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Announcements (2)

¢ Feedback to the lecture evaluation
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Repetition

¢ Image Processing Basics
» Image Formation
» Binary Image Processing
» Linear Filters

.~ Edge & Structure Extraction . -
Pinhole camera model

* Segmentation & Grouping .
« Object Recognition S,

— |-

Lenses, focal length, aperture

¢ Local Features & Matching
¢ Object Categorization

¢ 3D Reconstruction

¢ Motion and Tracking

Color sensors

B. Leibe
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Announcements

e Exam
» 1t Date: Monday, 23.02., 13:30 - 17:30h
> 2nd Date: Thursday, 26.03., 09:30 - 12:30h
> Closed-book exam, the core exam time will be 2h.

» Admission requirement: 50% of the exercise points or passed
test exam

We will send around an announcement with the exact starting
times and places by email.

v

¢ Test exam
» Date: Thursday, 05.02., 09:15 - 10:45h, room UMIC 025
» Core exam time will be 1h
» Purpose: Prepare you for the questions you can expect.
» Possibility to collect bonus exercise points!

B. Leibe

TWTHACHE
Announcements (3)

¢ Today, I’ll summarize the most important points from
the lecture.
» It is an opportunity for you to ask questions...
» ..or get additional explanations about certain topics.
» So, please do ask.

¢ Today’s slides are intended as an index for the lecture.
» But they are not complete, won’t be sufficient as only tool.

» Also look at the exercises - they often explain algorithms in
detail.

B. Leibe
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RWTH ACHET
Recap: Pinhole Camera
¢ (Simple) standard and abstract model today

» Box with a small hole in it
» Works in practice

image

plane

virtual
image

N pinhole

ource: Forsvth & Ponce B. Leibe




RWTHAACHE RWTHAACHE

Recap: Focus and Depth of Field Recap: Field of View and Focal Le/ngth

. ¢ As f gets smaller, image //
f Thin lens: scene ;
= N ! sce becomes more wide angle /
- az | points at distinct ; ;
A 3% S g depth in f » More world points project
: | epths come in focus onto the finite image plane
Tt Axi ) PN at different image
A sgPr PR - planes. Field of view
o e —— . (Real camera lens A
: B systems have greater T a
“circles of confusion” depth of field.) ¢ As f gets larger, image fy
becomes more telescopic = ----* e

¢ Depth of field: distance between image planes where

. » Smaller part of the world
blur is tolerable P Wt

projects onto the finite
image plane
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Source: Shapiro & Stockman B. Leibe B. Leibe

8
from R. Duraiswami}

RWTHACHEN

Recap: Color Sensing in Digital Cameras Repetition

Bayer grid

* Image Processing Basics
» Image Formation
» Binary Image Processing
» Linear Filters
» Edge & Structure Extraction

Estimate missing compo-
nents from neighboring
values (demosaicing)

¢ Segmentation & Grouping

e Object Recognition \y:' % : E/ D

A B=(ASEI®E

¢ Local Features & Matching Morphological Operators
¢ Object Categorization
* 3D Reconstruction

l —— Incoming Light

Filter Layes

Sensor Array

:

¢ Motion and Tracking

Computer Vision WS 14/15
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Connected Components

9 10

B. Leibe ource; Steve Seit;

B. Leibe

RWTHA/CHEN

Recap: Binary Processing Pipeline Hriggss, Recap: Robust Thresholding
—— emO

¢ Convert the image into binary form

» Thresholding s .
frequency Ideal histogram,
light object on
¢ Clean up the thresholded image ablect dark background
» Morphological operators H
grey level
=N e« Extract individual objects 10
S » Connected Components Labelin: g
% P i P frequency] Actual observed
E E histogram with
§ o Describe the objects E noise
5 > Region properties 3 .
=3 =3
g 3 plcl velue Assumption here:
8 8 only two modes "
B. Leibe Image Source: D Kim et al,, Cytometry 35(1), 1909 ource: Robvn Owen B. Leibe




RWTH G
Recap: Global Binarization [Otsu’79] Exe,;;‘;
11

» Precompute a cumulative grayvalue histogram h.
* For each potential threshold T
1.) Separate the pixels into two clusters according to T.

2.) Compute both cluster means £4(T) and 1,(T).
Look up n;, n,in h

nl(T) = ‘{I(Z,y) < T}lv nQ(T) = ‘{I(Iay) > T}l
3.) Compute the between-class variance Opuyee, (T)
hotsween(T) = ma(Tna(T) [ (T) — (T

¢ Choose the threshold that maximizes
T = arg mj@x [O—Zetween (T)}

Computer Vision WS 14/15

B. Leibe

RWTH CHE
Recap: Dilation
¢ Definition oy [—
> “The dilation of A by B is the set _— 1
of all displacements z, such that = '
(B), and A overlap by at least one Bl
elﬁment". A A®B,
> ((B), is the mirrored version of B, o
shifted by z)
a o |e
5 o Effects -
% » If current pixel z is foreground, set all B, M
5 pixels under (B), to foreground. I
; = Expand connected components
H = Grow features
S| =Fillholes ASE,
B. Leibe Image Source: R.C, Gonzales & R.E Wulz
RWTH ACHET
Recap: Opening
¢ Definition I
» Sequence of Erosion and Dilation _ N
A°B=(ASB)®B o ‘ o

o Effect
» A ° Bis defined by the points that
are reached if B is rolled around
inside A. pA A

= Remove small objects,
keep original shape. s

=R

A B=(48HSB
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B. Leibe

lmage Source: R.C, Gonzales & R.E, Wood:

RWTH/CET
Recap: Background Surface Fitting

¢ Document images often contain a smooth gradient

=Try to fit that gradient with a polynomial function
' ‘ )

av |

Fitted surface

Computer Vision WS 14/15

Shading compensation

Binarized result

ource: 5. Lu & C. Tan, ICDAR'C; B. Leibe

RWTH CHE
Recap: Erosion
¢ Definition
> “The erosion of A by B is the set ; I
of all displacements Z, such that ° |
(B), is entirely contained in A”. B | -
A ASB
o Effects
s » If not every pixel under (B), is 1L
s foreground, set the current pixel z N\
g to background. 408
H = Erode connected components B, ASRB,
£ = Shrink features
g = Remove bridges, branches, noise
g
8
) 16
B. Leibe Jmage Source; R.C, Gonzales & R.E, Wood

Recap: Closing

¢ Definition

Il
» Sequence of Dilation and Erosion I—w—L

A+B=(A®B)OB = ¥
J 1
/7 (:
) |
o Effect | = L
» A - Bis defined by the points that (
A B-(6mEs

are reached if B is rolled around

on the outside of A.
= Fill holes,

keep original shape.

5 / LAY
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lmage Source: R.C, Gonzales & R.E, Wood:

B. Leibe
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RWTH/CET
Recap: Connected Components Labeling

¢ Process the image from left to
right, top to bottom:
1.) If the next pixel to process is 1

i.) If only one of its neighbors
(top or left) is 1, copy its label.

ii.) If both are 1 and have the
same label, copy it.

é iii.) If they have different labels

— Copy the label from the left.
— Update the equivalence table.
iv.) Otherwise, assign a new label.
* Re-label with the smallest of equivalent g{ 2, 71
labels % 6, 8}
19
ide credit; J, Neira B. Leibe
Recap: Moment Invariants Exerges

* Normalized central moments
Hpq pP+q
= =——+1
1 =
* From those, a set of invariant moments can be defined
for object description.
A =N+,
& =175 _7702)2 + 477121
&= (173 _37712)2 + (3171~ 7703)2
By = (1750 + 7712)2 + (10 + 7703)2

* Robust to translation, rotation & scaling,
but don’t expect wonders (still summary statistics).

pa

(Additional invariant

moments ¢, ¢, ¢

can be found in the
literature).

B. Leibe
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Recap: Effect of Filtering

* Noise introduces high frequencies.

To remove them, we want to apply a /J‘\_ ,_JL

“low-pass” filter. T

The ideal filter shape in the

frequency domain would be a box.
But this transfers to a spatial sinc,
which has infinite spatial support.

¢ A compact spatial box filter i
transfers to a frequency sinc, which
creates artifacts. 5

¢ A Gaussian has compact support in
both domains. This makes it a
convenient choice for a low-pass
filter.

B. Leibe
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Recap: Region Properties

» From the previous steps, we can

obtain separated objects.

* Some useful features can be

extracted once we have connected

components, including

» Area

» Centroid

» Extremal points, bounding box
Circularity
Spatial moments

v

v

B. Leibe

Repetition

* Image Processing Basics
» Image Formation
» Binary Image Processing
» Linear Filters
» Edge & Structure Extraction

¢ Segmentation & Grouping
¢ Object Recognition

¢ Local Features & Matching
¢ Object Categorization

¢ 3D Reconstruction

¢ Motion and Tracking

B. Leibe

~

Gaussian Smoothing

Derivative operators

- e
o

Gaussian/Laplacian pyramid

22
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Recap: Gaussian Smoothing

¢ Gaussian kernel

_ 1 _ :522+§;2

= e o
2mo?

¢ Rotationally symmetric
¢ Weights nearby pixels more
than distant ones

» This makes sense as
‘probabilistic’ inference
about the signal

T

¢ A Gaussian gives a good model
of a fuzzy blob

B. Leibe

24

lmage Source: Forsvth & Pong
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Recap: Smoothing with a Gaussian

¢ Parameter o is the “scale” / “width” / “spread” of the
Gaussian kernel and controls the amount of smoothing.

‘.

.

M= l/q }
for sigma=1:3:10

h = fspecial ('gaussian', fsize, sigma);
out = imfilter(im, h);
imshow (out) ;
pause;
end

ide credit: Kristen Grauman B. Leibe

Recap: The Gaussian Pyramid

Low resolution

High resolution 27

B. Leibe Source; Irani & Basr]
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|
. . " fl
1st derivative | I\
P\
I Maxima of first
“ || " derivative
© 1 I 3 "
| | ‘ X
@ | O R o ) |
. | | [
i | | 2nd derivative | |
I B “zero crossings” — | __— "
- —1T I/
ol second 1
derivative ! |

Recap: Resampling with Prior Smoothing

256 x 256 128 x 128 64 x 64 32 x 32 16 x 16

LS U L L TR R - Artifacts!
LAY -OICIIII L] -

no
smoothing

Gaussian

o=1
LS.
nnnu‘_
Gaussian
ag=2

* Note: We cannot recover the high frequencies, but we
can avoid artifacts by smoothing before resampling.

B. Leibe

Computer Vision WS 14/15

2
Image Source: Forsvth & Ponc

Recap: Median Filter

* Basic idea
» Replace each pixel by the Tz o0
median of its neighbors. 10]1°
23(90|27
> 2 Sort
Median value ___| 33]31]30] l
* Properties 10 15 20 23 30 31 33 90
» Doesn’t introduce new pixel l1ol15(20 I Replace
values [23]27]27]
» Removes spikes: good for ;;x 31 m]

impulse, salt & pepper noise
» Nonlinear

~ Edge preserving

Computer Vision WS 14/15

ide credit; Kristen Grauman B. Leibe

Recap: 2D Edge Detection Filters

A=

see
E“'e’cise 25
.51

Laplacian of Gaussian

Gaussian Derivative of Gaussian |
2,2 P f
1 _u4e F) > il
ho(u,v) = ——=e 202 ——ho(u,v) V<ho (u, v)
2702 dx

« V2is the Laplacian operator:
20 9% L P
Vef = 922 + dy?
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ide credit; Kristen Grauman LA
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Repetition

¢ Image Processing Basics
» Image Formation
» Binary Image Processing
» Linear Filters
» Edge & Structure Extraction

Canny edge detector

* Segmentation & Grouping

. - Ch hil
¢ Object Recognition amfer mate e

e Local Features & Matching ‘
¢ Object Categorization
¢ 3D Reconstruction

¢ Motion and Tracking

S |

Hough transform for lines

Hough transform for circles

B. Leibe

Recap: Edges vs. Boundaries

A e
S

Edges useful signal to
indicate occluding
boundaries, shape.
Here the raw edge ..but quite often boundaries of interest
output is not so bad... are fragmented, and we have extra
< o “clutter” edge points. 3
lide credit; Kristen Grauman
RWTH ACHET

Recap: Fitting and Hough Transform

L 2%

Given a model of interest,
we can overcome some of]|
the missing and noisy
edges using fitting tech-
niques.

With voting methods like
the Hough transform,
detected points vote on
possible model parame-
ters.

ide credit; Kristen Grauman
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RWTH/ACHE

Srergee
Cis,
€26

Recap: Canny Edge Detector

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
> Thin multi-pixel wide “ridges” down to single pixel width
4. Linking and thresholding (hysteresis):
» Define two thresholds: low and high

» Use the high threshold to start edge curves and the low
threshold to continue them

e MATLAB:
>> edge (image, ‘canny’) ;
>> help edge

adapted from D. Lowe, L. Fei-Fel

Recap: Chamfer Matching

¢ Chamfer Distance
» Average distance to nearest feature

. 1
Denumser(To 1) = erhm
teT

» This can be computed efficiently by correlating the edge
template with the distance-transformed image

Edge image

Distance transform image
[D. Gavrila, DAGM’99]

RWTH ACHE
Recap: Hough Transform erose
Y y=mz+ b b ‘ ‘ ‘ ‘ ‘
> (@ w) *fb‘: ‘—:n:‘ 'm‘-‘r Yol
(0, Yo) — b, ::;() —
ba-xim+ty,
m, m

Image space

Hough (parameter) space

¢ How can we use this to find the most likely parameters
(m,b) for the most prominent line in the image space?

» Let each edge point in image space vote for a set of possible
parameters in Hough space

» Accumulate votes in discrete set of bins; parameters with the
most votes indicate line in image space.

ide credit; Steve Seitz
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RWTH/CET
Recap: Hough Transf. Polar Parametrization

e Usual (m,b) parameter space problematic: can take on
infinite values, undefined for vertical lines.

d : perpendicular distance
from line to origin

@ : angle the perpendicular
makes with the x-axis

xcos@—ysing=d
¢ Point in image space
= sinusoid segment in
Hough space

ide credit: Steve Seit:

RWTH/ACHEN
Recap: Generalized Hough Transform

¢ What if want to detect arbitrary shapes defined by
boundary points and a reference point?

At each boundary point,
compute displacement
vector: I =a—p;.

For a given model shape:
store these vectors in a
table indexed by gradient
orientation 6.

Image space

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]

39
Slide credit: Kristen Grauman
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Recap: Gestalt Theory

¢ Gestalt: whole or group
» Whole is greater than sum of its parts
» Relationships among parts can yield new properties/features

¢ Psychologists identified series of factors that predispose
set of elements to be grouped (by human visual system)

“I stand at the window and see a house, trees, sky.
Theoretically | might say there were 327 brightnesses
and nuances of colour. Do | have "327"? No. | have sky,
house, and trees.”
Max Wertheimer
(1880-1943)

Untersuchungen zur Lehre von der Gestalt,
Psychologische Forschung, Vol. 4, pp. 301-350, 1923

http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm
B. Leibe

RWTH/ I
Recap: Hough Transform for Circles Steraie
11

e Circle: center (a,b) and radius r
(% —a)’ +(y,—b)* =r?

¢ For an unknown radius I, unknown gradient direction

r

G

Image space :

Hough space

Computer Vision WS 14/15

lide credit: Kristen Grauman

Repetition

* Image Processing Basics

¢ Segmentation & Grouping
» Segmentation and Grouping
» Segmentation as Energy Minimization

Gestalt factors

¢ Object Recognition @ a
e Local Features & Matching J

¢ Object Categorization

. K-Means & EM clustering
¢ 3D Reconstruction

¢ Motion and Tracking

Computer Vision WS 14/15

Mean-shift clustering 4,
B. Leibe

RWTH ACHET
Recap: Gestalt Factors
[- e o o o @ Nopouped
Parallelism
{ . e .. ® @ Protimity
LI Similarity CEC
. Symimetry
> ® ) ) ® @ Soin i

o ot e e CommonFae

Continuity

Common Region

Closure

* These factors make intuitive sense, but are very difficult to
translate into algorithms.
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B. Leibe Image source: Forsvth & Ponc:



http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm

RWTHACHE
Recap: Image Segmentation

¢ Goal: identify groups of pixels that go together

7

Computer Vision WS 14/15

43
ide credit: Steve Seitz, Kristen Grauman B. Leibe

RWTH/JCHET]
Recap: Expectation Maximization (EM)

&

¢ Goal
» Find blob parameters ¢ that maximize the likelihood function:

N
p(datal8) = ] plx.l8)
e Approach: n=1
1. E-step: given current guess of blobs, compute ownership of each point

2. M-step: given ownership probabilities, update blobs to maximize
likelihood function

3. Repeat until convergence

Computer Vision WS 14/15

’ 45
ide credit: Steve Seit 8. Leibe

RWTH/ACHEN
Recap: Mean-Shift Clustering

e Cluster: all data points in the attraction basin of a mode

¢ Attraction basin: the region for which all trajectories
lead to the same mode
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47

ide by Y, Ukrainitz & B, Sarel B. Leibe

Computer Vision WS 14/15
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RWTHACHE
Recap: K-Means Clustering

¢ Basic idea: randomly initialize the k cluster centers, and
iterate between the two following steps

1. Randomly initialize the cluster centers, cg, ..., ¢«
2. Given cluster centers, determine points in each cluster
- For each point p, find the closest c;. Put p into cluster i
3. Given points in each cluster, solve for c;
- Set c; to be the mean of points in cluster i
4. If ¢; have changed, repeat Step 2
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¢ Properties
»  Will always converge to some solution
> Can be a “local minimum”
- Does not always find the global minimum of objective function:
> X el
clusters i points p in cluster i
44
ide credit: Steve Seit; B. Leibe
RWTH/ACHEN
Recap: Mean-Shift Algorithm Exerges
i2 v i - - . 3‘
1a
a
a
.
111 ‘ ‘” ‘\
Ll (A
¢ |terative Mode Search
1. Initialize random seed, and window W
2. Calculate center of gravity (the “mean”) of W: Z aH(z)
3. Shift the search window to the mean zeW
4. Repeat Step 2 until convergence
46
ide credit: Steve Seit; B. Leibe
RWTH/ACHEN
Recap: Mean-Shift Segmentation E»\'er;_f:s
.3/

¢ Find features (color, gradients, texture, etc)
¢ Initialize windows at individual pixel locations
¢ Perform mean shift for each window until convergence

¢ Merge windows that end up near the same “peak” or
mode 7

o 1.

48

ide credit: Svetlana | azebnik. B. Leibe




Repetition

¢ Image Processing Basics

* Segmentation & Grouping
~ Segmentation and Grouping
» Segmentation as Energy Minimization

¢ Object Recognition
¢ Local Features & Matching

¢ Object Categorization N
: s

* 3D Reconstruction Graph cuts

¢ Motion and Tracking

Computer Vision WS 14/15

49
B. Leibe

¢ Unary potentials ¢
» Encode local information about the given pixel/patch

» How likely is a pixel/patch to belong to a certain class
(e.g. foreground/background)?

¢ Pairwise potentials ¢

» Encode neighborhood information

» How different is a pixel/patch’s label from that of its neighbor?
(e.g. based on intensity/color/texture difference, edges)
B. Leibe

Computer Vision WS 14/15

51

RWTHACHEN
Recap: Energy Formulation
¢ Energy function o y)
Elxy) = ) oleiy) +) vlwnz) Fik
i , i ,
Unary Pairwise
potentials potentials

RWTH ACHET
Recap: How to Set the Potentials?

¢ Pairwise potentials

» Potts Model
(@i, 253 0y) = Oyd(x; # ;)
- Simplest discontinuity preserving model.
- Discontinuities between any pair of labels are penalized equally.
- Useful when labels are unordered or number of labels is small.

» Extension: “Contrast sensitive Potts model”
(@i, w5, 95 (Y); Oy) = Ougi; (y)d(w; # ;)
where

a,0=¢ M1 p=2ravg(|y -y

= Discourages label changes except in places where there is also a
large change in the observations.
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53
B. Leibe

RWTHACHE
Recap: MRFs for Image Segmentation

e MRF formulation

= Minimize the energy

Unary Exy) =S oz u
potentials (x¥) l}, Bz, yi)
Wi, yi) ‘

+ Z-T*‘"(Tf z;)
Pairwise potentials

(s, 25)

N

Computer Vision WS 14/15

Data (D) Unary likelihood Pair-wise Terms MAP Solution
50

de adapted from Phil Torr

RWTH CHE
Recap: How to Set the Potentials?

¢ Unary potentials
» E.g. color model, modeled with a Mixture of Gaussians

Wi, Y53 04) = log > _ 0 (s, k)p(klas) N (i3 T, i)
k

= Learn color distributions for each label

d(zp=1,9p) M

d(zp =0,yp)

Computer Vision WS 14/15

B. Leibe

RWTH/ACHET
Recap: Graph-Cuts Energy Minimizaticege
27

¢ Solve an equivalent graph cut problem

1. Introduce extra nodes: source and sink

2. Weight connections to source/sink (t-links)
by ¢(z; = s) and ¢(z; = t), respectively.

3. Weight connections between nodes (n-links)
by ¥(z;, © 1)~

4. Find the minimum cost cut that separates
source from sink.

= Solution is equivalent to minimum of the energy.

Cyt

t-link

t
[

Aui-

¢ s-t Mincut can be solved efficiently
» Dual to the well-known max flow problem

» Very efficient algorithms available for regular
grid graphs (1-2 MPixels/s) 4
» Globally optimal result for 2-class problems
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RWTH/CET
Recap: When Can s-t Graph Cuts Be Applied?

Unary potentials Pairwise potentials
E(L) = > E,(L,) + D E(L,.L,)
* tinks PN etinks L, e{s,t}

¢ s-t graph cuts can only globally minimize binary energies

that are submodular. [Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

‘ E(L) can be minimized ‘ & [E(s,5)+EQY <E(sD) +E(t,3)]
by s-t graph cuts

Submodularity (“convexity”)

¢ Submodularity is the discrete equivalent to convexity.
» Implies that every local energy minimum is a global minimum.
= Solution will be globally optimal.

B. Leibe

TWTHACHE
Recap: Appearance-Based Recognition

e Basic assumption

» Objects can be represented
by a set of images
(“appearances”).

» For recognition, it is

3D object .
sufficient to just compare

the 2D appearances. a
» No 3D model is needed.

= Fundamental paradigm shift in the 90’s

B. Leibe

Recap: Comparison Measures

e Vector space interpretation
» Euclidean distance

¢ Statistical motivation
» Chi-square
» Bhattacharyya

¢ Information-theoretic motivation
» Kullback-Leibler divergence, Jeffreys divergence

¢ Histogram motivation
» Histogram intersection

¢ Ground distance
» Earth Movers Distance (EMD)

&1
#
nll
59

Computer Vision WS 14/15
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RWTHAACHE

& %
Appearance-based recognition

o,/ 7
0,/ 7
Lap/” r

Histogram i
representations @E'

7
I *|||

Comparison measures

Repetition

Image Processing Basics

Segmentation & Grouping

Object Recognition
» Global Representations
» Subspace Representations

e Local Features & Matching
¢ Object Categorization
¢ 3D Reconstruction

¢ Motion and Tracking

B. Leibe

RWTH CHE
Recap: Recognition Using Global Features

¢ E.g. histogram comparison
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Test image
Known objects
B. Leibe 8
RWTH/ACHET
Recap: Recognition Using Histograms Ex@m?fj‘,.h

e Simple algorithm
1. Build a set of histograms H={h;} for each known object
> More exactly, for each view of each object
2. Build a histogram h, for the test image.
3. Compare h, to each h;eH
> Using a suitable comparison measure

4. Select the object with the best matching score
> Orreject the test image if no object is similar enough.

“Nearest-Neighbor” strategy

B. Leibe

10



Recap: Multidimensional Representations

¢ Combination of several descriptors
» Each descriptor is
applied to the whole image. D,

» Corresponding pixel values
are combined into one D
feature vector.

- Feature vectors are collected LaQ,
in multidimensional histogram.

Computer Vision WS 14/15

B. Leibe

Histogram
— based
recognition)

Circle
detection

Binary
Segmen-
tation

Computer Vision WS 14/15

“ou Skin color detection Moment descriptors

Image Source; 2806412807/

Recap: Subspace Methods

Subspace methods

Reconstructive

Discriminative

LDA, SVM, CCA

PCA, ICA, NMF

10

<

5 Bo-8-8-5--

| B3-8-8-

2 representation

=

= .

7] classification

E regression

2

=

aQ

£

o

S 65
ide credit: Ales 1 eonardi LA

Recap: Colored Derivatives

¢ Generalization: derivatives along Y
» Y axis — intensity differences
» €y axis — red-green differences
» C, axis — blue-yellow differences

¢ Application:
» Brand identification in video

0
i

Fostar T

Computer Vision WS 14/15

IHall & Crowlev, 2000:

Repetition

¢ Image Processing Basics

¢ Segmentation & Grouping

Xy
PCA: Distance
TO eigenspace

,c;'ﬁii'.jﬂH

PCA: Distanc-e IN eigenspace

¢ Object Recognition
» Global Representations
» Subspace Representations

X3

¢ Local Features & Matching
¢ Object Categorization

¢ 3D Reconstruction

¢ Motion and Tracking

Computer Vision WS 14/15

B. Leibe

Recap: Obj. Detection by Distance TO Eigehspacé ‘

¢ For each test image, compute the reprojection error
» An n-pixel image xeR" can be X2
projected to the low-dimensional
feature space yeR™ by

y =Ux

» From yeR™, the reconstruction
of the point is UTy

» The error of the reconstruction is

||x—UTUx||

. . . . X
« Accept a detection if this error is low. ">
» Assumption: subspace is optimized to the target object (class).
» Other classes are not represented well = large error.

ide credit: Peter LA
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UNIVERSI ﬂ
Recap: Obj Identification by Distance IN Eigenspac

¢ Objects are represented as coordinates in
an n-dim. eigenspace.
e Example:

~ 3D space with points representing individual objects or a
manifold representing parametric eigenspace (e.g., orientation,
pose, illumination).

H . Ho

¢ Estimate parameters by finding the NN in the eigenspace
67

ide adapted from Ales | eonardi B. Leibe

Computer Vision WS 14/15

RWTH/CHET
s g UNIVERSITY}
Recap: Restrictions of PCA

¢ PCA minimizes projection error

Best discriminating
projection
PCA projection

¢ PCA is ,unsupervised“ no information on classes is used
¢ Discriminating information might be lost

Computer Vision WS 14/15

ide credit: Ales | eonardi B. Leibe

RWTH/ACHER
. .. UNIVERSITY
Recap: Local Feature Matching Pipeline

. Find a set of
distinctive key-
points

-

N

. Define a region
around each
keypoint

3. Extract and
normalize the
region content

fa Similarity fy

" measure

$ “ || ” | 4. Comp_ute a local

B (i — |||| ([ descriptor from thg
e.g. color e.g. color

normalized region
N pixels d(f,, fg)<T

5. Match local
descriptors

0
S
3
R
12
=
c
8
2
>
g
S
2
£
o
o

B. Leibe

UNIVERSITY
Recap: Eigenfaces

g
3
0
=
.
2
Z
>
&
E
Qo
£
o
o . 68
ide credit: Peter B. Leibe
RWTHACHEN
R titi UNIVERSITY}
epetition _ (o) L1,(05)
M@0 =000% 1) o
¢ Image Processing Basics Harris & Hessian gy _| % 1o
detector Ly 1y

Segmentation & Grouping

Object Recognition

¢ Local Features & Matching

» Local Features -
Detection and Description Laplacian scale selection

B ~ Recognition with Local Features
<
g ¢ Object Categorization Jﬂ\f\ =
= 3 = = &
Z% * 3D Reconstruction Difference-of-Gaussian (DoG)
> : .
5| * Motion and Tracking 3
5 K>
g = e
8 L
B. Leibe SIFT descriptor 7
UNIVERSITY]

Recap: Requirements for Local Features
e Problem 1:
» Detect the same point independently in both images

e Problem 2:
» For each point correctly recognize the corresponding one

‘ We need a repeatable detector! ‘

‘ We need a reliable and distinctive descriptor! ‘

)
=
5
=
%]
=
c
.8
2
>
g
S
=
£
S
o

ide credit: Darva Frolova. Denis Simakoy B. Leibe
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Recap: Harris Detector [Harrisss]

¢ Compute second moment matrix
(autocorrelation matrix)
2
M(a.,cp)=g(m)*[ ) '*'V("")J

Lly(o0)  15(op)

1. Image

derivatives
]2
2. Square of 1
derivatives .
3. Gaussian
filter g(oy)

4. Cornerness function - two strong eigenvalues
R=det[M (o, 0 ,)]—altrace(M (0,5 ,))]
=9(1)9(17) -[9(1,1,)F —alg(1)) +9(I))F

5. Perform non-maximum suppression
ide credit: Krystian Mikolajczyk B. Leibe

Computer Vision WS 14/15

¢ Hessian determinant

Xy

Hessian (1) =BXX :W}

det(Hessian(1)) =1,,1,, —12
In Matlab:
Loex D, —(1,)0°2

ide credit: Krystian Mikolaiczvk B. Leibe

Computer Vision WS 14/15

. . 1
Recap: Hessian Detector (seaudet7s) Srergge
.11

Recap: Automatic Scale Selection

¢ Function responses for increasing scale (scale signature)

L
3 (o

0
S
<
S
12
= ~ e
= 2 - .
S 1N P -
] .. /
-
; — /
-
E ]
=3 Tve e B i I
5 scale {
8 f(l, . (x0) (1, (X.0)
) 77
ide credit: Krvstian Mikolaiczvk B. Leibe

Recap: Harris Detector Responses [Harrisas]

Effect: A very precise
corner detector.

Computer Vision WS 14/15

ide credit: Krystian Mikolajczyk

Recap: Hessian Detector Responses [seaudet7s)

Effect: Responses mainly
on corners and strongly
textured areas.

Computer Vision WS 14/15

ide credit: Krystian Mi

Recap: Laplacian-of-Gaussian (LoG)

¢ Interest points:

» Local maxima in scale 4 m
space of Laplacian-of./

Gaussian

0
=
< \
S
2 I
5
g = List of (x, y, o)
g o
3
(=3
2
o
o
ide adapted from Krystian Mikolaiczyi LA
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Computer Vision WS 14/15

ide credit: Svetlana | azebnik B. Leibe

Recap: Harris-Laplace pmicotajczyk ‘011

1. Initialization: Multiscale Harris corner detection
2. Scale selection based on Laplacian
(same procedure with Hessian = Hessian-Laplace)

Harris points

Harris-Laplace points

ide adapted from Krystian Mikolaiczvk B. Leibe

)
=
5
~
12
=
2
=
@
>
g
=
a
£
5}
o

Repetition

¢ Image Processing Basics
¢ Segmentation & Grouping
¢ Object Recognition

¢ Local Features & Matching

» Local Features -
Detection and Description
» Recognition with Local Features

Fitting affine transformations
& homographies

¢ Object Categorization
¢ 3D Reconstruction
¢ Motion and Tracking

83

B. Leibe Gen. Hough Transform

Computer Vision WS 14/15

Computer Vision WS 14/15

¢ Efficient implementation

~ Approximate LoG with a
difference of Gaussians (DoG)

¢ Approach DoG Detector

» Detect maxima of difference-
of-Gaussian in scale space

Reject points with low
contrast (threshold)

v

Eliminate edge responses

v

Candidate keypoints:
list of (x,y,0)

Image source: David Lowe)

Recap: SIFT Feature Descriptor

¢ Scale Invariant Feature Transform
¢ Descriptor computation:
» Divide patch into 4x4 sub-patches: 16 cells

» Compute histogram of gradient orientations (8 reference angles)
for all pixels inside each sub-patch

» Resulting descriptor: 4x4x8 = 128 dimensions

# K>
* [N

N

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
1JCV 60 (2), pp. 91-110, 2004.

ide credit: Svetlana Lazebnik B. Leibe
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Recap: Recognition with Local Features

¢ Image content is transformed into local features that
are invariant to translation, rotation, and scale

* Goal: Verify if they belong to a consistent configuration

Local Features,
e.g. SIFT

ide credit: David | owe B. Leibe
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http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Recap: Indexing features

< Index each one into
5 pool of descriptors

from previously seen
images

Detect or sample Describe

I
2
3 features features or
[%)) | E—
E List of Associated list .
e — - v
:% positions, of d- Match to quantized
= scales, dimensional descriptors (visual
g orientations descriptors words)
£
o
o

= Shortlist of possibly matching images + feature correspondences

ide credit: Kristen Grauman B. Leibe

TWTHACHE
Recap: Fitting an Affine Transformation

¢ Assuming we know the correspondences, how do we get
the transformation?

) m,
.o m,

xi'7n11m2xi+t1 X ¥ 0 0 1 0fjmy| |x
y;_m3m4yi t, 0 0 x vy 0 1jm, yi

&

Computer Vision WS 14/15

B. Leibe tz

Recap: Fitting a Homography

¢ Estimating the transformation

Py Xg, Py +1i =X, Py Xg =X, hypyg =X, =0
Py Xg, 1Y, + o= Yo Ny Xg =Y lepYg =Y, =0

Xe, Yo 1 0 0 0 =X Xg —X\¥g —X4||hy| [O

Ah=0

ide credit: Krystian Mikolaiczyk LA

0

=0 x, ox

s B 0 0 0 X Yo 1 —YaXq —VYa¥s —Va||hu| [0
2 Xp, <> X, o . o, |=
A X, ©OXg, e . oy
g : hy,
5 h,
= 1
=3

=

o

[$)

Recap: Fast Indexing with Vocabulary Trees

¢ Recognition

Geometric
verification

Computer Vision WS 14/15

RWTHAACHE

/g [Nister & Stewenius, CVPR’06]
86
B. Leibe

ide credit: David Nister.

Recap: Fitting a Homography

¢ Estimating the transformation

n
=1
i Homogenous coordinates Image coordinates
E Xp > X, Mx'] ’h“ h, h 1T x X" X Matrlx m;;atwn
=N X, X v ' =
_g el B, V' =|hy hy hy|qy y'|= o y X X
X X g
faf # > Xe, LZ] 7h31 hy, 177 1 X":%XI
5 . P
2
g Dt oy, +hy by X +hygYy +hy
o Nyy Xg, +hg,Yg +1 Ny Xg, +hyyYg +1 88

ide credit: Krystian Mikolaiczvk B. Leibe

Recap: Fitting a Homography

¢ Estimating the transformation

¢ Solution:
> Null-space vector of A
» Corresponds to smallest

eigenvector
svD Ah=0

wn
SN X, X l
3 ~ & d11 d19 Viy
2 A=UDV' =U :
= X, O X
.E . d91 d99 Vo1
S
3
o Vyg,,V,
El h= M Minimizes least square error
£ Voo
o ] 90

ide credit: Krvstian Mikolaiczvk 5. Leibe
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RWTH/ACHEN RWTH/ACHEN
Recap: RANSAC erges Recap: RANSAC Line Fitting Example
6.2
RANSAC loop: ¢ Task: Estimate the best line
1. Randomly select a seed group of points on which to
base transformation estimate (e.g., a group of
matches) o b
2. Compute transformation from seed group '.
3. Find inliers to this transformation . ¢
§ 4. If the number of inliers is sufficiently large, re- § ° b L
2 compute least-squares estimate of transformation on 2 4
5 all of the inliers 5 °
= = ° °
g * Keep the transformation with the largest number of g .
g inliers g
S 91 g 92
Slide credit: Kristen Grauman B. Leibe Slide credit: Jinxiang Chai B. Leibe
RWTH CHE RWTH CHE
Recap: RANSAC Line Fitting Example Recap: RANSAC Line Fitting Example
¢ Task: Estimate the best line e Task: Estimate the best line
[ )
[ )
[ )
° ®
0 ® 0
3 ° * . 3
£ : E
S L] 5 °
z . . Sample two points i . . Fit a line to them
E . z .
£ £
o o
o y 93 o 94
lide credit: Jinxiang Chaj B. Leibe ide credit: Jinxiane Chai B. Leibe

RWTH ACHET
Recap: RANSAC Line Fitting Example

RWTH ACHET
Recap: RANSAC Line Fitting Example

¢ Task: Estimate the best line e Task: Estimate the best line

2 3

5 3 °

S S

0 [

B 2

5 o 5

< ° . Total number of points < Repeat, until we get a

g . within a threshold of £ good result.

£ line. =

o o

S 95 © 96
slide credit: Jinxiano Chai B. Leibe ide credit: linxiang Chai B. Leibe
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Computer Vision WS 14/15

Recap: Feature Matching Example

¢ Find best stereo match within a square search window
(here 300 pixels?)

¢ Global transformation model: epipolar geometry

before RANSAC

after RANSAC

Images from Hartley & Zisserman

97
ide credit: David Lowe B. Leibe

RWTH//CHEN
UNIVERSITY,

UNIVERSITY
Recap: Generalized Hough Transform

¢ Suppose our features are scale- and rotation-invariant

» Then a single feature match provides an alignment hypothesis
(translation, scale, orientation).

Of course, a hypothesis from a single match is unreliable.

Solution: let each match vote for its hypothesis in a Hough space
with very coarse bins.

v

v

99

ide credit: Svetlana Lazebnik B. Leibe
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RWTH/ACHER
UNIVERSITY

N ._’l Car/non-car

Repetition

¢ Image Processing Basics

¢ Segmentation & Grouping
¢ Object Recognition

¢ Local Features & Matching

¢ Object Categorization
» Sliding Window based Object Detection
~ Bag-of-Words Approaches

¢ 3D Reconstruction q
¢ Motion and Tracking %
HOG detector

Viola-Jones face detector
101

B. Leibe

Recap: Generalized Hough Transform

¢ Suppose our features are scale- and rotation-invariant

» Then a single feature match provides an alignment hypothesis
(translation, scale, orientation).

Computer Vision WS 14/15

ide credit: Svetlana | azebnik B. Leibe

RWTH//CHEN
UNIVERSITY

Computer Vision WS 14/15

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

B. Leibe

L o UNERSTY]
Application: Panorama Stitching p”"°’°":§°oe
Moy

100

[Brown & Lowe, 1CCv'03]

Recap: Sliding-Window Object Detection

¢ If object may be in a cluttered scene, slide a window
around looking for it.

.
Classifier

¢ Essentially, this is a brute-force approach with many
local decisions.

)
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ide credit: Kristen Grauman LA

RWTHACHEN
UNIVERSITY
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RWTH/ACHEN RWTH/ACHEN
Recap: Gradient-based Representations Recap: Classifier Construction: Many Choices...
« Consider edges, contours, and (oriented) intensity Nearest Neighbor Neural networks
gradients 3 P&Jir"_l
Berg, Berg, M'alik 2'005, LeCun, Bottou, Bengw, Haffner 1998
Chum, Zisserman 2007, Rowley, Baluja, Kanade 1998
— = = ~ T Boiman, Shechtman, Irani 2008, ...
k| ¥ k| ¥ Sk k| PRk
) O * > % F ¥ Boosting Support \./e.ctor Machines Randomued[{Forests

u./'\.t.

: BE:
Viola, Jones 2001, | | Vapnik, Schalkopf 1995, Amit, Geman 1997,
Torralba et al. 2004, | Papageorgiou, Poggio ‘01,| | Breiman 2001,
Opelt et al. 2006, Dalal, Triggs 2005, Lepetit, Fua 2006,

Benenson 2012, ... Vedaldi, Zisserman 2012 Gall, Lempitsky 2009,...

¢ Summarize local distribution of gradients with histogram
» Locally orderless: offers invariance to small shifts and rotations
» Contrast-normalization: try to correct for variable illumination

Computer Vision WS 14/15
Computer Vision WS 14/15

103 104

Slide credit: Kristen Grauman B. Leibe ide adanted from Kristen Grauman B. Leibe

TWTHACHE
Recap: Support Vector Machines (SVMs)

RWTH/JCHET]
Recap: Non-Linear SVMs

¢ General idea: The original input space can be mapped to
some higher-dimensional feature space where the

Discriminative classifier| training set is separable:

based on optimal

separating hyperplane
i.e. line for 2D case
( f ) S
o |®
g Maximize the margin < I .
° between the positive o . |, °
3 and negative training i . o e .
i) =)
z examples 2 o .
g & .
= =
Qo =5
= £
o o
o 105 - 106
clide credit: Kristen Grauman B. Leibe Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html
RWTH ACHET RWTH ACHET

Recap: HOG Descriptor Processing Chain Recap: HOG Cell Computation Details

¢ Gradient orientation voting
» Each pixel contributes to localized % *

* SVM Classification Object/Nop-object
» Typically using a linear SVM Lmear SVM

gradient orientation histogram(s)

» Vote is weighted by the pixel’s
gradient magnitude ‘%lé

4 6 =tan~1 (3f/8f)
k 195l = \JGD7 + G)°

Collect HOGs over
detectlon window

overlapping spat1al cells

‘ Contrast normahze over

|
Weighted vote in spatial & ‘
|
|

n wn

o =]

o orientation cells » . s Les =t

2 T = ¢ Block-level Gaussian weighting /f RL B \)'\
§ Compute gradients § » An additional Gaussian weight is SR : HEE
s T S applied to each 2x2 block of cells = = v
= = e gy g
2 Sammalcompression £ . Each cell is part of 4 such blocks, REEA e
=3 aQ . : :

g Image Window £ rgsultlng in 4 versions of the \\‘» e 7
3 o histogram. x

107

~—— 108

Slide adapted from Navoeet Dalal



http://www.autonlab.org/tutorials/svm.html
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RWTH/ G
Recap: HOG Cell Computation Details (2)

¢ Important for robustness: Tri-linear interpolation
» Each pixel contributes to (up to) 4 |
neighboring cell histograms
Weights are obtained by bilinear
interpolation in image space:

hlryn) & w- (1 i ) (1 y-n ) J
a3 — iy v2—

R, yo) 4= w- (1 _Limnm ) ( y—in )
h T W2 =0

(9'1 ) ‘ (‘7'2. )
. .

v

)
=
5
~
12
=
2
=)
4
>
g
=
a
£
5}
o

(r1,2) | (72,2)
h(xa, ) + w- (;) (l I i U} ) I
Ta = I Y2 =1
Wz, p) - w- ( L ) ( it ] )
Tz — I Y2 —
» Contribution is further split over
(up to) 2 neighboring orientation bins
via linear interpolation over angles. 109
[1] T
Recap: AdaBoost
) Weights __.————-.
Weak ® o @ | Mnereasea ® 9
Clasifier 1 ~ &____---=- \.7*.
LY Weak _\_‘_‘: ®
[ ) Classifier 2 ——1 fe]
Weak —F——=
classifier 3 o,
°'9 ©®
Final classifier is ' e
s :
combmatw.n. of the .l.
weak classifiers
’ 111
ide credit: Kristen Grauman B. Leibe

Recap: AdaBoost Feature+Classifier Selectiorn

¢ Want to select the single rectangle feature and threshold
that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

& : 9, : 6, Resulting weak classifier:
"5 eeeooresee

bix) = { 1 f £e0 > 6,

-1 otherwise

For next round, reweight the
examples according to errors,
choose another filter/threshold
combo.

 — X)) —
Outputs of a
possible rectangle
feature on faces
and non-faces.

113
[Viola & Jones, CVPR 2001

ide credit: Kristen Grauman LA
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RWTHACHE
Recap: Non-Maximum Suppression

/J

Clip detection score

After multi-scale dense scan

Map each detection to 3D
[xy.scale] space
Goal

X
Apply robust mode detection,
e.g. mean shift

Fusion of multiple detections

Non-maximum suppression
110

B. Leibe lmage source: Navneot Dalal. PhD Thesi

TWTHACHE
Recap: Viola-Jones Face Detection

“Rectangular” filters

Feature output is difference
between adjacent regions

Value at (x,y) is

sum of pixels

above and to the| »
left of (x,y)

Efficiently computable |
with integral image: any
sum can be computed |
in constant time

Avoid scaling images 2>
scale features directly
for same cost

Integral image Dul+d=(2+1)
(+(A+B+C D) =(A+C+ A+ B

D

112
ide credit: Kristen Grauman B. Leibe [Viola & Jones, CVPR 2001
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RWTH/ACHEN
Application: Viola-Jones Face Detector

Train cascade of
classifiers with
AdaBoost

ol el =

Sl W=
= .n|~=

Selected features,
thresholds, and weights

Non-faces

* Train with 5K positives, 350M negatives

* Real-time detector using 38 layer cascade

* 6061 features in final layer

¢ [Implementation available in OpenCV:
http://sourceforge.net/projects/opencvlibrary/] »

ide credit: Kristen Grauman B. Leibe
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Repetition

om

Bag of “words”

¢ Image Processing Basics
* Segmentation & Grouping
¢ Object Recognition

¢ Local Features & Matching Bag-of-words representation

Ll

Activation histogram

¢ Object Categorization
» Sliding Window based Object Detection
» Part-based Approaches

¢ 3D Reconstruction

(HANT)
¢ Motion and Tracking !

Implicit Shape Model 15

B. Leibe

Recap: Visual Wnr:k

¢ Quantize the
feature space into
“visual words”

¢ Perform matching
only to those visual
words.

Exact feature matching — Match to same visual word

ide adapted from Kristen Grauman Figure from_Sivic & Zisserman, ICCV 2003
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Recap: Categorization with Bags-of-Words

‘l."‘ 'L.

L ‘/E@Wrwfk

¢ Compute the word
activation histogram for
each image.
¢ Let each such Bow
histogram be a feature
vector.
¢ Use images from each
class to train a classifier
(e.g., an SVM).

. =
Violins

119
ide adanted from Kristen Grauman B. Leibe
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Recap: Identification vs. Categorization

¢ Find this particular object ¢ Recognize ANY car

116

B. Leibe

Recap: Bag-of-Word Representations ('BOVIV)' "

Object |—»| Bag of “words”

! 118
B. Leibe Source: ICCV. i:Fei
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Recap: Advantage of BoW Histograms

¢ Bag of words representations make it possible to
describe the unordered point set with a single vector
(of fixed dimension across image examples).

¢ Provides easy way to use distribution of feature types
with various learning algorithms requiring vector input.

120

ide credit: Kristen Grauman LA
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RWTHACHE
Limitations of BoW Representations

The bag of words
removes spatial
layout.

This is both a strength
and a weakness.

g
3
Y « Why a strength?
=
]
4| « Why a weakness?
E
Q
]
38
121
ide adapted from Bill Freeman B. Leibe
RWTH/ACHEN
Recap: Implicit Shape Model - Representation
= I EINETEEEFEAAEEE. ..
v MAATIFTIANARSNIN.
- I{IREESIIIAENT ISR -
P -
- — FRAXAREARAR
rafnnnnn
= 4 TR En
S © galalalalola]
Training images lme
(+reference segmentation) r kR
“ Appearance codebook
o Learn appearance codebook y 4 "
» Extract local features at interest points x k_)
» Clustering = appearance codebook ?’ }@
b 7y
¢ Learn spatial distributions v vy

> Match codebook to training images "

a- x-
» Record matching positions on object
; rodn 1Y
X
Spatial occurrence distributions
+ local figure-ground labels 123

Computer Vision WS 14/15

B. Leibe

Recap: Scale Invariant Voting

¢ Scale-invariant feature selection
» Scale-invariant interest points
» Rescale extracted patches
» Match to constant-size codebook

¢ Generate scale votes
» Scale as 3rd dimension in voting space

0

=

§ Lypote = .r-m.,f.t',.”(-N.W,,:"n.,,-.-) =

= Yoote = Yimg — Yocel Simg/ Soce) o1 E.. *| search
£ Swote = (Sima/Soce). O | |vindow
2 e

2 » Search for maxima in 3D voting space i

=3

£

o

3

125

B. Leibe

Recap: Part-Based Models

e Fischler & Elschlager 1973

¢ Model has two components

» parts
(2D image fragments)
" » structure
= (configuration of parts)
2
2
Z%
£
g 122
B. Leibe
RWTH CHE
Recap: Implicit Shape Model - Recognition

Interest Points  Matched Codebook Probabilistic
Entries g

“Generalized Hough Transform
with backprojection”

et
Pl a4

B 3D Voting Space
= (continuous)
E

.5 a ! ‘7 & § /

7}

2

g

2 Backprojected Backprojection

E Hypotheses of Maxima

124,
[Leibe, Leonardis, Schiele, SLCV’04; 1JCV’08]

Repetition - -

¢ Image Processing Basics v e
Epipolar geometry

“ ety

¢ Segmentation & Grouping
¢ Object Recognition
¢ Local Features & Matching

¢ Object Categorization

¢ 3D Reconstruction
» Epipolar Geometry and
Stereo Basics

» Camera Calibration &
Uncalibrated Reconstruction

» Structure-from-Motion
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¢ Motion and Tracking

L g hil 126
B. Leibe Dense stereo matching
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RWTH/ACHEN
Recap: What Is Stereo Vision?
¢ Generic problem formulation: given several images of

the same object or scene, compute a representation of
its 3D shape

127

Slide credit: Svetlana | azebnik, Steve Seit; B. Leibe

RWTH CHE
Recap: Epipolar Geometry
¢ Geometry of two views allows us to constrain where the

corresponding pixel for some image point in the first
view must occur in the second view.

epipolar line

epipolar line .

¢ Epipolar constraint:

» Correspondence for point p in IT must lie on the epipolar line [’
in [T’ (and vice versa).
» Reduces correspondence problem to 1D search along conjugate

epipolar lines.

129
Slide adapted from Steve Seit; B. Leibe

RWTH T
Recap: Essential Matrix
X'(TxRX)=0 —
X'-(Tx RX)=0 yp 4
e ESTR N ——_
XTEX=0 :

¢ This holds for the rays p and p’ that

are parallel to the camera-centered
position vectors X and X’, so we have:
* E is called the essential matrix, which relates

corresponding image points [Longuet-Higgins 1981]

Slide credit: Kristen Grauman LA

131

RWTH/CET
Recap: Depth with Stereo - Basic Idea

¢ Basic Principle: Triangulation
» Gives reconstruction as intersection of two rays
» Requires
- Camera pose (calibration)
- Point correspondence

Computer Vision WS 14/15

128
ide credit: Steve Seit; B. Leibe

RWTH CHE
Recap: Stereo Geometry With Calibrated Cameras
AX world point
P— ¥ e g A ~
\f“ Ve N
P /’" * \\\ P
Az, ) ) Z. s Tx!
4 O O
s y T
%) ] © ~_ R Y! ¥
- Ye T
S R
= * Camera-centered coordinate systems are related by
% known rotation R and translation T:
; X =RX+T
ide credit: Kristen Grauman B. Leibe 0

RWTH ACHET
Recap: Essential Matrix and Epipolar Lines
T Epipolar constraint: if we observe
point p in one image, then its
position p’ in second image must
satisfy this equation.

I'= Ep is the coordinate vector represen-
ting the epipolar line for point p

(i.e., the line is given
by: I''x=0)

ol

I = E”p’is the coordinate vector representing
the epipolar line for point p’
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ide credit: Kristen Grauman LA
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Recap: Stereo Image Rectification

¢ In practice, it is
convenient if image
scanlines are the
epipolar lines.

¢ Algorithm

v

Slide adapted from 1i Zhang

RWTHAACHE

Reproject image planes onto a common
plane parallel to the line between optical
centers

Pixel motion is horizontal after this transformation
Two homographies (3x3 transforms), one for each
input image reprojection

133

C. 1000 & 7, Zhane, Computing Rectifying for Stereo Vision, CYPR'99)

Recap: Effect of Window Size

Slide credit: Kristen Grauman B. Leibe

W=3

W =20

Want window large enough to have sufficient intensity
variation, yet small enough to contain only pixels with
about the same disparity.

135

Eigures from Li Zhang|

Recap: A General Point

¢ Equations of the form

¢ How do we solve them? (always!)

Ax=0

Apply SVD
SVD
dll
A=UDV' =U
dNN VNl

Singular values Singular vectors

Singular values of A = square roots of the eigenvalues of ATA.
The solution of Ax=0 is the nullspace vector of A.
This corresponds to the smallest singular vector of A.

B. Leibe

137

Recap: Dense Correspondence Search

T HON. ABRATIAM LINCOLN, President of United States. Fogyd

¢ For each pixel in the first image
» Find corresponding epipolar line in the right image

(e.g. SSD, correlation)
» Triangulate the matches to get depth information

¢ This is easiest when epipolar lines are scanlines
= Rectify images first

adapted from Svetlana Lazebnik, 1 Zhang

Computer Vision WS 14/15

RWTHAACHE

» Examine all pixels on the epipolar line and pick the best match

134

N
K=

Recap: Camera Parameters

¢ Intrinsic parameters
Principal point coordinates
Focal length

» Pixel magnification factors

» Skew (non-rectangular pixels)
» Radial distortion

v

v

¢ Extrinsic parameters

§ > Rotation R

<£ > Translatioq t ]

c (both relative to world coordinate system)

= « Camera projection matrix P=K[R|t]
g = General pinhole camera: 9 DoF

E’ = CCD Camera with square pixels: 10 DoF

@ = General camera: 11 DoF

B. Leibe

P a, Y,
Repet]tlon 1 | Camera models
* Image Processing Basics c
amera
* Segmentation & Grouping calibration
¢ Object Recognition RN R
¢ Local Features & Matching Triangulation
¢ Object Categorization . .
el - 3D Reconstruction Essential matrix. X EX =0
)
- » Epipolar Geometry and Fundamental matrix T/ _
4 - X Fx'=0
= Stereo Basics 7
§ » Camera Calibration & Y : 5
> Uncalibrated Reconstruction v |2, Eight-point
£ . Structure-from-Motion v Y= algorithm
=5 u, 1 Fa
15|+ Motion and Tracking L <oz
8. Leibe SVD! 136
RWTH ACHET

138
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Recap: Calibrating a Camera

Goal

¢ Compute intrinsic and extrinsic
parameters using observed camera
data.

Main idea

¢ Place “calibration object” with
known geometry in the scene

e Get correspondences

* Solve for mapping from scene to
image: estimate P=P; P,

Slide credit: Kristen Grauman B. Leibe

RWTH CHE
Recap: Triangulation - Lin. Alg. Approach Exe,cijjs
.3/

X, xP,X=0
X, xP,X=0

A% =PX
AX, =P,X

[X,JPX=0
[sz]sz =0

¢ Two independent equations each in terms of
three unknown entries of X.

¢ Stack equations and solve with SVD.

¢ This approach nicely generalizes to multiple cameras.
141

Slide credit: Svetlana L azebnik B. Leibe

RWTH/ACHEN
Recap: Epipolar Geometry - Calibrated Case

x[tx(Rx)]=0 =2 Xx'Ex'=0 with E=[t]R
&£

Essential Matrix
(Longuet-Higgins, 1981)

143

Slide credit: Svetlana | azebnik LA
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RWTHACHE
Recap: Camera Calibration (DLT Algorithm)
0" Xi -yX]
Xp 00 -xX] [P
., [=0 Ap:O
0" X5 =YX |\Ps
X0 —x X!

¢ P has 11 degrees of freedom.

¢ Two linearly independent equations per independent
2D/3D correspondence.

¢ Solve with SVD (similar to homography estimation)
» Solution corresponds to smallest singular vector.

¢ 5 1 correspondences needed for a minimal solution.
140

de adapted from Svetlana | azebnik B. Leibe

RWTH CHE
Recap: Epipolar Geometry - Calibrated Case

Camera matrix: [1]0]
X=(u,v,w, 1)T
X = (u, v, w)T

Camera matrix: [RT| -RTt]
Vector x’ in second coord.
system has coordinates Rx’ in
the first one.

The vectors x, {, and Rx’ are coplanar

. 142
ide credit: Svetlana Lazebnik B. Leibe
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ide credit: Svetlana | azebnik. B. Leibe

RWTH/ACHEN
Recap: Epipolar Geometry - Calibrated Case

x[tx(Rx)]=0 =2 Xx'ExX'=0 with E=[t]R
e E x’ is the epipolar line associated with x’ ({ = E x’)
e ETx is the epipolar line associated with x (I’ = E"x)
e Ee’=0 and E’e=0
¢ Eis singular (rank two)
¢ E has five degrees of freedom (up to scale)

24



RWTH/ T
Recap: Epipolar Geometry - Uncalibrated Case

X

] 0

E ¢ The calibration matrices K and K’ of the two cameras
ES are unknown
§ ¢ We can write the epipolar constraint in terms of
> unknown normalized coordinates:
7
g RTER =0 x=Kg&, X =K%
o
(8] 145
Slide credit: Svetlana | azebnik B. Leibe
RWTH CHE
Recap: Epipolar Geometry - Uncalibrated Case
X

o | | _" o

LTEX' =0 mm) x'Fx'=0 with F=KTEK'"?
e F x’ is the epipolar line associated with x’ ([ = F x’)
o FTx is the epipolar line associated with x (I’ = FTx)
e Fe’=0 and Fe=0

¢ Fis singular (rank two)

* F has seven degrees of freedom

B. Leibe

Computer Vision WS 14/15
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lide credit: Svetlana Lazebnik.

RWTH ACHE
Recap: Normalized Eight-Point Alg.

E“'e";::

1. Center the image data at the origin, and scale it so the
mean squared distance between the origin and the data
points is 2 pixels.

2. Use the eight-point algorithm to compute F from the
normalized points.

3. Enforce the rank-2 constraint using SVD. Set dy, to
SYD d, . i zero and
EUDV™ =U d22 reconstruct F

4. Transform fundamental matrix back to original units: if
T and T’ are the normalizing transformations in the two
images, than the fundamental matrix in original
coordinatesis TTF T’.
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B. Leibe

149
[Hartlev, 1999]

Slide credit: Svetlana lazebnik

RWTH/ T
Recap: Epipolar Geometry - Uncalibrated Case

X

LTER' =0 mm) xX'Fx'=0 with F=KTEK'™

K
, o~ Fundamental Matrix
K (Faugeras and Luong, 1992)

o

Computer Vision WS 14/15
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Slide credit: Svetlana | azebnik B. Leibe

ide credit: Svetlana Lazebnik

Recap: The Eight-Point Algorithm Bxergee
Ise I
Fn
x=(u,v, )T, x’= (v’ 1)7 Fi
, , , , Fis
Fy K Fg u Fa
(w0, 1) | For Fe P | [0/ | =0 q (e, u', v, v o, v 1) | Fre | =0
P Fp Fyl\l Py
e ' P
. . . ’ [ Fi Fa
[U A VAV VA U VA VA /N M/ F Fu
WUy UV, U, Vup vvp v, up vy 1) P
W e i o v e v w1 R 1.) Solve with SVD.
S B F,. This minimizes
o DR AR A A A R e S N
E Ul UgVg Us Velp VeVy Ve U Vg 1 FZZ z (XIT F XI,)2
SN UG Ve g VUG Vv Ve up vp L F“ i-1
; Uy UV; U ViU VeV, v FM 2.) Enfore rank-2
S L u v vy vy L F” constraint using SVD|
3 L33 ]
5l|  Problem: poor numerical conditioning

B. Leibe
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Recap: Comparison of Estimation Algorithms

RWTHACHEN
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8-point Normalized 8-point Nonlinear least squares
Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel
Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel 50
ide credit: Svetlana 1azebnik —
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Recap: Epipolar Transfer

¢ Assume the epipolar geometry is known

¢ Given projections of the same point in two images, how
can we compute the projection of that point in a third

< Structure-
{ %9 from-Motion

¢ Image Processing Basics P,

¢ Segmentation & Grouping

Projective
* Object Recognition ambiguity 1Ly ;—
¢ Local Features & Matching . .
» Object Categorization = - B | <
. | Affine factorization
¢ 3D Reconstruction Points
» Epipolar Geometry and "
Stereo Basics Projective  §
factorization

» Camera Calibration &
Uncalibrated Reconstruction

» Structure-from-Motion

a;-a,=0
layl* = la*=1

Computer Vision WS 14/15

* Motion and Tracking Euclidean

Tl X
B. Leibe ¢ upgrade 153

image?
w0
2 . . ><
» X1 X2 | X3 |
2 31 32
5
S -
Z I = FligX;
g Iy = FTp3X,
=
g
S 151
Slide credit: Svetlana | azebnik B. Leibe
Repetition

RWTH/ACHEN
Recap: Structure from Motion Ambiguity

¢ If we scale the entire scene by some factor k and, at the
same time, scale the camera matrices by the factor of
1/k, the projections of the scene points in the image
remain exactly the same.

¢ More generally: if we transform the scene using a
transformation Q and apply the inverse transformation
to the camera matrices, then the images do not change

x=PX = (PQ QX
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Slide credit: Svetlana | azebnik LA
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RWTHACHE
Applications: 3D Reconstruction

Recap: Structure from Motion
X

* Given: m images of n fixed 3D points

X =P,  i=L.,m j=1..,n

¢ Problem: estimate m projection matrices P; and
n 3D points X; from the mn correspondences x;

154
ide credit: Svetlana Lazebnik B. Leibe

RWTH/ACHEN
Recap: Hierarchy of 3D Transformations

Preserves intersection
and tangency

Projective | A t
15dof T

vl v @
Affine At Preserves parallellism,
12dof 0" 1 volume ratios
Similarity SRt Preserves angles, ratios
7dof 0T 1 of length
Euclidean Rt Preserves angles,
6dof 0" 1 lengths

* With no constraints on the camera calibration matrix or on the
scene, we get a projective reconstruction.

* Need additional information to upgrade the reconstruction to
affine, similarity, or Euclidean. 156

ide credit: Svetlana | azebnik. B. Leibe
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Recap: Affine Structure from Motion

¢ Let’s create a 2m x n data (measurement) matrix:

Kin Xy o Xy Al
D: 21 22 ) 2n — .2 [Xl )(2 Xn_
’ ’ Points (3 x n)
Xm Kmz = X Am
Cameras
(2m x 3)

o The measurement matrix D = MS must have rank 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. IJCV, 9(2):137-154, November 1992.

Computer Vision WS 14/15

157

Slide credit: Svetlana | azebnik B. Leibe

RWTH CHE
Recap: Projective Factorization
2y Xyy 23X DXy, Pl
Z,X Z,,X s ZX P.
D=| 22 22722 ) an”on | _ :z [X1 X, Xn]
Points (4 x n)
Zmlxml szXmZ Zmnxmn Pm
Cameras
(3m x 4)

D = MS has rank 4
+ If we knew the depths z, we could factorize D to
estimate M and S.
¢ If we knew M and S, we could solve for z.

Solution: iterative approach (alternate between
above two steps).

Computer Vision WS 14/15
.

159

lide credit: Svetlana Lazebnik B. Leibe

RWTH ACHET
Recap: Estimating the Euclidean Upgrade

a1-

M — MC, S -C1S

¢ Goal: Estimate ambiguity matrix C
» Orthographic assumption:

1) Image axes are perpendicular

‘éiz‘:l a,.TzCCTa,.Z =1

ALA =1

a,-a,=0
a, .
< 2) Scale is 1
a
% * lag]? = layl*= 1
% . . .
=| « This can be converted into a system of 3m equations:
c
8 A A T T
2 8,-8,=0 8,CCa;, =0 with L=CC"
5 la;|=1 <<aiCCTq, =1, i=1..m this translates to
2
=
o
o

161

Slide adapted from S. 1 azebnik M. Hebert B. Leibe
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Recap: Affine Factorization

¢ Obtaining a factorization from SVD:

n
3
RN
= - o

Possible decomposition:

M=UW" S=W!"V!
This decomposition minimizes
|D'MS|2 38
Slide credit: Martial Hebert
RWTH/ACHEN

Recap: Sequential Projective SfM

¢ Initialize motion from two images
using fundamental matrix Points

¢ Initialize structure

¢ For each additional view:

» Determine projection matrix
of new camera using all the
known 3D points that are
visible in its image -
calibration
Refine and extend structure:
compute new 3D points,
re-optimize existing points
that are also seen by this camera -
triangulation

¢ Refine structure and motion: bundle adjustment

Cameras

s e e s
s e e e esese

.t

v

160

ide credit: Svetlana Lazebnik 8. Leibe

RWTH/ACHEN
Recap: Bundle Adjustment

¢ Non-linear method for refining structure and motion
¢ Minimizing mean-square reprojection error
m n
E(P,X)=> > D(x,.PX;)
i1 j=1
X

1

PZXH i

| Ps

162

ide credit: Svetlana | azebnik. B. Leibe
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es PN
Repetition | Motion field
v
¢ Image Processing Basics
{zm_r zm,/} [ u] _ ZI;»IL]
 Segmentation & Grouping Bhely Shty [l Z;ﬁl"
ATA Atb

Object Recognition Lucas-Kanade optical flow

N

¢ Local Features & Matching
¢ Object Categorization
¢ 3D Reconstruction

Gaussian pyramid Gaussian pyramid

¢ Motion and Tracking

. Motion and Optical Flow Coarse-to-fine estimation

Computer Vision WS 14/15

B. Leibe

RWTHACHEN

See
E‘\'efcise G

Recap: Lucas-Kanade Optical Flow

¢ Use all pixels in a KxK window to get more equations.
¢ Least squares problem:

L(p1) Iy(p1) Ii(p1)
Ie(p2)  Ty(p2) || w | _ _| Ii(p2) A d=b
: : v : 25x2 2x1 25x1
Ie(p2s) Ty(p2s) I(p2s)
§ ¢ Minimum least squares solution given by solution of
= T — AT
£ (1"2)(2}'1) 2[331_ ilxl b Recall the
5 Harris detector!
= Slhle Shiy][a] _ [k
i Y Lly Y Iyl v Y Iyl
3 AT A ATp
ide adapted from Svetlana Lazebnik. B. Leibe 165

RWTH ACHET
Recap: Coarse-to-fine Estimation

u=1.25 pixels

u=2.5 pixels

u=10 pixelsv,"‘

ision WS 14/15

Gaussian pyramid of image 1 Gaussian pyramid of image 2

167

ide credit: Steve Seit: B. Leibe
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RWTHACHE
Recap: Estimating Optical Flow
RN T
o ° .
1(x,y,t-1) 1(x,y,t)

« Given two subsequent frames, estimate the apparent
motion field u(x,y) and v(x,y) between them.

* Key assumptions

» Brightness constancy: projection of the same point looks the
same in every frame.

> Small motion: points do not move very far.
» Spatial coherence: points move like their neighbors.

164

ide credit: Svetlana Lazebnik B. Leibe

Recap: Iterative Refinement

« Estimate velocity at each
pixel using one iteration of
LK estimation.

¢ Warp one image toward the .
other using the estimated
flow field. N

« Refine estimate by repeating L —
the process. t

Iterative procedure
» Results in subpixel accurate localization.
» Converges for small displacements.

’ 166
ide adated from Steve Seit B. Leibe .

r Vision WS 14/15

Recap: Coarse-to-fine Estimation

See
Sxer, Cise 6

—, Runiterative L-K ___

Gaussian pyramid of image 1

Gaussian pyramid of image 2
168

ide credit: Steve Seit LA
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Any Questions?

So what can you do with all of this?

Computer Vision WS 14/15

169

Articulated Multi-Person Tracking

g

3

E:

=| e Multi-Person tracking

;% ~ Recover trajectories and solve data association

>

2 o Articulated Tracking

g » Estimate detailed body pose for each tracked person

o

& 171
IG Ess. Jaegeli, Schindler, Leibe, Van Gool, ECCV’08]
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Integrated 3D Point Cloud Labels
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173
B. Leibe G. Floros, B. Leibe, CVPR’12

Robust Object Detection & Tra_cki

Computer Vision WS 14/15

s B
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B. Leibe

Mining the World’s Images...
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Automatic Landmark Building Discovery

i.E [ =1 "

5602 6476 259 317 789 7804 446 192

BN

158]

3o

175

177
B. Leibe [T. Sattler, B. Leibe, L. Kobbelt, ICCV’11

¢ Tourist Guide Scenario
» Simply point the camera to any object/building of interest.
» Images are transmitted to a central server for recognition.

» Object-specific information is sent back to be displayed on the
mobile phone.

Mobile Augmented Reality fusion of graphics with real video.

Computer Vision WS 14/15

v

176

Any More Questions?

Good luck for the exam!
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