Computer Vision - Lecture 22

Repetition

03.02.2015

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de
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Announcements

e Exam
> 15t Date: Monday, 23.02.,13:30-17:30h
~ 2" Date: Thursday, 26.03., 09:30 - 12:30h
> Closed-book exam, the core exam time will be 2h.

~ Admission requirement: 50% of the exercise points or passed
test exam

> We will send around an announcement with the exact starting
times and places by email.

e Test exam
~ Date: Thursday, 05.02., 09:15 - 10:45h, room UMIC 025
» Core exam time will be 1h
» Purpose: Prepare you for the questions you can expect.
» Possibility to collect bonus exercise points!
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Announcements (2)

e Feedback to the lecture evaluation
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Announcements (3)

e Today, I’ll summarize the most important points from
the lecture.
~ It is an opportunity for you to ask questions...
~ ...or get additional explanations about certain topics.
> So, please do ask.

e Today’s slides are intended as an index for the lecture.
~ But they are not complete, won’t be sufficient as only tool.

> Also look at the exercises - they often explain algorithms in
detail.
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Repetition

 Image Processing Basics
> Image Formation

Binary Image Processing

> Linear Filters

Y

» Edge & Structure Extraction

e Segmentation & Grouping

e Object Recognition

e Local Features & Matching

e Object Categorization
e 3D Reconstruction
e Motion and Tracking

B. Leibe
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Lenses, focal length, aperture

Color sensors
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Recap: Pinhole Camera

e (Simple) standard and abstract model today
> Box with a small hole in it
> Works in practice

image
plane

Source: Forsyth & Ponce

- wvirtual
image

B. Leibe



RWNTH
Recap: Focus and Depth of Field

e Thin lens: scene
ok o “nd i sen e points at distinct
S \\\\ R 1 o | depths come in focus
i RN o - e R e g at different image
| e et planes.
oV~ ~ Point "¢

in focus

(Real camera lens

b systems have greater
depth of field.)

1
u ) v

“circles of confusion”

e Depth of field: distance between image planes where
blur is tolerable
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Source: Shapiro & Stockman B. Leibe



RWTH
Recap: Field of View and Focal Length

e As f gets smaller, image
becomes more wide angle

~ More world points project
onto the finite image plane

Field of view

e As f gets larger, image
becomes more telescopic

> Smaller part of the world
projects onto the finite
image plane
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B. Leibe from R. Duraiswami




RO ONVERSITY
Recap: Color Sensing in Digital Cameras

Bayer grid

Estimate missing compo-
nents from neighboring
values (demosaicing)
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B. Leibe Source: Steve Seitz



Repetition

 Image Processing Basics
> Image Formation
> Binary Image Processing
> Linear Filters
» Edge & Structure Extraction

e Segmentation & Grouping -
e Object Recognition — - E: H

A*B=(AGB)®B

e Local Features & Matching Morphological Operators

e Object Categorization

e 3D Reconstruction

e Motion and Tracking

L1

Connected Components
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Recap: Binary Processing Pipeline

e Convert the image into binary form
> Thresholding

e Clean up the thresholded image
> Morphological operators

e Extract individual objects
> Connected Components Labeling

e Describe the objects
> Region properties
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B. Leibe Image Source: D. Kim et al., Cytometry 35(1), 1999
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Recap: Robust Thresholding

background
frequency

H object

..,

Source: Robyn Owens B. Leibe

frequency

pixel value

Ideal histogram,
light object on
dark background

Actual observed
histogram with
noise

Assumption here:
only two modes

12
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RWTH
Recap: Global Binarization [Otsu’79] sese

e Precompute a cumulative grayvalue histogram h.

e For each potential threshold T

1.) Separate the pixels into two clusters according to T.

2.) Compute both cluster means £4(T) and 1, (T).
Look up n;, n,in h

m(D) = ey <TH, m2(T) =@y 2T}
3.) Compute the between-class variance ofetween (T)
Oretuween(T) = nu(T)na(T) [ (T) — pa(T))°

e Choose the threshold that maximizes
T* = argmax |0} (1))

O
T between

13
B. Leibe



RWNTH
Recap: Background Surface Fitting

e Document images often contain a smooth gradient
—=Try to fit that gradient with a polynomial function

300 T T T

20} —

'1 l
1! 1 " E

200 300 400 a0

/ Fitted surface

~— 678 awmim |
— 30 slray

W 18 w0
%

oo b

=1
=]
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Source: S. Lu & C. Tan, ICDAR’07

4: Face Dataset: We show the ROC curve for the
full set SVM of 1434 support vectors (bold solid line), two
reduced set methods of 10 and 100 reduced sets (both in
dashed line). The dashed line of the 100 reduced set co-
Incide almoat entirely with the full set of support vectors.
In addition, we show two element sets of 200 and 576 ele-
ments (both in solid line). Note that an element set of 576
elements is equivalent to a single support vector. Hence, the
B76 element set is equivalent to the 10 reduced set in torms
of classification power but uses much less memory.

Shading compensation

B. Leibe

4; Face Dataset: We show the ROC curve for the
fall st S¥M of 1434 support vegtore (bold selid line), Lwo
reduced set methods of 10 and 100 reduced sets (both in
dushed line). The dashed line of the 100 reduced set co-
Incide almost entirely with the full set of suppart vectors,
In sddition, we show two element sets of 200 and 576 cle-
ments {both ip solid line). Note thar 2o element set of 576
dlements is equivalent to asingle support vector. Hence, the
576 slement set is equivalent to the 10 reduced set in terms
of elasifivation power bt uses much. less mermory.

Binarized result
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Recap: Dilation

e Definition
. “The dilation of A by B is the set i

of all displacements Z, such that ’ |

(B), and A overlap by at least one B, v

ele:ment”. A A®B,

> ((B), is the mirrored version of B,

shifted by 2)
e o| @l
51 o Effects |
% > |If current pixel Z is foreground, set all B, |
= pixels under (B), to foreground.
?:J = Expand connected components
3 = Grow features
5 = Fill holes A®B,

15

Image Source: R.C. Gonzales & R.E. Woods

B. Leibe



Recap: Erosion

e Definition

“The erosion of A by B is the set
of all displacements Z, such that

(B), is entirely contained in A”. o
A A©B,
e Effects
0 . If not every pixel under (B), is L
3 foreground, set the current pixel Z |
s to background. | | | 498
S = Erode connected components B, AOB,
2 = Shrink features
3 —> Remove bridges, branches, noise
o
£
O
O 16

B. Leibe Image Source: R.C. Gonzales & R.E. Woods



Recap: Opening

e Definition

]
~ Sequence of Erosion and Dilation —
A-B=(ASB)®B e
_______ @ E [
- Effect 2t et
> A ¢ Bis defined by the points that A“B=(AOH®H

are reached if B is rolled around

Ac°B = U|{(B),I(B),C A

inside A. A
. Translates of B in A
= Remove small objects, Z
keep original shape. AN O
17

B. Leibe
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Image Source: R.C. Gonzales & R.E. Woods



Recap: Closing

e Definition

]
~ Sequence of Dilation and Erosion _—
A-B=(A®B)SB .
&L ******** U= #
,,,,,,,,,,,, i Il
_____________ AR ADB
o Effect | L -
10 . A - Bis defined by the points that | ] i (] i
h are reached if B is rolled around =~ I Apmaener
2 on the outside of A.
§ = Fill holes, ; A
P keep original shape. \/ \\/—
)
o
= A
O
= 18
B. Leibe

Image Source: R.C. Gonzales & R.E. Woods



Recap: Connected Components Labeling

* Process the image from left to
right, top to bottom:

1.) If the next pixel to process is 1
i.) If only one of its neighbors 57-512% I EAE % % 111
(top or left) is 1, copy its label. 3 1
4 5/5/5/5 1
6|6/6/6/6/6 77
888

ii.) If both are 1 and have the
same label, copy it.

é iii.) If they have different labels

LD — Copy the label from the left.

f — Update the equivalence table.

n

= :i iv.) Otherwise, assign a new label.

S

2

>

5l ¢ Re-label with the smallest of equivalent %l 2, 7}
o labels Vo o
= 31 ©

(@]

@)

Slide credit: J. Neira B. Leibe



Recap: Region Properties

e From the previous steps, we can
obtain separated objects.

e Some useful features can be
extracted once we have connected
components, including

> Area

> Centroid

> Extremal points, bounding box
> Circularity

> Spatial moments
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Recap: Moment Invariants Exerc, e

e Normalized central moments

Hpq P+(Q
MNpg =, = +1
™ Hoo 4 2
e From those, a set of invariant moments can be defined
for object description.
% =120+ oz (Additional invariant
2 2
@, = (0 —1p2)" +417, moments @, g5, @,

can be found in the

— —3 2 3 _ ’
Dy = (30 —31712)" + (31721 — 153) literature).

@, = (130 + 7712)2 + (77, + 7703)2

e Robust to translation, rotation & scaling,
but don’t expect wonders (still summary statistics).
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Repetition

 Image Processing Basics
> Image Formation
Binary Image Processing
> Linear Filters
» Edge & Structure Extraction

Y

e Segmentation & Grouping

e Object Recognition y
Derivative operators

- me
.-

Gaussian/Laplacian pyramid

e Local Features & Matching
e Object Categorization
e 3D Reconstruction

e Motion and Tracking
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Recap: Effect of Filtering

 Noise introduces high frequencies.
To remove them, we want to apply a ) /-"\

“low-pass” filter.

e The ideal filter shape in the
frequency domain would be a box.
But this transfers to a spatial sinc, —
which has infinite spatial support.

|
e A compact spatial box filter .

transfers to a frequency sinc, which “F——

creates artifacts. - -

e A Gaussian has compact support in

both domains. This makes it a .
convenient choice for a low-pass N e

filter.
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Recap: Gaussian Smoothing Exer o€

e Gaussian kernel
1 @24y
Gy = e 202
2ol

e Rotationally symmetric

e Weights nearby pixels more
than distant ones

~ This makes sense as
‘probabilistic’ inference
about the signal

e A Gaussian gives a good model
of a fuzzy blob
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B. Leibe Image Source: Forsyth & Ponce



RWNTH
Recap: Smoothing with a Gaussian

e Parameter ¢ is the “scale” / “width” / “spread” of the
Gaussian kernel and controls the amount of smoothing.

Lo
A
#
—
n
E 0 10 20 30 0 10 20 30 0 10 20 30
:% for sigma=1:3:10
E h = fspecial ('gaussian', fsize, sigma);
% out = imfilter (im, h);
g imshow (out) ;
o) ause;
= p
end

Slide credit: Kristen Grauman B. Leibe
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Recap: Resampling with Prior Smoothing

256 x 256 128 x 128 64 x 64 32 x 32 16 x 16
LR LL(E LT LD - Artifacts!

no
smoothing

' .IIIHI
!!0“ Ly

il 151
Gaussian
o=1

Gaussian
=2

e Note: We cannot recover the high frequencies, but we
can avoid artifacts by smoothing before resampling.
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B. Leibe Image Source: Forsyth & Ponce



RO ONVERSITY
Recap: The Gaussian Pyramid

Low resolution m . G4 = (G;™ gaussian) 12

<

\ = mw.
d

L0
d
#
N
N
=
c
=)
-
>
2
5
Q.
S
O
@)

High resolution 27

B. Leibe Source: Irani & Basri
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Recap: Median Filter

* Basic idea

> Replace each pixel by the
median of its neighbors.

Median value

* Properties

> Doesn’t introduce new pixel
values

> Removes spikes: good for
Impulse, salt & pepper noise

> Nonlinear

> Edge preserving

Slide credit: Kristen Grauman B. Leibe
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Recap: Derivatives and Edges...

20 a
30
20
i §
50 1o}
. 1st derivative =
7o I
a0 -10F
ool ] Maxima of first
o il a0 40 50 (1] 70 a0 =1 b R R
/ derivative
» B T T R S R ]

10

—
2nd derivative

“zero crossings”
of second
derivative

L L L L L L L L
1] 1o 20 3o 40 a0 GO 70 a0 30 100
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RWTH
Recap: 2D Edge Detection Filters — sengse
.57

P | | ‘
AN

i l -
i h

Y
A . .
g;}’tm‘o‘.’,““a};l‘:*\. P Laplacian of Gaussian
W Vo
e g
Sy A
S ’”I%"‘O““"‘\\\\*"’Q"l% 7

Wi

9

S O
e

Gaussian

1 _utt?

holu. v) = ——e 202
0’( b ) 27’(’0’2

e VZis the Laplacian operator:

52 H2
V2 =gkt 5t
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Slide credit: Kristen Grauman B. Leibe



Repetition

 Image Processing Basics
> Image Formation
Binary Image Processing
> Linear Filters
» Edge & Structure Extraction

Y

e Segmentation & Grouping
e Object Recognition
e Local Features & Matching

e Object Categorization
e 3D Reconstruction
e Motion and Tracking

.
.
.
s "
: T —
P .
5
.
e
il

Hough transform for circles 3
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RWTH
Recap: Canny Edge Detector Srercies
<6/

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
> Thin multi-pixel wide “ridges” down to single pixel width

4. Linking and thresholding (hysteresis):
» Define two thresholds: low and high

> Use the high threshold to start edge curves and the low
threshold to continue them

e MATLAB:

>> edge (image, ‘canny’) ;
>> help edge
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adapted from D. Lowe, L. Fei-Fei



Rec

i

ap: Edges vs. Boundaries

—

Edges useful signal to
indicate occluding
boundaries, shape.

B,

Here the raw edge ...bufte ou It
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output is not so bad... are fragmented, and we have extra
“clutter” edge points. 33

Slide credit: Kristen Grauman
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Recap: Chamfer Matching

e Chamfer Distance
» Average distance to nearest feature

1
Dr:h..m,-mfH'(T: I) = m Z df(ﬂ
teT

» This can be computed efficiently by correlating the edge
template with the distance-transformed image

Edge image Distance transform image
[D. Gavrila, DAGM’99]



RWTHAACHEN
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Recap: Fitting and Hough Transform

Given a model of interest,
we can overcome some of
the missing and noisy
edges using fitting tech-
niques.

With voting methods like
. the Hough transform,

I detected points vote on
B possible model parame-
ters.
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Slide credit: Kristen Grauman
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Recap: Hough Transform

Y

i Yy = mx + by
) ° (37.17 Y )
.

Image space

S
E'\'@rc-ee
e 3 7/
b
b= —xom -
b om + Yo
— ——
bl /// ‘\-
// N~
my m

Hough (parameter) space

e How can we use this to find the most likely parameters

(m,b) for the most prominent line in the image space?

» Let each edge point in image space vote for a set of possible
parameters in Hough space

> Accumulate votes in discrete set of bins; parameters with the
most votes indicate line in image space.

Slide credit: Steve Seitz
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RWTH
Recap: Hough Transf. Polar Parametrization

e Usual (M,b) parameter space problematic: can take on
infinite values, undefined for vertical lines.

[0,0] X / .

7 > d : perpendicular distance
g from line to origin

@ : angle the perpendicular
makes with the x-axis

Xcosfd—ysind=d

e Point in image space
=> sinusoid segment in
Hough space

O
—
S~
#
—
n
=
c
=
B
>
g
S
Q
S
@)
@)

Slide credit: Steve Seitz
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RWNTH
Recap: Hough Transform for Circles %55;
<7/

e Circle: center (a,b) and radius r
(x,—a)” +(y, ~b)? =’

e For an unknown radius I, unknown gradient direction

A T

| XX

.
. R
. o*
* .* =
O \VARV/

(x,y)

Image space ? Hough space

38
Slide credit: Kristen Grauman



Recap: Generalized Hough Transform

e What if want to detect arbitrary shapes defined by
boundary points and a reference point?

At each boundary point,
compute displacement

vector: I =a — ;.

For a given model shape:
store these vectors in a
table indexed by gradient

orientation 6.

Image space

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]
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Slide credit: Kristen Grauman



Repetition

 Image Processing Basics

e Segmentation & Grouping
> Segmentation and Grouping
> Segmentation as Energy Minimization

e Object Recognition

e Local Features & Matching

e Object Categorization

e 3D Reconstruction

e Motion and Tracking
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Mean-shift clustering 4,

B. Leibe
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Recap: Gestalt Theory

e Gestalt: whole or group
> Whole is greater than sum of its parts
~ Relationships among parts can yield new properties/features

e Psychologists identified series of factors that predispose
set of elements to be grouped (by human visual system)

“l stand at the window and see a house, trees, sky.
Theoretically | might say there were 327 brightnesses
and nuances of colour. Do | have “327"? No. | have sky,
house, and trees.”

Max Wertheimer
(1880-1943)

Untersuchungen zur Lehre von der Gestalt,
Psychologische Forschung, Vol. 4, pp. 301-350, 1923

http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm
B. Leibe
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Recap: Gestalt Factors

@ @ ® @ ® ® | Not grouped > ) P_ E_ B 5
5) 7( ( ( Parallelism
® © ® @ ® @ | Proximity
O O ® ® O O | Similarity ) 5 <

D

( gé_ > Symmetry
)T

o o | [ & @ | Similarity ><Q(>

Q‘ \ “ \. .\ .\ Commeon Fate X o
ontinuity
¢ & OGO

Common Region

. @ @ . DQ Closure

e These factors make intuitive sense, but are very difficult to
translate into algorithms.
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Image source: Forsyth & Ponce

B. Leibe



RWTHAACHEN
. UNIVERSITY
Recap: Image Segmentation

e Goal: identify groups of pixels that go together
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B. Leibe

Slide credit: Steve Seitz, Kristen Grauman



Recap: K-Means Clustering

e Basic idea: randomly initialize the k cluster centers, and
iterate between the two following steps

1. Randomly initialize the cluster centers, c,, ..., ¢
2. Given cluster centers, determine points in each cluster
- For each point p, find the closest c;. Put p into cluster i
3. Given points in each cluster, solve for c,
- Set ¢, to be the mean of points in cluster i
4. If c; have changed, repeat Step 2

L0
=
S5
—i
U) o
=~ ¢ Properties
|5 > Will always converge to some solution
9} o o
S > Can be a “local minimum”
) - Does not always find the global minimum of objective function:
o 2
= D . lp — ¢l
8 clusters 2 points p in cluster 7
B. Leibe a4

Slide credit: Steve Seitz
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RWNTH
Recap: Expectation Maximization (EM)

Cotmger’>

—
o

e Goal
> Find blob parameters 6 that maximize the likelihood function:

p(datald) = H p(x,]0)
e Approach:

1. E-step: given current guess of blobs, compute ownership of each point

2. M-step: given ownership probabilities, update blobs to maximize
likelihood function

3. Repeat until convergence

45

Slide credit: Steve Seitz B. Leibe



RWTH
Recap: Mean-Shift Algorithm Sercing |
. . . | | | .2/

#* —+

10+ - -

O

=4 0 2 4 (5] 8

e lIterative Mode Search

1. Initialize random seed, and window W

2. Calculate center of gravity (the “mean”) of W: Z xH(x)
3. Shift the search window to the mean zeW

4. Repeat Step 2 until convergence
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Slide credit: Steve Seitz B. Leibe
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Recap: Mean-Shift Clustering

e Cluster: all data points in the attraction basin of a mode

e Attraction basin: the region for which all trajectories
lead to the same mode
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Slide by Y. Ukrainitz & B. Sarel B. Leibe
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RWTH
Recap: Mean-Shift Segmentation Srercge |
<3/

e Find features (color, gradients, texture, etc)
e |Initialize windows at individual pixel locations
e Perform mean shift for each window until convergence

e Merge windows that end up near the same “peak” or
mode 1] )

48

B. Leibe

Slide credit: Svetlana Lazebnik
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Repetition

 Image Processing Basics

e Segmentation & Grouping
> Segmentation and Grouping
> Segmentation as Energy Minimization

e Object Recognition

e Local Features & Matching
e Object Categorization

e 3D Reconstruction

e Motion and Tracking

B. Leibe

Graph cuts

49



RWNTH
Recap: MRFs for Image Segmentation

e MRF formulation

= Minimize the energy

Unary ? B(x _ _—
potentials ) X3 ( :.V) ;ﬁb( zayz)
o)L + Y Y(w, )

[Z¥)

¢(xi7 lej)

“: . W ", o L 3
i - J o .
F 4 AL g &
¢ e L = N et 5/“ o

Data (D) Unai'y likelihood Pair-wise Terms MAP Solution
50
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Slide adapted from Phil Torr



Recap: Energy Formulation

o Energy function

Z¢ xzayz +Z¢ ZCZ,iCJ

a.j -
Unary Pal rwise
potentials potentials

e Unary potentials ¢

» Encode local information about the given pixel/patch

- How likely is a pixel/patch to belong to a certain class
(e.g. foreground/background)?

 Pairwise potentials e

> Encode neighborhood information

- How different is a pixel/patch’s label from that of its neighbor?

(e.g. based on intensity/color/texture difference, edges)
B. Leibe
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Recap: How to Set the Potentials?

e Unary potentials
~ E.g. color model, modeled with a Mixture of Gaussians

D(Ti, i3 0p) logZHqs iy k)p(K|2)N (Y35 Uk, L)

= Learn color distributions for each label

B. Leibe
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RWTH
Recap: How to Set the Potentials?

e Pairwise potentials
~ Potts Model
(@i, 53 0y) = Oyd(z; # x;)

- Simplest discontinuity preserving model.
- Discontinuities between any pair of labels are penalized equally.
- Useful when labels are unordered or number of labels is small.

> Extension: “Contrast sensitive Potts model”
¢(5L’z‘, Ljy Gij (y)7 Hzp) — Hngij (y)5($z #* CUj)

where 2
g, (¥) = e bl g_2)avg (Hyi y, Hz)

= Discourages label changes except in places where there is also a
large change in the observations.
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RWTH
Recap: Graph-Cuts Energy Minimizatidege
-4/

e Solve an equivalent graph cut problem

1. Introduce extra nodes: source and sink

2. Weight connections to source/sink (t-links)
by ¢(z; = s) and ¢(z; = t), respectively.

3. Weight connections between nodes (n-links)
by ¢(% wj)'

4. Find the minimum cost cut that separates
source from sink.

= Solution is equivalent to minimum of the energy.

e s-t Mincut can be solved efficiently
> Dual to the well-known max flow problem

~ Very efficient algorithms available for regular
grid graphs (1-2 MPixels/s)
» Globally optimal result for 2-class problems
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RWTH
Recap: When Can s-t Graph Cuts Be Applied?

Unary potentials Pairwise potentials

E(L) Z E (L) + > E(L,,L,)
t-links Pt n-links Lp E{S,t}

e s-t graph cuts can only globally minimize binary energies
that are SmeOdUIar. [Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

E(L) can be minimized | &= |E(S,S)+E(t,t) <E(S,t)+E(t,S)
by s-t graph cuts

Submodularity (“convexity”)

e Submodularity is the discrete equivalent to convexity.
~ Implies that every local energy minimum is a global minimum.
= Solution will be globally optimal.

55
B. Leibe
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Repetition

 Image Processing Basics
e Segmentation & Grouping

e Object Recognition
~ Global Representations
~ Subspace Representations

e Local Features & Matching
e Object Categorization
e 3D Reconstruction

e Motion and Tracking

B. Leibe

Appearance-based recognition

D. # @&

D. /S &

Histogram %w
representations il

| Ese
I ¢||I
7

Comparison measures

Q
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RWNTH
Recap: Appearance-Based Recognition

e Basic assumption

~ Objects can be represented ﬁ
by a set of images Qrﬁy

( appearan.c.es )'. , 3D object
> For recognition, it is

sufficient to just compare
the 2D appearances. a

> No 3D model is needed.

= Fundamental paradigm shift in the 90’s

B. Leibe

57



RWNTH
Recap: Recognition Using Global Features

e E.g. histogram comparison

Test image \
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Known objects
58

B. Leibe



Recap: Comparison Measures

e Vector space interpretation
> Euclidean distance

e Statistical motivation
> Chi-square
- Bhattacharyya

e Information-theoretic motivation
~ Kullback-Leibler divergence, Jeffreys divergence

e Histogram motivation
> Histogram intersection

e Ground distance e
~ Earth Movers Distance (EMD) II # III
59
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RWTH
Recap: Recognition Using Histograms Ex@r;f:{z,

e Simple algorithm
1. Build a set of histograms H={h.} for each known object

> More exactly, for each view of each object

2. Build a histogram h, for the test image.

3. Compare h, to each h;eH
» Using a suitable comparison measure

4. Select the object with the best matching score
> Orreject the test image if no object is similar enough.

“Nearest-Neighbor” strategy

, 60
B. Leibe
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RWTH
Recap: Multidimensional Representations

e Combination of several descriptors

~ Each descriptor is
applied to the whole image. D

X =2

~ Corresponding pixel values
are combined into one D q

)
T

y
feature vector. )
. Feature vectors are collected Lap S
in multidimensional histogram. °
N <
1.22 e
F0.39| > %‘LM__-_,J
2.78 i

61
B. Leibe



CHEN
. UNIVERSITY
Recap: Colored Derivatives

e Generalization: derivatives along
> Y axis — intensity differences C,
- C, axis — red-green differences
- C, axis — blue-yellow differences C

e Application:
> Brand identification in video

&1 ) monToYA 1AP 13 [} D COULTHARD 7.588
B MSCHUMAGHER 0266

Lo

=

S~

#

—

2

c

2

2

>

S

Q

[

>

o
=

o N K RAIKKONEN 5.741
O

B. Leibe [Hall & Crowley, 2000]
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First Applications Take Up Shape...

Line _
detection

Circle
detection

Binary
Segmen-
tation

Skin color detection Moment descriptors 63

Image Source: http://www.flickr.com/photos/angelsk/2806412807/
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Repetition

 Image Processing Basics
e Segmentation & Grouping

e Object Recognition
~ Global Representations
~ Subspace Representations

e Local Features & Matching
e Object Categorization
e 3D Reconstruction

e Motion and Tracking

B. Leibe

X1
PCA: Distance
TO eigenspace

X3
E 1
c, © E

PCA: Distance IN eigenspace

64
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Recap: Subspace Methods

Subspace methods

L Reconstructive J [ Discriminative}
PCA, ICA, NMF LDA, SVM, CCA
E=E9+E+E , .
representation
classification
regression

65

Slide credit: Ales Leonardis B. Leibe



RWNTH
Recap: Obj. Detection by Distance TO Eigenspace

e For each test image, compute the reprojection error

> An n-pixel image xeR" can be
projected to the low-dimensional
feature space yeR™ by

y =UX

> From yeR™, the reconstruction
of the point is U'y

> The error of the reconstruction is

HX—UTUA‘

X3

e Accept a detection if this error is low.

> Assumption: subspace is optimized to the target object (class).
> Other classes are not represented well = large error.
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Slide credit: Peter Belhumeur B. Leibe



R\WNTH
Recap: Obj Identification by Distance IN Eigenspace

e Objects are represented as coordinates in
an N-dim. eigenspace.

e Example:

~ 3D space with points representing individual objects or a
manifold representing parametric eigenspace (e.g., orientation,
pose, illumination).
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e Estimate parameters by finding the NN in the eigenspace
67

Slide adapted from Ales Leonardis B. Leibe



Computer Vision WS 14/15

Recap: Eigenfaces

Slide credit: Peter Belhumeur

B. Leibe

CHEN
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Recap: Restrictions of PCA

e PCA minimizes projection error

\> 0 @O : 8 "' o
= °° emoq
T essenil
/> % ©%°
PN
Best discriminating // \\
projection ' :
PCA projection

e PCA is ,,unsupervised“ no information on classes is used
e Discriminating information might be lost

Slide credit: Ales Leonardis B. Leibe
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Repetition

 Image Processing Basics
e Segmentation & Grouping
e Object Recognition

e Local Features & Matching

» Local Features -
Detection and Description

» Recognition with Local Features
e Object Categorization
e 3D Reconstruction

e Motion and Tracking

B. Leibe

If(GD) ley(GD)_

ley(O-D) Ij(O-D) i

. . I
Harris & Hessian Hes(1) = LXX Xy

M(o,,0p) = g(al)*|:

detector

Xy yy

b

2.0°2.809 15
scale

Laplacian scale selection

# K>
% AN

L i il

SIFT descriptor

70



Recap: Local Feature Matching Pipeline

1. Find a set of
distinctive key-
points

2. Define a region
around each
keypoint

3. Extract and
normalize the
region content

L0
—
q
(7') Similarity
measure
E I 4. Compute a local
o I‘ | — ||| |||||‘ descriptor from the
> €3 color o8 coler normalized region
= d(f,, fg)<T
>
= 5. Match local
3 descriptors

71

B. Leibe
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Recap: Requirements for Local Features

e Problem 1:
» Detect the same point independently in both images

e Problem 2:
» For each point correctly recognize the corresponding one

We need a repeatable detector!

We need a reliable and distinctive descriptor!

Slide credit: Darya Frolova, Denis Simakov B. Leibe
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Recap: Harris Detector [Harrisss]

e Compute second moment matrix
(autocorrelation matrix)
IE(GD) ley(GD):|

ley(O-D) IS(GD)

1. Image
derivatives

M(o,,0p) = g(o-l)*|:

2. Square of |
derivatives

3. Gaussian
filter g(o;)

4. Cornerness function - two strong eigenvalues
R=det[M(o,,0,)]—cftrace(M (o,,c;))]

=9(1,)9(1y)-[9(L1)F —alg (1) + 91y

5. Perform non-maximum suppression
B. Leibe
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Slide credit: Krystian Mikolajczyk



RWTHAACHEN
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Recap: Harris Detector Responses [Harrisss]

¢

Effect: A very precise
corner detector.

O
—
S~
#
—
n
=
c
=
B
>
g
S
Q
S
@)
@)

Slide credit: Krystian Mikolajczyk



RWTHAACHEN

: JWHHERSITY
Recap: Hessian Detector [seaudets Sercioe
-1/

e Hessian determinant

Hessian(l)z{:XX :Xy}

Xy

det(Hessian(1)) =11, — 1,

In Matlab:
IXX.*IW—(IXy)"Z

Slide credit: Krystian Mikolajczyk
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Recap: Hessian Detector Responses [seaudet7s]

Effect: Responses mainly
on corners and strongly
textured areas.
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Slide credit: Krystian Mikolajczyk
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Recap: Automatic Scale Selection

e Function responses for increasing scale (scale signature)

———— == Yy / .
K p - \
/ > \
- .\
]

s.dhmrTITTTTITI T T T T T T T T T T T T rrrr 1T T T T T T
2.0°3.839 19 2.0 A.El:l. 19,

f(l.i, (x.0))
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Slide credit: Krystian Mikolajczyk B. Leibe



AN ONVERSITY
Recap: Laplacian-of-Gaussian (LoG)

e Interest points:

> Local maxima in scale
space of Laplacian-of-
Gaussian

VA A A A A

Scale AAAA TS
N\ T T
TS

7
N L L S
S A S
S S A S

= List of (x, y, 0)
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B. Leibe

Slide adapted from Krystian Mikolajczyk
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LoG Detector Responses

Recap

Slide credit: Svetlana Lazebnik
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RWTH
Recap: Key point localization with DoG

o Efficient implementation \ [

P A

- Approximate LoG with a \ /
difference of Gaussians (DoG)

e Approach DoG Detector N,
: : i s
~ Detect maxima of difference- o ‘? >
: : > >
of-Gaussian in scale space =

\4

> Reject points with low
contrast (threshold)

\2

\4

> Eliminate edge responses

\4

Candidate keypoints:
list of (x,y,0)

Image source: David Lowe
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RWTHAACHEN
. UNIVERSITY
Recap: Harris-Laplace mikolajczyk ‘01

1. Initialization: Multiscale Harris corner detection

2. Scale selection based on Laplacian
(same procedure with Hessian = Hessian-Laplace)

Harris points

o M

Harris-Laplace points
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Slide adapted from Krystian Mikolajczyk B. Leibe
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Recap: SIFT Feature Descriptor

e Scale Invariant Feature Transform

e Descriptor computation:
~ Divide patch into 4x4 sub-patches: 16 cells

> Compute histogram of gradient orientations (8 reference angles)
for all pixels inside each sub-patch

> Resulting descriptor: 4x4x8 = 128 dimensions

P
# K >
>>k L
S

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004.

82

Slide credit: Svetlana Lazebnik B. Leibe
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Repetition

 Image Processing Basics
e Segmentation & Grouping
e Object Recognition

e Local Features & Matching

» Local Features -
Detection and Description

> Recognition with Local Features
e Object Categorization
e 3D Reconstruction

e Motion and Tracking

B. Leibe

Fitting affine transformations
& homographies

_-
o ---
&~

-

-
-
-
-
-
-
-
-
-
-
-
-

Gen. Hough Transform



Recap: Recognition with Local Features

e Image content is transformed into local features that
are invariant to translation, rotation, and scale

e Goal: Verify if they belong to a consistent configuration

Lo

S

#

—i

7))

=

(e

O

o

S

o

o Local Features,
5 e.g. SIFT

O

84
B. Leibe

Slide credit: David Lowe



Recap: Indexing features

,_____,
T
P —
i
—_—
i
—_—
T

Index each one into
pool of descriptors
from previously seen
images

4 ;\
% 'v
h.) .
3 oo
=
. N
‘ “ ,
[ARRRNNAN
[ARRRNNAN
—
[ARRRNANN
—
[RRNANNY]

o oo Jp SESRREELSST Rt
e

Descfi be

=l Detect or sample

3 features features or

(7)) —>

E List of Associated list :

S s — — ,

= positions, of d- Match to quantized
> scales, dimensional descriptors (visual
% orientations descriptors words)

o

£ . . ..

51| = Shortlist of possibly matching images + feature correspondences

85

Slide credit; Kristen Grauman B. Leibe
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Slide credit: David Nister

RWTHAACHEN
UNIVERSITY

Recap: Fast Indexing with Vocabulary Trees

 Recognition S 2R

Geometric
verification

{7l <%

}; [Nister & Stewenius, CVPR’06]
_ 86
B. Leibe
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RWNTH
Recap: Fitting an Affine Transformation

e Assuming we know the correspondences, how do we get
the transformation?

3

N

— —
|_\

N

B. Leibe



Recap: Fitting a Homography

e Estimating the transformation

LO
=
=
(7') Homogenous coordinates

X, <X EVEEEE 7 F o Matrix notation
= XA X [[x] [h, h, h][x o
S X, X . _
_<>£ Ao B y'|=hy hy halqy X X

X, <X '
= A B, | 7' _h31 h,, 1] X":le'
= YA
a
g « = i Xg +M,Ye +hy, _ hyy Xg + Y +hy

A AT
= hy1 Xg, +hapyg +1 Nyy Xg, +N5,Y5 +1 88
B. Leibe

Slide credit: Krystian Mikolajczyk
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Recap: Fitting a Homography Exerose

e Estimating the transformation

hyy Xg +MoYe + s =X, Ny X =X, N5y =X, =0

h21 Xal + hzzyal + h23 - YA&h31 XBl - yAlh32yBl - YAl =0

XAl (—)XBl

X, €>Xg,

As

Xg, Ve, 1 O

0 0 0 X

Slide credit: Krystian Mikolajczyk

0 0 —XuXs —Xa¥s —Xp||hi 0
Yo, 1 —VYaXs, —YaVs —VYa hy, 0
1 hy, | =
h23
S e | |-
h32
1

Ah =0 o

B. Leibe
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Recap: Fitting a Homography

e Estimating the transformation

e Solution:

> Null-space vector of A
~ Corresponds to smallest

eigenvector
X X l d,
K %, A=UDV' =U| :
Xp, > Xg,
_d91

Slide credit: Krystian Mikolajczyk

B. Leibe

d99_ Vg - V99_

Minimizes least square error
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RWTH
Recap: RANSAC Srerges
6.2/

RANSAC loop:

1. Randomly select a seed group of points on which to
base transformation estimate (e.g., a group of
matches)

2. Compute transformation from seed group
3. Find inliers to this transformation

4. If the number of inliers is sufficiently large, re-
compute least-squares estimate of transformation on
all of the inliers

e Keep the transformation with the largest number of
inliers

91

Slide credit; Kristen Grauman B. Leibe
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Recap: RANSAC Line Fitting Example

e Task: Estimate the best line

Slide credit: Jinxiang Chai B. Leibe
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Recap: RANSAC Line Fitting Example e

e Task: Estimate the best line

°
°
°
o O
°
O ¢ ®
$
°
o o Sample two points
°
B. Leibe

Slide credit: Jinxiang Chai
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Recap: RANSAC Line Fitting Example

e Task: Estimate the best line

Fit a line to them

Slide credit: Jinxiang Chai B. Leibe
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RWNTH
Recap: RANSAC Line Fitting Example

e Task: Estimate the best line
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Slide credit: Jinxiang Chai
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RWNTH
Recap: RANSAC Line Fitting Example

e Task: Estimate the best line

Repeat, until we get a
good result.

Slide credit: Jinxiang Chai B. Leibe
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UNIVEF%II%
Recap: Feature Matching Example

e Find best stereo match within a square search window
(here 300 pixels?)

e Global transformation model: epipolar geometry

before RANSAC after RANSAC

Images from Hartley & Zisserman

97
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Recap: Generalized Hough Transform

e Suppose our features are scale- and rotation-invariant

~ Then a single feature match provides an alignhment hypothesis
(translation, scale, orientation).
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B. Leibe

Slide credit: Svetlana Lazebnik



e Suppose our features are scale- and rotation-invariant

~ Then a single feature match provides an alignhment hypothesis
(translation, scale, orientation).

> Of course, a hypothesis from a single match is unreliable.

> Solution: let each match vote for its hypothesis in a Hough space
with very coarse bins.
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Slide credit: Svetlana Lazebnik B. Leibe
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Application: Panorama Stitching Panoy., e

Q’na Del’no,

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
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[Brown & Lowe, ICCV’03]
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http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

Repetition

 Image Processing Basics

e Segmentation & Grouping

e Object Recognition

e Local Features & Matching el
e Object Categorization ke
i > Sliding Window based Object Detection Boosting SVM
S - Bag-of-Words Approaches
%))
E e 3D Reconstruction __ <=2 i){“”"'" —— T o
9 NS ":: cla:jﬁ;rs with] 1
: : siigiial aBoost o)
28 e« Motion and Tracking E o e
5 “REE
S vilLn =
3 I
S HOG detector Viola-Jones face detector

101

B. Leibe



R UNVERSITY
Recap: Sliding-Window Object Detection

e |f object may be in a cluttered scene, slide a window
around looking for it.

Car/non-car ]
Classifier

e Essentially, this is a brute-force approach with many
local decisions.
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Slide credit; Kristen Grauman B. Leibe
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Recap: Gradient-based Representations

e Consider edges, contours, and (oriented) intensity
gradlents

R

o
N

e Summarize local distribution of gradients with histogram
» Locally orderless: offers invariance to small shifts and rotations
> Contrast-normalization: try to correct for variable illumination
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Slide credit; Kristen Grauman B. Leibe



RWTH
Recap: Classifier Construction: Many Choices...

Nearest Neighbor Neural networks
Berg, Berg, Malik 2005, LeCun Bottou, Bengio, Haffner 1998

Chum, Zisserman 2007, Rowley, Baluja, Kanade 1998
Boiman, Shechtman, Irani 2008, ... .

Boosting Support Vector Machines Randomlzed Forests

E‘/\H

} £

Viola, Jones 2001, Vapnik, Sch'o’lkopf 1.995’ Amit, Geman 1997,
Torralba et al. 2004, | Papageorgiou, Poggio ‘01,| | Breiman 2001,
Opelt et al. 2006, Dalal, Triggs 2005, Lepetit, Fua 2006,

Benenson 2012, ... Vedaldi, Zisserman 2012 Gall, Lempitsky 2009,...
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Slide adapted from Kristen Grauman B. Leibe



RWTH
Recap: Support Vector Machines (SVMs)

e Discriminative classifier
based on optimal
separating hyperplane
(i.e. line for 2D case)

« Maximize the margin
between the positive
and negative training
examples
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B. Leibe

Slide credit: Kristen Grauman



Recap: Non-Linear SVMs

e General idea: The original input space can be mapped to
some higher-dimensional feature space where the
training set is separable:
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Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html



http://www.autonlab.org/tutorials/svm.html

RWTH
Recap: HOG Descriptor Processing Chain

e SVM Classification Object/ Nin-obJect
~ Typically using a linear SVM Linear SYM
?

Collect HOGs over
detection window
?

Contrast normalize over
overlapping spatial cells

~s Image Window

— Ry ———— ot
- T T A
e o T T e e,

L0 t

—

5 Weighted vote in spatial &
) orientation cells
E f

C 3

2 Compute gradients
S 1

@ Gamma compression
2 ¢

S

@)

O

107

Slide adapted from Navneet Dalal



RWTH
Recap: HOG Cell Computation Details

e Gradient orientation voting t
~ Each pixel contributes to localized %F }<
gradient orientation histogram(s) Y

~ Vote is weighted by the pixel’s t
gradient magnitude % ‘%
_ —1(90f ,0f
/ 6 = tan (?E /%
k VA= (D7 + (3

e Block-level Gaussian weighting

~ An additional Gaussian weight is
applied to each 2x2 block of cells

~ Each cell is part of 4 such blocks,
resulting in 4 versions of the
histogram.
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RWNTH
Recap: HOG Cell Computation Details (2)

e Important for robustness: Tri-linear interpolation

> Each pixel contributes to (up to) 4
neighboring cell histograms (21,11) (29, 11)
1, Y1 2, Y1

~ Weights are obtained by bilinear .
interpolation in image space:

h(xl,yl)%w-(l— x—m1>(1_ y—yl)
T2 — I Y2 — 1
h($1392)<—w‘(1_ a?—x1>(y—y1)
Lo — T Y2 — U1
h(ﬂ?zayl)ew'(m_ml)(l_y_y1> ‘
o — I Y2 — 1
r— —
basae) w1 ) (L20)
T2 — 1 Y2 —
» Contribution is further split over

(up to) 2 neighboring orientation bins
via linear interpolation over angles.
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RWTHAACHEN
UNIVERSITY

Recap: Non-Maximum Suppression

After multi-scale dense scan

=z,

Goal

Fusion of multiple detections

|

Clip detection score

Map each detection to 3D
[x,y,scale] space

Y

Apply robust mode detection,
e.g. mean shift

Non-maximum suppression
110

B. Leibe Image source: Navneet Dalal, PhD Thesis
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Recap: AdaBoost

e O
Weak P O o
Classifier1 ~o_--=---""
© o
® 0
Weak

Weights

Increased ® .:
\.r\’.
Weak }.__': O
Classifier 2 q

classifier 3

Final classifier is
combination of the
weak classifiers

Slide credit: Kristen Grauman
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RWNTH
Recap: Viola-Jones Face Detection

“Rectangular” filters

Feature output is difference
between adjacent regions

Value at (x,y) is
sum of pixels

o o o A B
=8 with integral image: any left of (x,y) 1 2
=} sum can be computed ) b
U) o L3
= In constant time Y) — 4
c
= Avoid scaling images >
; scale features directly Integral image Delia_s3)
= for same cost — A+(A+B+C+D)=(A+C+ A+B)
o =D
£
O
@)

: 112
Slide credit: Kristen Grauman B. Leibe [Viola & Jones, CVPR 2001]




RWTH
Recap: AdaBoost Feature+Classifier Selection

e Want to select the single rectangle feature and threshold
that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

Resulting weak classifier:

hg _ { +1 if £(x)> 0,

feature on faces
and non-faces.

0 -1 otherwise

3

%))

= | . For next round, reweight the
c , — 1 (X) —_— .

S t examples according to errors,
S Outputs of a choose another filter/threshold
(3 possible rectangle combo.

£

O

@)
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Slide credit: Kristen Grauman B. Leibe [Viola & Jones, CVPR 2001]



RWNTH
Application: Viola-Jones Face Detector

e I
Train cascade of

classifiers with
AdaBoost

o

= g (|
o

l]EI[IE

Selected features,
thresholds, and weights

e Train with 5K positives, 350M negatives
e Real-time detector using 38 layer cascade

e 6061 features in final layer

e [Implementation available in OpenCV:
http://sourceforge.net/projects/opencvlibrary/]
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Slide credit: Kristen Grauman B. Leibe


http://sourceforge.net/projects/opencvlibrary/
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Repetition
. . O(N) @ Object H Bag of “words”
 Image Processing Basics ©
. . )
e Segmentation & Grouping

e Object Recognition

el

* Local Features & Matching Bag-of-words repeseation
e Object Categorization

> Sliding Window based Object Detection

» Part-based Approaches L
e 3D Reconstruction Activation histogram

. . O(N?) = i
e Motion and Tracking &/ \® N
@ | ®
&

N AR § B

Implicit Shape Model 115
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RWTHAACHEN
. g . i . UNIVERSITY
Recap: Identification vs. Categorization

e Recognize ANY cow

N ]
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Recap: Visual Wq

e Quantize the
feature space into
“visual words”

e Perform matching
only to those visual
words.

all 44 ¢

h
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S[es AN > B
wo/s AN =
coLl o
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Exact feature matching — Match to same visual word

Slide adapted from Kristen Grauman Figure from Sivic & Zisserman, ICCV 2003
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Recap: Bag-of-Word Representations ?BOW

Object —— Bag of “words”
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B. Leibe Source: ICCV 2005 short course, Li Fei-Fei



RWNTH
Categorization with Bags-of-Words

e Compute the word
activation histogram for
each image.

Let each such BoW
histogram be a feature
vector.

Use images from each
class to train a classifier
(e.g., an SVM).

Violins
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Slide adapted from Kristen Grauman B. Leibe
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RWNTH
Recap: Advantage of BoW Histograms

e Bag of words representations make it possible to
describe the unordered point set with a single vector
(of fixed dimension across image examples).

-

* Provides easy way to use distribution of feature types

with various learning algorithms requiring vector input.

Slide credit; Kristen Grauman B. Leibe
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CHEN
UNIVERSITY
Limitations of BoW Representations

121

e The bag of words
removes spatial
layout.

e This is both a strength
and a weakness.

e Why a strength?

e Why a weakness?
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Recap: Part-Based Models

e Fischler & Elschlager 1973

e Model has two components

> parts
(2D image fragments) LEFT | A6
. structure EDOE

(configuration of parts)
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Recap Implicit Shape Model - Representation

L2

P

Va0

s
I\ s

p—,
L‘

/|

\

“

Training images
(+reference segmentation)

e Learn appearance codebook
» Extract local features at interest points
> Clustering = appearance codebook

e Learn spatial distributions
> Match codebook to training images
» Record matching positions on object

B. Leibe

EEINEEEAARRAAREEE...
SRS ALARLARYRA DY
Fryrrrrrv2ysesgr--
B i 3 e e P e e e e e A P i - - -

KXXRARKEXXKKXR

,
L e IR

y ? y .
- NIREHE W iy L

X
Spatial occurrence distributions
+ local figure-ground labels 123



R ONVERSITY
Recap: Implicit Shape Model - Recognition

Interest Points Matched Codebook Probabilistic
~__Entries Voting

g E

A o

“Generalized Hough Transform . '@- A
with backprojection” — 7

o 3D Voting Space

S (continuous)

N

=

2

>

@

o Backprojected Backprojection

§ Hypotheses of Maxima

124
[Leibe, Leonardis, Schiele, SLCV’04; [JCV’08]




Recap: Scale Invariant Voting

e Scale-invariant feature selection
» Scale-invariant interest points
- Rescale extracted patches
> Match to constant-size codebook

e Generate scale votes

- Scale as 34 dimension in voting space

7o)

d

(‘7') Lyote — Limg — ﬂ30@0('5-2'.-:rn,g/ '5000) R

E Yvote —  Yimg — yocc(si-:rng/Socc) sl o e. Search
@) i i i . .

(% Svote  — (52'.-171g/5000) . o. © window
e —©

= - Search for maxima in 3D voting space L

Q.

S

@)

O
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X world point RM'H
Repetition AN

e Image Processing Basics W Tl T
Epipolar geometry

e Segmentation & Grouping
e Object Recognition
e Local Features & Matching

e Object Categorization

e 3D Reconstruction

> Epipolar Geometry and Image
Stereo Basics rectification

> Camera Calibration &
Uncalibrated Reconstruction

> Structure-from-Motion

e Motion and Tracking

\ S ;
i Bk . Al

- e
e iyl

B. Leibe Dense stereo matching 6
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Recap: What Is Stereo Vision?

e Generic problem formulation: given several images of
the same object or scene, compute a representation of
its 3D shape -
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B. Leibe

Slide credit: Svetlana Lazebnik, Steve Seitz



RWNTH
Recap: Depth with Stereo - Basic Idea

e Basic Principle: Triangulation

> Gives reconstruction as intersection of two rays

> Requires
- Camera pose (calibration)
- Point correspondence
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Slide credit: Steve Seitz B. Leibe



Recap: Epipolar Geometry

e Geometry of two views allows us to constrain where the
corresponding pixel for some image point in the first
view must occur in the second view.

epipolar line epipolar line

e Epipolar constraint:

. Correspondence for point p in I1 must lie on the epipolar line /’
in IT’ (and vice versa).

» Reduces correspondence problem to 1D search along conjugate

epipolar lines. 129
B. Leibe
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RWTH
Recap: Stereo Geometry With Calibrated Cameras

X world point

R
e Camera-centered coordinate systems are related by

known rotation R and translation T:

X' =RX+T

B. Leibe
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Slide credit: Kristen Grauman



Recap: Essential Matrix

X' -(TxRX)=0
X'-(Tx RX)=0
Let E=TxR . j -1 .
XTEX =0 |

e This holds for the rays p and p’ that
are parallel to the camera-centered -
position vectors X and X’, sowe have: | Pp° Ep =0

* E is called the essential matrix, which relates
corresponding image points [Longuet-Higgins 1981]

B. Leibe
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RWTH
Recap: Essential Matrix and Epipolar Lines

T Epipolar constraint: if we observe
P Ep=0 point p in one image, then its
position p’ in second image must
satisfy this equation.

!,l = Ep is the coordinate vector represen-
ting the epipolar line for point p

(i.e., the line is given
by: [I’'x=0)

[ = ET p' IS the coordinate vector representing
the epipolar line for point p’
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Slide credit; Kristen Grauman B. Leibe



Recap: Stereo Image Rectification

e In practice, it is
convenient if image
scanlines are the
epipolar lines.

e Algorithm A’

- Reproject image planes onto a common
plane parallel to the line between optical
centers

> Pixel motion is horizontal after this transformation

> Two homographies (3x3 transforms), one for each
input image reprojection
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Slide adapted from Li Zhang C. Loop & Z. Zhang, Computing Rectifying Homographies for Stereo Vision. CVPR’99



http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

RWTH
Recap: Dense Correspondence Search

q“‘"}aom ABRATIAM T. INCOLN, President of Lnltcd States. =g

e For each pixel in the first image
> Find corresponding epipolar line in the right image

» Examine all pixels on the epipolar line and pick the best match
(e.g. SSD, correlation)

> Triangulate the matches to get depth information

e This is easiest when epipolar lines are scanlines
= Rectify images first

adapted from Svetlana Lazebnik, Li Zhang
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Recap: Effect of Window Size

W =20

Want window large enough to have sufficient intensity
variation, yet small enough to contain only pixels with
about the same disparity.
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Figures from Li Zhang

Slide credit; Kristen Grauman B. Leibe
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 Image Processing Basics c
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e Segmentation & Grouping calibration
e Object Recognition SN
e Local Features & Matching Triangulation
e Object Categorization .
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Recap: A General Point

e Equations of the form

AX =0

e How do we solve them? (always!)
- Apply SVD

SVD B I sl
l d11 Vii Vi
A=UDV' =U : :

dNN ] _VNl o M

Singular values Singular vectors

> Singular values of A = square roots of the eigenvalues of ATA.
> The solution of Ax=0 is the nullspace vector of A.

> This corresponds to the smallest singular vector of A.
B. Leibe
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Recap: Camera Parameters

e Intrinsic parameters
~ Principal point coordinates m, f s pl [a s x
» Focal length K = m, = a, Y,
- Pixel magnification factors { J{ } { }
> Skew (non-rectangular pixels)
> Radial distortion

e Extrinsic parameters

= CCD Camera with square pixels: 10 DoF

= General camera: 11 DoF 138
B. Leibe

L0

§ . Rotation R

(é) > Translation t

= (both relative to world coordinate system)

kS

= ¢ Camera projection matrix P=K|[R|t]
= = General pinhole camera: 9 DoF

£

@)
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Recap: Calibrating a Camera

Goal

e Compute intrinsic and extrinsic
parameters using observed camera
data.

Main idea
e Place “calibration object” with

§ known geometry in the scene

=% ¢ Get correspondences

= « Solve for mapping from scene to

> image: estimate P=P, .P_., 4l
- 7%

= 7
S =

139

; )
Slide credit; Kristen Grauman B. Leibe P



RWTH
Recap: Camera Calibration (DLT Algorithm)
00 X{ -yX]
X; 00 —xX] [P
P, |=0 Ap=0
0" X, —¥.X; [\Ps)

n

T T T
X, 0 —=xX,
e P has 11 degrees of freedom.

e Two linearly independent equations per independent
2D/3D correspondence.

e Solve with SVD (similar to homography estimation)
> Solution corresponds to smallest singular vector.

e 51 correspondences needed for a minimal solution.
140
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Recap: Triangulation - Lin. Alg. Approach fer® )
-3/

ﬂ,lxl :P]_X X1XP1X:O [X]_X]P]_X:O
LX,=P,X  x,xPX=0 [X,]P,X=0

e Two independent equations each in terms of
three unknown entries of X.

e Stack equations and solve with SVD.

e This approach nicely generalizes to multiple cameras.
141
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Recap: Epipolar Geometry - Calibrated Case

Slide credit: Svetlana Lazebnik

The vectors x, [, and Rx’ are coplanar

B. Leibe

Camera matrix: [RT | -RT{]
Vector x’ in second coord.
system has coordinates Rx’ in
the first one.

X
[
o \ t ‘
\B/
Camera matrix: [1]|0]
X=(u,v,w, 17
X =(u,v,w)T"

142



Recap: Epipolar Geometry - Calibrated Case

—

0 ﬁ\e ,
x-[tx(Rx)]=0 mE) x'Ex'=0 with E=[t]R

8

Essential Matrix
(Longuet-Higgins, 1981)
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Slide credit: Svetlana Lazebnik B. Leibe



RWTH
Recap: Epipolar Geometry - Calibrated Case

X

[ I

e ef
(@) ' o’

x-[tx(Rx)]=0 mE) x'Ex'=0 with E=[t]R

e E x’ is the epipolar line associated with x’ ([ = E x’)
e E7x is the epipolar line associated with x (I’ = E"x)
e Ee’=0 and E’e=0

e E is singular (rank two)

e E has five degrees of freedom (up to scale)
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Slide credit: Svetlana Lazebnik B. Leibe



RWTH
Recap: Epipolar Geometry - Uncalibrated Case

X

e ef
O I O.’

e The calibration matrices K and K’ of the two cameras
are unknown

e We can write the epipolar constraint in terms of
unknown normalized coordinates:

L'EX =0 Xx=KX, X =K%

O
—
S~
#
—
n
=
c
=
B
>
g
S
Q
S
@)
@)

145

Slide credit: Svetlana Lazebnik B. Leibe



RWTHA/
Recap: Epipolar Geometry - Uncalibrated Case

X

g AT Y T r - . —T r—1
3 XK EX'=0 mm) x FX'=0 with F=K EK
: &4

0 X =KX

?, , Iy Fundamental Matrix

= X = K (Faugeras and Luong, 1992)

S

S

146

Slide credit: Svetlana Lazebnik B. Leibe



RWTH
Recap: Epipolar Geometry - Uncalibrated Case

X

[ I

e ef
(@) ' o’

R'EX=0 mm) X Fx'=0 with F=KTEK'™
e Fx’ is the epipolar line associated with x’ (I = F x’)
e FTx is the epipolar line associated with x (I’ = FTx)

e Fe’=0 and Fe=0

e Fis singular (rank two)
 F has seven degrees of freedom

B. Leibe

O
—
S~
#
—
n
=
c
=
B
>
g
S
Q
S
@)
@)

147
Slide credit: Svetlana Lazebnik



RWNTH
Recap: The Eight-Point Algorithm &

€6
(Fu 1
x=(Uu,v, )T, x’=@’ v, 17 Fi
, Fig
Fin Fia Fi)\(u Fy,
Hl —
(u} v 1) Fo P Py v |=0 ‘ (::‘m’,, wv', u,vu’ v, v, ul 0 )| Fog | =0
Fyo Fy Fsz)\ 1 Fys
- F5
_ | FE F39
T VAV VA VAT K VAV VAR VIV | Fll Py
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B. Leibe
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RWTH
Recap: Normalized Eight-Point Alg.  &e.

XQpn
@I’ClS@ 6. 7
1. Center the image data at the origin, and scale it so the
mean squared distance between the origin and the data
points is 2 pixels.

2. Use the eight-point algorithm to compute F from the
normalized points.

3. Enforce the rank-2 constraint using SVD. Set d_, to
SYD d,, vV, - V5|~ zeroand
E-UDVT =U . : reconstruct F

4. Transform fundamental matrix back to original units: if
T and T’ are the normalizing transformations in the two
images, than the fundamental matrix in original
coordinatesis T"F T"’.
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Slide credit: Svetlana Lazebnik B. Leibe [Hartley, 1995]
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Recap: Comparison of Estimation Algorithms

Normalized 8-point

Slide credit: Svetlana Lazebnik

8-point Nonlinear least squares
Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel
Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel
Brteibe




Recap: Epipolar Transfer

e Assume the epipolar geometry is known

e Given projections of the same point in two images, how
can we compute the projection of that point in a third

image?
o ® ° ><
=
” X1 X2 | X3 |
= 31 32
S
S — ET
. I3, = FlisX
2 — ET
E l;, = Flys X,
o
=
O
@)
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Slide credit: Svetlana Lazebnik B. Leibe
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Repetition

Structure-
N\ Xs from-Motion

 Image Processing Basics

e Segmentation & Grouping projective /-----

e Object Recognition ambiguity

e Local Features & Matching 3 :
e Object Categorization e - > K

i Affine factorization
=% ¢ 3D Reconstruction N Points
< e e
” - Epipolar Geometry and lesssenes
= Stereo Basics Projective g SEEEREE
§ . Camera Calibration & factorization g)|:1:1:::!

P> Uncalibrated Reconstruction R EERT
= - Structure-from-Motion =0

,CEL . . layl?=1

=| * Motion and Tracking Euclidean

B. Leibe upgrade 153



Recap: Structure from Motion

e Given: mimages of n fixed 3D points

Xij = Pi X, =1L ...,m, j=1 ...,n

e Problem: estimate m projection matrices P, and
n 3D points X; from the mn correspondences x;
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Slide credit: Svetlana Lazebnik B. Leibe



RWTH
Recap: Structure from Motion Ambiguity

e |f we scale the entire scene by some factor k and, at the
same time, scale the camera matrices by the factor of
1/k, the projections of the scene points in the image
remain exactly the same.

e More generally: if we transform the scene using a

transformation Q and apply the inverse transformation
to the camera matrices, then the images do not change

x =PX = (PQ HQX
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Slide crediﬁ: Svetlana Lazebnik
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Recap: Hierarchy of 3D Transformations

Projective
15dof

Affine
12dof

Similarity
7dof

Euclidean
6dof

At Preserves intersection
VT y and tangency
A T Preserves parallellism,
o’ 1 volume ratios
SR t Preserves angles, ratios
o’ 1 of length
R t
Preserves angles,
0" 1 lengths

e With no constraints on the camera calibration matrix or on the
scene, we get a projective reconstruction.

 Need additional information to upgrade the reconstruction to
affine, similarity, or Euclidean.

Slide credit: Svetlana Lazebnik

B. Leibe
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RWTH
Recap: Affine Structure from Motion

e Let’s create a 2m x n data (measurement) matrix:

)A(11 )A(12 )A(ln Al
Xoo Xop oo X A
D— 21 22 ) 2n | _ :2 [X1 X2 Xn]
A A . A . Points (3 x n)
_Xml Xm2 an_ _Am_
Cameras
(2m x 3)

e The measurement matrix D = MS must have rank 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. IJCV, 9(2):137-154, November 1992.

B. Leibe
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http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
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Recap: Affine Factorization

e Obtaining a factorization from SVD:

2m D

Slide credit: Martial Hebert

n
3 < \-.
< i < I

Possible decomposition:

M=UW"” S=W/"V’

x

This decomposition minimizes
|ID-MSJ?

)8



Recap: Projective Factorization

Z11X11 LK1 o L Xy I:)1
£51X51 LygKoy o0 LynXy, Pz
D= . = X X, o X
: . Points (4 x n)
_Zmlxml ZmZXmZ Zmnxmn_ _Pm_
Cameras
(3m x 4)

D = MS has rank 4

e |If we knew the depths z, we could factorize D to
estimate M and S.

e If we knew M and S, we could solve for z.

e Solution: iterative approach (alternate between
above two steps).
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Slide credit: Svetlana Lazebnik B. Leibe



RWTH
Recap: Sequential Projective SfM

e [nitialize motion from two images
using fundamental matrix Points

v

e |nitialize structure " e o o e o e s
e For each additional view: P D
> Determine projection matrix 8 RN EE
of new camera using all the % : : : : : : : :
known 3D points that are Ul e e eeeee o
= visible in its image - e 00 e e e
3 calibration $e090 8000
(é) > Refine and extend structure: ' reere
= compute new 3D points,
2 re-optimize existing points
T that are also seen by this camera -
3 triangulation
§ e Refine structure and motion: bundle adjustment

160

Slide credit: Svetlana Lazebnik B. Leibe



RWTH
Recap: Estimating the Euclidean Upgrade

e Goal: Estimate ambiguity matrix C b - I><-

~ Orthographic assumption:

M — MC, S —C-1S

1) Image axes are perpendicular
a,-a,=0

o 2) Scale is 1

§ jay|? = |ay|2= 1

N . . .

= ¢ This can be converted into a system of 3m equations:
=

=) (A A (AT T

= d; -, =0 a,CC a,=0 with L=CC'
o ) |é‘i1| —1 4 aﬁCCT a, =1, i=1..m this translates to
o

a A T T T

3 a,|=1 8,CC'a, =1 ALA =1
@)

: 161
Slide adapted from S. Lazebnik, M. Hebert B. Leibe



Recap: Bundle Adjustment

e Non-linear method for refining structure and motion
e Minimizing mean- square reprOJectlon error

E(P,X) =3 3 D(x,, PX, )

=1 j=1
X
<
3
(9))]
; W
(e
(7))
= 4 o h‘\
[P ] N
= & &
- P2 162

Slide credit: Svetlana Lazebnik B. Leibe



Repetition .| Motion field

 Image Processing Basics
[213319; zfxly] [u] _ _[zfxft]

e Segmentation & Grouping Ylely Ylyly || v > Iyl
ATA ATb
e Object Recognition Lucas-Kanade optical flow

.
IS
n

e Local Features & Matching

e Object Categorization

A oy
)1 VY I
\ \
11 \ \ 1l \ \
11 \ N 11 \ \
1
II M) 1 \
P N p N
AY AY
\
[ \ \ 1o \
1 \ ! \
1 \ 1 \
1 \ 1 \
AY AY
1 1 \ \ 1 1 \ A
1 1 >
1 1
i i
1 1
1 1
) 1

e 3D Reconstruction
i MOtiOI’\ and TI'aCking Gaussian pyramid Gaussian pyramid
. Motion and Optical Flow Coarse-to-fine estimation
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Recap: Estimating Optical Flow

./ Q *
N o
o—> i (@) .
(X,y,t-1) 1(X,y,1)

e Given two subsequent frames, estimate the apparent
motion field u(x,y) and v(x,y) between them.

e Key assumptions

» Brightness constancy: projection of the same point looks the
same in every frame.

> Small motion: points do not move very far.
» Spatial coherence: points move like their neighbors.
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Slide credit: Svetlana Lazebnik B. Leibe



Recap: Lucas-Kanade Optical Flow &

e Use all pixels in a KxK window to get more equations.
e Least squares problem:

- I:(p1) Iy(p1) | - Ii(p1) |
ICB(pZ) Iy(PZ) U ] — _ [t(pZ) A d=0b
: : v 5 25x2 2x1 25x1
| Ix(p2s) Iy(p2s) | i (p2s) |

e Minimum least squares solution given by solution of
(ATA) d= Alb

Recall the

2X2 2%x1 2x1 .
Harris detector!

SLly SLIy||uw|_ | Sl ]
SILly Sy || v |~ | STyl

AT A Alp

B. Leibe
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Recap: Iterative Refinement SXerges
6.4/

e Estimate velocity at each | fﬁ() o
pixel using one iteration of v,
LK estimation. | :

e Warp one image toward the ) e e
other using the estimated v [
flow field. N\ o

e Refine estimate by repeating : g
the process. : AG -1, 1

Initial guess: do
Estimate: d3 = do + d

e |terative procedure
~ Results in subpixel accurate localization.
» Converges for small displacements.

ol J

A fi(z — d3) = fa(=)
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Computer Vision WS 14/15

RWTHAACHEN
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Recap: Coarse-to-fine Estimation

1
A\
ll\\

L NN
I’ ! [N
1 VoA
[ N
L} \ \
1 \ \
[ \ \
[ \
- \ \
1 \ \
! \
‘ N
\
\
£ \
1 ! \ AN
1 ! \ \
1 ! \ \
f 1 \ \
1 1 \ \
1 \ AY
I, ! \ N
! \
! \
! \
1 \
i \
' \
]
1
' T )

[ I \
i 1 \

Gaussian pyramid of image 1

Slide credit: Steve Seitz

u=1.25 pixels

u=2.5 pixels

u=>5 pixels

u=10 pixels

Gaussian pyramid of image 2
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Recap: Coarse-to-fine Estimation e, e

L
II)\ I)\\
1 l\\ 11\
\ 1

- .——, Runiterative L-K _-

lWarp & upsample

- —— Run iterative L-K +—;

Computer Vision WS 14/15

Gaussian pyramid of image 1

Gaussian pyramid of image 2

168

Slide credit: Steve Seitz B. Leibe



RO INVERSITY
Any Questions?

So what can you do with all of this?
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Computer Vision WS 14/15
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Articulated Multi-Person Tracking

e Multi-Person tracking
» Recover trajectories and solve data association

e Articulated Tracking
» Estimate detailed body pose for each tracked person
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[Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV’08]




RWNTH
Semantic 2D-3D Scene Segmentation

172
B. Leibe [G. Floros, B. Leibe, CVPR’12]




RWTH
Integrated 3D Point Cloud Labels
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Mining the World’s Images...
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RWTH
Automatic Landmark Building Discovery

B ;

6476 259 317 789 7804

A \\d 5
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RWNTH
Mobile Visual Search & Mobile AR

Aachen Catl ,

e Tourist Guide Scenario
> Simply point the camera to any object/building of interest.
> Images are transmitted to a central server for recognition.

> Object-specific information is sent back to be displayed on the
mobile phone.

> Mobile Augmented Reality fusion of graphics with real video. ;4
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Efficient Large-Scale Localization
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B. Leibe [T. Sattler, B. Leibe, L. Kobbelt, ICCV’11]




RO INVERSITY
Any More Questions?

Good luck for the exam!
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