vote(o,|m;).

This hashtable algorithm typically produces a
high number of false positives. In order to over-
come this problem we can use pairs or triplets of
feature vectors and their geometric arrangement
to increase the discriminant power of the approach
[Schmid and Mohr, 1997]. Another possibility is
to increase the dimensionality of the feature vector
[Rao and Ballard, 1997] resulting in an enlarged
support region for the feature vector. These ap-
proaches pursue interesting directions by coding
additional geometrical or consistency constraints.
Eventually, we will integrate these ideas into our
framework. However, the main disadvantage of
these approaches is that the additional constraints
have to be coded into the hashtable prior to recog-
nition. Therefore, motivated by the results of the
previous section, we will make use of the discrim-
inant power of the statistically distribution of the
feature vectors.
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. m; —————— vote(o,|m;)
. m; ———+» vote(on|m;)
/ nlm; vote(o,|Image) = Y, vote(o,|m;)
. mj ————————— p(on|m;)
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’ plon|Image) = Znh.pwnmi)p(oj)

Fig. 6. Comparison of (above) hashtable based recognition and (below) the probabilistic recognition of section 6

The probabilistic algorithm defined in section 6
is structurally similar to a hashtable based algo-
rithm (see lower part of figure 6). In the prob-
abilistic algorithm, we calculate for each feature
vector m; the probabilities p(on|m;). The evi-
dence for an object in the image p(o,|Image) =
p(on| A\; mi) is accumulated using equation 28 or
29 respectively. In any case, since all feature vec-
tors m; are assumed to come from the same object
this is equivalent to an inherent consistency test
using the distribution of the feature vectors. As
the results of the previous section show this is a
powerful consistency constraint. However, this al-
gorithm is not suited to recognize multiple objects
in cluttered scenes.

The results of the previous section indicate that
a relatively small region is sufficient in order to
obtain a good object hypothesis. By making use
of this property of the algorithm and combining
it with a hashtable we obtain a hybrid algorithm
which combines the advantages of both. Figure 7
shows this hybrid algorithm. Instead of accumu-
lating the evidence of each object over the entire
image we apply the probabilistic algorithm only
for a local image region Ry, and calculate the corre-
sponding probabilities p(on|Ri) = p(on| Ay, k)
(where the my, correspond to the feature vec-
tors inside region Rj). Calculating these prob-
abilities for a set of image regions Rj we can
accumulate the evidence for each object o, by
votes(op|Image) = Y, p(on|Ri). This last step

corresponds to using image regions Ry, as “feature
vectors” in a hashtable. Since these local image
regions correspond to local appearances of the ob-
jects we call this approach local appearance hash-
ng.

We like to point out an interesting property of
the proposed local appearance hashing approach.
Since the regions Ry, can be chosen arbitrarily and
dynamically during runtime, the algorithm is ex-
tremely flexible. In particular, the size and form of
the local image regions Ry, can be changed dynam-
ically without recalculating the representation of
the objects. Since these image regions correspond
to the “feature vectors” we can actually change
these feature vectors dynamically, depending e.g.
what we know about the scene. For any chosen
image region R;, the algorithm implicitly uses the
consistency constraint imposed by the distribution
over the feature vectors for each object.

8.1. Recognition experiment

In order to illustrate the proposed local appear-
ance hashing approach we describe an experiment
on a database of 50 objects. For each of the 50
objects we compute six—dimensional histograms
Mag-Lap-24 (Magnitude of first derivative and
Laplacian operator, resolution of 24 cells per his-
togram axes) at three different scales, namely
o1 =2.0,05 = 4.0 and o3 = 8.0°. For illustration
purposes, the image regions Ry, have been fixed to
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Fig. 7. Local appearance hashing: combining the probabilistic recognition algorithm of section 6 with a hashtable in order
to recognize multiple objects in cluttered scenes

Test image 1 First Match Second Match Third Match

Test image 2 First Match Second Match Third Match

Test image 3 First Match Second Match Third Match

Test image 4 First Match Second Match Third Match Fourth Match

Fig. 8. Four of the 50 test images containing multiple objects

a squared region of 642 pixels. We have chosen boring regions by 50%. For each of the 36 regions
6 x 6 = 36 such regions overlapping the neigh- we apply the probabilistic object recognition algo-
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rithm and add the computed probabilities into an
accumulator array of the objects. Objects, which
cover several image regions Ry, therefore accumu-
late probabilities of several image regions. The
more image regions are covered by an object the
higher the score becomes. Ultimately, the objects
with the highest “scores” in the accumulator are
listed in decreasing order (see figure 8).

We have taken a set of 50 test images each con-
taining 3 of the 50 objects in order to test the
performance of the algorithm. The left column of
figure 8 shows 4 of these test images. For each
of these test images the objects with the highest
“scores” are displayed. The first three matches
for each of the first three test images contain all
three objects which are contained in the image.
For the fourth test image the first two and the
fourth match are correct. However, even though
the third match is not contained in the test im-
age it corresponds to a similar object as the first
match. This illustrates the property of the al-
gorithm that it tents to match visually similar
objects. Table 2 summarizes the results for the
50 test images. As we can see many of the ob-
jects (126 of 150) are contained within the first
three matches. By including four matches 145
of the possible 150 objects are recognized. Since
the results have been obtained only for a small
set of test images it is unreasonable to generalize
them. However, the results clearly indicate the
possibility to recognize multiple objects in clut-
tered scenes using the proposed local appearance
hashing approach.

The first row of figure 9 shows another set of
interesting test images. Each of these test images
contains one of the 50 objects of the database.
The rest of the images is covered by objects which

Table 2. Recognition results for 50 test images containing
3 objects

# of matches 1 2 3 4 5 6...14

1 object correct 47 50 50 50 50 50 ...50

2 objects correct 40 49 50 50 50 ...50
3 objects correct 27 45 48 49 ...50
overall 126 145 148 149 ...150

are not part of the database and therefore are not
represented. These types of images are consid-
ered difficult in particular for probabilistic object
recognition algorithms since they typically rely on
the assumption that they have a complete model
of the world. Even though this assumption is
shared by our probabilistic algorithm the local ap-
pearance hashing approach recognizes the correct
object three times as best match (test images A, B
and D) and once as third best match (test image
C). This ability to recognize objects in the pres-
ence of not represented objects is mainly due to
the consistency constraint which is implicitly im-
posed by the use of the distribution of the feature
vectors.

9. Conclusions

For nearly forty years, the field of computer vision
has struggled with the techniques for recognizing
complex objects by searching correspondences be-
tween object models, and local structure in im-
ages. Recognition using correspondence between
models and images has proved both computation-
ally expensive and sensitive to image noise. In
almost every case, model based recognition tech-
niques required a small pre—selected list of candi-
date objects in order to be tractable. The general
assumption has been that the candidates would
be provided by context.

Recognition using joint statistics of local prop-
erties provides an alternative to standard recogni-
tion algorithm. This approach provides a frame-
work in which it is possible to design techniques
to determine the objects in a scene independent
of viewing position. These techniques have com-
putational complexities which are linear with the
number of pixels and the number of objects, and
thus can be implemented to operate in real time.
Indeed, we have implemented an example of such
a system which operates at 10Hz on a standard
workstation with a data base of 103 objects.

This framework can be used with a large va-
riety of local properties. However, linear filters
based on the Gaussian function are particularly
well suited as they permit the definition of lo-
cal property measurements which are robust to
changes in scale and orientation. In particular,
our experiments have shown excellent results with
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