Computer Vision - Lecture 21

Structure-from-Motion

29.01.2015
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RWTH Aachen
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Many slides adapted from Svetlana Lazebnik, Martial Hebert, Steve Seitz



Announcements

e Exam
» 15t Date: Monday, 23.02., 13:30-17:30h
~ 2" Date:Thursday, 26.03., 09:30 - 12:30h
> Closed-book exam, the core exam time will be 2h.

> Admission requirement: 50% of the exercise points or passed
test exam

> We will send around an announcement with the exact starting
times and places by email.

e Test exam
~ Date: Thursday, 05.02., 09:15 - 10:45h, room UMIC 025
» Core exam time will be 1h
» Purpose: Prepare you for the questions you can expect.
» Possibility to collect bonus exercise points!
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Announcements (2)

e Last lecture next Monday: Repetition
> Summary of all topics in the lecture
~ “Big picture” and current research directions
~ Opportunity to ask questions

~ Please use this opportunity and prepare questions!
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Course Outline

e Image Processing Basics

e Segmentation & Grouping
e Object Recognition

e Local Features & Matching
e Object Categorization

e 3D Reconstruction
~ Epipolar Geometry and Stereo Basics
~ Camera calibration & Uncalibrated Reconstruction
> Active Stereo

e Motion
> Motion and Optical Flow

e 3D Reconstruction (Reprise)
> Structure-from-Motion
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Recap: Estimating Optical Flow

./ Q *
N o
o—> i (@) .
(X,y,t-1) 1(X,y,1)

e Given two subsequent frames, estimate the apparent
motion field u(x,y) and v(x,y) between them.

e Key assumptions

» Brightness constancy: projection of the same point looks the
same in every frame.

> Small motion: points do not move very far.
» Spatial coherence: points move like their neighbors.
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Slide credit: Svetlana Lazebnik B. Leibe



Recap: Lucas-Kanade Optical Flow &

e Use all pixels in a KxK window to get more equations.
e Least squares problem:

- I:(p1) Iy(p1) | - Ii(p1) |
ICB(pZ) Iy(PZ) U ] — _ [t(pZ) A d=0b
: : v 5 25x2 2x1 25x1
| Ix(p2s) Iy(p2s) | i (p2s) |

e Minimum least squares solution given by solution of
(ATA) d= Alb

Recall the

2X2 2%x1 2x1 .
Harris detector!

SLly SLIy||uw|_ | Sl ]
SILly Sy || v |~ | STyl

AT A Alp

B. Leibe
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Recap: Iterative Refinement SXerges
6.4/

e Estimate velocity at each . fﬁ() o
pixel using one iteration of v,
LK estimation. | :

e Warp one image toward the ) e e
other using the estimated v [
flow field. N\ o

e Refine estimate by repeating : g
the process. : AG -1, 1

Initial guess: do
Estimate: d3 = do + d

e |terative procedure
~ Results in subpixel accurate localization.
» Converges for small displacements.

ol J

A fi(z — d3) = fa(=)
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Recap: Coarse-to-fine Estimation
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Slide credit: Steve Seitz B. Leibe



Recap: Coarse-to-fine Estimation e, e

L
II)\ I)\\
1 l\\ 11\
\ 1

- .——, Runiterative L-K _-

lWarp & upsample

- ——> Run iterative L-K +—;

Computer Vision WS 14/15

Gaussian pyramid of image 1

Gaussian pyramid of image 2

Slide credit: Steve Seitz B. Leibe
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Topics of This Lecture

Structure from Motion (SfM)

> Motivation
> Ambiguity

Affine SfM

> Affine cameras

~ Affine factorization

» Euclidean upgrade

» Dealing with missing data

Projective STM

> Two-camera case

> Projective factorization
> Bundle adjustment

> Practical considerations

Applications

B. Leibe
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Structure from Motion

e Given: mimages of n fixed 3D points
Xij = Pi X, =1L ...,m, j=1 ...,n

e Problem: estimate m projection matrices P, and
n 3D points X; from the mn correspondences x;

Slide credit: Svetlana Lazebnik B. Leibe
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What Can We Use This For?

e E.g. movie special effects
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B. Leibe Video Credit: Stefan Hafeneger


../cv-ws08/videos/MotivationFilm.mov
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RWTH
Structure from Motion Ambiguity

e |f we scale the entire scene by some factor k and, at the
same time, scale the camera matrices by the factor of
1/k, the projections of the scene points in the image
remain exactly the same:

x = PX = (]%P) (kX)

= It is impossible to recover the absolute scale of the
scene!

13

Slide credit: Svetlana Lazebnik B. Leibe
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RWTH
Structure from Motion Ambiguity

e |f we scale the entire scene by some factor k and, at the
same time, scale the camera matrices by the factor of
1/k, the projections of the scene points in the image
remain exactly the same.

e More generally: if we transform the scene using a

transformation Q and apply the inverse transformation
to the camera matrices, then the images do not change

x =PX = (PQ QX

14

Slide credit: Svetlana Lazebnik B. Leibe



RWTHAACHEN
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Reconstruction Ambiguity: Similarity

x = PX = (PQ;')QsX
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B. Leibe Images from Hartley & Zisserman

Slide credit: Svetlana Lazebnik



RO INVERSITY
Reconstruction Ambiguity: Affine

-
—

) Affine

x = PX = (PQ;")Q4X
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B. Leibe Images from Hartley & Zisserman

Slide credit: Svetlana Lazebnik



RWTHAACHEN
. . . . UNIVERSITY
Reconstruction Ambiguity: Projective

x = PX = (PQ,")QpX
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B. Leibe Images from Hartley & Zisserman

Slide credit: Svetlana Lazebnik
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Projective Ambiguit

e
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Images from Hartley & Zisserman

Slide credit: Svetlana Lazebnik B. Leibe
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From Projective to Affine
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Images from Hartley & Zisserman

B. Leibe

Slide credit: Svetlana Lazebnik



From Affine to Similarity

O
—
S~~~
#
—
%2
=
c
£
D
>
2
S
Q
S
@)
@)

20

Images from Hartley & Zisserman

B. Leibe

Slide credit: Svetlana Lazebnik



RWTH
Hierarchy of 3D Transformations

Projective A t Preserves intersection
15dof VT V and tangency
AfFfi A t Preserves llelli

ine parallellism,
12dof 1 volume ratios
Similarity Preserves angles, ratios
7dof of length

Preserves angles,

lengths

Euclidean R t
6dof 0" 1

e With no constraints on the camera calibration matrix or on the
scene, we get a projective reconstruction.

 Need additional information to upgrade the reconstruction to

affine, similarity, or Euclidean. |
Slide credit: Svetlana Lazebnik B. Leibe
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O ERLE!

Topics of This Lecture

o Affine SfTM

» Affine cameras

> Affine factorization

> Euclidean upgrade

> Dealing with missing data

O
—
S~~~
#
—
%2
=
c
£
D
>
2
S
Q
S
@)
@)

B. Leibe



CHEN
. UNIVERSITY
Structure from Motion

 Let’s start with affine cameras (the math is easier)

center at
infinity

perspective weak perspective

Y

increasing focal length

increasing distance from camera =
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Images from Hartley & Zisserman

Slide credit: Svetlana Lazebnik B. Leibe
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Orthographic Projection

e Special case of perspective projection
~ Distance from center of projection to image plane is infinite

> Projection matrix:
"1 000]]|" ES
01007 =]|y|=(@y
00 0 1 1 1

Slide credit: Steve Seitz B. Leibe
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Affine Cameras

Orthographic Projection

Parallel Projection

Slide credit: Svetlana Lazebnik
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Affine Cameras

A general affine camera combines the effects of an
affine transformation of the 3D space, orthographic
projection, and an affine transformation of the image:

10 0 0] Ay A, A b oo
000 1 0 0 0 1

e Affine projection is a linear mapping + translation in

inhomogeneous coordinates
X

X b
X x:( j:{a“ 2 a“} Y +£ lj:AX+b
. y Ay Ay Ay - b, /
az/ -
o X rojection of
a

B. Leibe world origin 2
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Affine Structure from Motion

Slide credit: Svetlana Lazebnik

Given: m images of n fixed 3D points:
X--:A-X-+b- 1=1...,m, j=1,...,n

Problem: use the mn correspondences x;; to estimate m
projection matrices A; and translation vectors b,,
and n points X;

The reconstruction is defined up to an arbitrary affine
transformation Q (12 degrees of freedom):

R (e

We have 2mn knowns and 8m + 3n unknowns (minus 12
dof for affine ambiguity).

> Thus, we must have 2mn >=8m + 3n - 12.

~ For two views, we need four point correspondences.

B. Leibe
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Affine Structure from Motion

e Centering: subtract the centroid of the image points

X =X, —lixik =AX; +b, —izn:(Aixk +b;)
N N
:A,(xj—lixkj:Ain
N

e For simplicity, assume that the origin of the world
coordinate system is at the centroid of the 3D points.

 After centering, each normalized point x;; is related to
the 3D point X; by

%, = A X,

Slide credit: Svetlana Lazebnik B. Leibe
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Affine Structure from Motion

e Let’s create a 2m x n data (measurement) matrix:

Xig X o Xy
D= Xao Xy 0 Xop Cameras
’ (2m)
_Xml Xm2 an | v
Points (n)

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. IJCV, 9(2):137-154, November 1992.

B. Leibe
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Slide credit: Svetlana Lazebnik


http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf

Affine Structure from Motion

e Let’s create a 2m x n data (measurement) matrix:

)A(11 )A(12 )A(ln Al
Xoo Xop oo X A
D— 21 22 ) 2n | _ :2 [X1 X2 Xn]
A A . A . Points (3 x n)
_Xml Xm2 an_ _Am_
Cameras
(2m x 3)

e The measurement matrix D = MS must have rank 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. IJCV, 9(2):137-154, November 1992.

B. Leibe
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Slide credit: Svetlana Lazebnik


http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
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Factorizing the Measurement Matrix
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Slide credit; Martial Hebert B. Leibe
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RWTHAACHEN
. . UNIVERSITY
Factorizing the Measurement Matrix

e Singular value decomposition of D:
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Slide credit: Martial Hebert



RWTHAACHEN
.. . UNIVERSITY
Factorizing the Measurement Matrix

e Singular value decomposition of D:

n n

& ~
= -

=

e
= -

M

1 I
h
><.. n
¥

To reduce to rank 3, we
just need to set all the
singular values to 0 except

3 for the first 3

L0
d
q
—
n
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2
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o
&
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Slide credit: Martial Hebert
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Factorizing the Measurement Matrix

e Obtaining a factorization from SVD:

2m D _

Slide credit: Martial Hebert
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Factorizing the Measurement Matrix

e Obtaining a factorization from SVD:

2m D

Slide credit: Martial Hebert

n
3 < \-.
< i < I

Possible decomposition:

M=UW"” S=W/"V’

x

This decomposition minimizes
|ID-MSJ?

35
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Affine Ambiguity

<

e The decomposition is not unique. We get the same D by
using any 3x3 matrix C and applying the transformations

M — MC, S —C1S,

e That is because we have only an affine transformation
and we have not enforced any Euclidean constraints
(like forcing the image axes to be perpendicular, for
example). We need a Euclidean upgrade.

Slide credit; Martial Hebert B. Leibe
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RWTH
Estimating the Euclidean Upgrade

e Orthographic assumption: image axes are perpendicular

and scale is 1.
,/////////////////////// a1 ' a2 =0

X |ay|? = [ay|?= 1

-
e
-
<
2 -
a -

e This can be converted into a system of 3m equations:
(4.-4,=0 [a'CC"a,=0

4,|=1 <4{a;CC'a,=1, i=1..m

| a,]=1 a,CC'a, =1

ai2
for the transformation matrix C' = goal: estimate C
Slide adapted from S. Lazebnik, M. Hebert B. Leibe
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RWTH
Estimating the Euclidean Upgrade

e System of 3m equations:
(4,-4,=0 [a'CC"a,=0
4,|=1 <{a;CC'a,=1, i=1..m

N

o

| a,]=1 a'CC'a, =1
a’
o Let L=CCT A{ 'Tl}, i=1,..,m
a‘i2

e Then this translates to 3m equations in L

ALA =1, i=1..m

» Solve for L
» Recover C from L by Cholesky decomposition: L = CCT
> Update Mand S: M =MC, S =C1S

Slide adapted from S. Lazebnik, M. Hebert B. Leibe
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Algorithm Summary

e Given: m images and n features Xx;;
e For each image i, center the feature coordinates.

e Construct a 2m x n measurement matrix D:
> Column j contains the projection of point j in all views
> Row i contains one coordinate of the projections of all the n
points in image i
e Factorize D:
> Compute SVD: D =UWVT
- Create U, by taking the first 3 columns of U
- Create V; by taking the first 3 columns of V
- Create W; by taking the upper left 3 x 3 block of W

e Create the motion and shape matrices:

e Eliminate affine ambiguity
Slide credit: Martial Hebert
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Reconstruction Results
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Slide credit: Svetlana Lazebnik B. Leibe

Image Source: Tomasi & Kanade


http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
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Dealing with Missing Data

e So far, we have assumed that all points are visible in all
views

e In reality, the measurement matrix typically looks
something like this:

Cameras

Points

Slide credit: Svetlana Lazebnik B. Leibe
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Dealing with Missing Data

e Possible solution: decompose matrix into dense sub-
blocks, factorize each sub-block, and fuse the results

> Finding dense maximal sub-blocks of the matrix is NP-complete
(equivalent to finding maximal cliques in a graph)

e |Incremental bilinear refinement

(1) Perform
factorization on a
dense sub-block

F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Segmenting, Modeling,
and Matching Video Clips Containing Multiple Moving Objects. PAMI 2007.

Slide credit: Svetlana Lazebnik
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http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf
http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf

Dealing with Missing Data

e Possible solution: decompose matrix into dense sub-
blocks, factorize each sub-block, and fuse the results

> Finding dense maximal sub-blocks of the matrix is NP-complete
(equivalent to finding maximal cliques in a graph)

e |Incremental bilinear refinement

. & & % " 0 8 9 . & & % & & B89
. ® & % " 89 . " & & & " " 0 W
® @ & o & o 8 @ * ® ® ® & ® @ 0 9
@ & & 8 @ & & & & & & ¥ @ i
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(1) Perform (2) Solve for a new 3D
factorization on a point visible by at least
dense sub-block two known cameras

(linear least squares)

F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Segmenting, Modeling,
and Matching Video Clips Containing Multiple Moving Objects. PAMI 2007.

Slide credit: Svetlana Lazebnik
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http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf
http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf

Dealing with Missing Data

e Possible solution: decompose matrix into dense sub-
blocks, factorize each sub-block, and fuse the results

> Finding dense maximal sub-blocks of the matrix is NP-complete
(equivalent to finding maximal cliques in a graph)

e |Incremental bilinear refinement
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= (1) Perform (2) Solve for a new 3D (3) Solve for a new camera
[z factorization on a point visible by at least that sees at least three
= dense sub-block two known cameras known 3D points (linear
(0] .

§_ (linear least squares) least squares)

g F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Segmenting, Modeling,

=2 and Matching Video Clips Containing Multiple Moving Objects. PAMI 2007.
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http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf
http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf
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Comments: Affine STM

e Affine SfM was historically developed first.

e |t is valid under the assumption of affine cameras.
> Which does not hold for real physical cameras...

» ...but which is still tolerable if the scene points are far away
from the camera.

e For good results with real cameras, we typically need
projective SfM.
~ Harder problem, more ambiguity

~ Math is a bit more involved...
(Here, only basic ideas. If you want to implement it, please look
at the H&Z book for details).

45
B. Leibe



Topics of This Lecture

 Projective SfM
> Two-camera case
> Projective factorization
> Bundle adjustment
> Practical considerations
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RWNTH
Projective Structure from Motion

e Given: mimages of n fixed 3D points

Xij = Pi X, =1L ...,m, j=1 ...,n

e Problem: estimate m projection matrices P, and
n 3D points X; from the mn correspondences x;

Slide credit: Svetlana Lazebnik B. Leibe
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RWTH
Projective Structure from Motion

e Given: m images of n fixed 3D points
¢ ZIJXIj:PIXJ’ i:].,...,m, j=1,...,n
e Problem: estimate m projection matrices P; and n 3D

points X; from the mn correspondences X;j

e With no calibration info, cameras and points can only be
recovered up to a 4x4 projective transformation Q:

X — QX, P - PQ1
e We can solve for structure and motion when
2mn >=11m +3n - 15
e For two cameras, at least 7 points are needed.
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RWTH
Projective SfM: Two-Camera Case

e Assume fundamental matrix F between the two views
> First camera matrix;: [110]Q1
» Second camera matrix: [A|b]Q1

e Let X=0QX ,then zx=[1]0]X, z'x'=[ADb]X

e And -
Z’X'=A[l|0]X +b=zAx+Db

g Z’X’Xb:ZAXXb

‘;’ (z'x"'xb)- X' =(zAxxDb)- X’

% e So we have X" [b,]JAx =0

§ F=[b . JA b: epipole (FTb =0), A:_[bx]Fm

Slide adapted from Svetlana Lazebnik B. Leibe F&P sec. 13.3.1
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RWTH
Projective SfM: Two-Camera Case

e This means that if we can compute the fundamental
matrix between two cameras, we can directly estimate

the two projection matrices from F.

e Once we have the projection matrices, we can compute
the 3D position of any point X by triangulation.

e How can we obtain both kinds of information at the
same time?

50
B. Leibe



Projective Factorization

Z11X11 LK1 o L Xy I:)1
£51X51 LygKoy o0 LynXy, Pz
D= . = X X, o X
: . Points (4 x n)
_Zmlxml ZmZXmZ Zmnxmn_ _Pm_
Cameras
(3m x 4)

D = MS has rank 4

e If we knew the depths z, we could factorize D to
estimate M and S.

e If we knew M and S, we could solve for z.

e Solution: iterative approach (alternate between above
two steps).
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Slide credit: Svetlana Lazebnik B. Leibe
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Sequential Structure from Motion

e |nitialize motion from two images

using fundamental matrix

e |nitialize structure

e For each additional view:

> Determine projection matrix
of new camera using all the

known 3D points that are
visible in its image -
calibration

Slide credit: Svetlana Lazebnik

B. Leibe

Cameras

Points

v

& & & & & & 8 @
& & & & ¥ 5 B8 B
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Sequential Structure from Motion

e |nitialize motion from two images
using fundamental matrix

e |nitialize structure

e For each additional view:

> Determine projection matrix
of new camera using all the
known 3D points that are
visible in its image -
calibration

» Refine and extend structure:
compute new 3D points,
re-optimize existing points
that are also seen by this camera -
triangulation

Cameras

Slide credit: Svetlana Lazebnik B. Leibe

Points

v

e & & & & 0 20
& & & & & B B B
& & & & » & B B B
& & & & & B B B W
& 8 & & B " B @9
® & & & & " 9 000

L e
L
» B
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RWTH
Sequential Structure from Motion

e |nitialize motion from two images
using fundamental matrix Points

v

e |nitialize structure

e For each additional view:

> Determine projection matrix
of new camera using all the
known 3D points that are
visible in its image -
calibration

Cameras
& & & & & & & @

& 8 & & B B B @
e & & & & & & & @
& & &8 & & & 8 8 W
s & & ®» & B 0 B8 W
e 8 & & 8 e 8

» Refine and extend structure:
compute new 3D points,
re-optimize existing points
that are also seen by this camera -
triangulation

e Refine structure and motion: bundle adjustment

B. Leibe
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Slide credit: Svetlana Lazebnik



Bundle Adjustment

e Non-linear method for refining structure and motion
e Minimizing mean- square reprOJectlon error

E(P,X) =3 3 D(x,, PX, )

=1 j=1
X|

<
S,
D)
; W
C
7p]
S 4 Pxx h‘\
2 P 2 jTXZj
2 1 P
g i ;
@)

P,

B. Leibe
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Bundle Adjustment

e Seeks the Maximum Likelihood (ML) solution assuming
the measurement noise is Gaussian.

e It involves adjusting the bundle of rays between each
camera center and the set of 3D points.

e Bundle adjustment should generally be used as the final
step of any multi-view reconstruction algorithm.
~ Considerably improves the results.

» Allows assignment of individual covariances to each
measurement.

e However...
» It needs a good initialization.
» It can become an extremely large minimization problem.

e Very efficient algorithms available.
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Projective Ambiguity

e |f we don’t know anything about the camera or the
scene, the best we can get with this is a reconstruction
up to a projective ambiguity Q.

~ This can already be useful.

» E.g. we can answer questions like /
“at what point does a line
intersect a plane”?

o |f we want to convert this to a
“true” reconstruction, we need /
a Euclidean upgrade. / Y

> Need to put in additional knowledge |
about the camera (calibration) or M
about the scene (e.g. from markers). \\

. Several methods available T
(see F&P Chapter 13.5 or H&Z Chapter 19) ) 57

B. Leibe

LO
—
~~
#
—
)
=
c
©
D
>
2
S
Q
S
(@]
@)

Images from Hartley & Zisserman



Self-Calibration

e Self-calibration (auto-calibration) is the process of
determining intrinsic camera parameters directly from
uncalibrated images.

e For example, when the images are acquired by a single
moving camera, we can use the constraint that the
intrinsic parameter matrix remains fixed for all the
images.

» Compute initial projective reconstruction and find 3D projective
transformation matrix Q such that all camera matrices are in the
form P, = K [R; ]| t].

e Can use constraints on the form of the calibration

matrix: square pixels, zero skew, fixed focal length, etc.
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Slide credit: Svetlana Lazebnik B. Leibe
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Practical Considerations (1)

- 7. X

Small Baseline Large Baseline

1. Role of the baseline
> Small baseline: large depth error
> Large baseline: difficult search problem

e Solution
> Track features between frames until baseline is sufficient.

Slide adapted from Steve Seitz B. Leibe
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Practical Considerations (2)

2. There will still be many outliers
> Incorrect feature matches
- Moving objects

= Apply RANSAC to get robust estimates based on the

inlier points.

3. Estimation quality depends on the point configuration

~ Points that are close together
in the image produce less stable
solutions.

= Subdivide image into a grid and try
to extract about the same number of
features per grid cell.

B. Leibe
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General Guidelines

e Use calibrated cameras wherever possible.
~ It makes life so much easier, especially for SfM.

e SfM with 2 cameras is far more robust than with a single
camera.
~ Triangulate feature points in 3D using stereo.
~ Perform 2D-3D matching to recover the motion.
> More robust to loss of scale (main problem of 1-camera SfM).

e Any constraint on the setup can be useful
> E.g. square pixels, zero skew, fixed focal length in each camera
> E.g. fixed baseline in stereo SfM setup
» E.g. constrained camera motion on a ground plane

> Making best use of those constraints may require adapting the

algorithms (some known results are described in H&Z).

61
B. Leibe



RWNTH
Structure-from-Motion: Limitations

e Very difficult to reliably estimate metric SfM unless
> Large (x or y) motion or
» Large field-of-view and depth variation

e Camera calibration important for Euclidean

reconstruction
 Need good feature tracker -
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Slide adapted from Steve Seitz B. Leibe



CHEN
, , UNIVERSITY
Topics of This Lecture

e Structure from Motion (SfM)

> Motivation
> Ambiguity

Affine SfM

~ Affine cameras

» Affine factorization

> Euclidean upgrade

» Dealing with missing data

e Projective SfM
> TwoO-camera case
» Projective factorization
» Bundle adjustment
> Practical considerations
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Commercial Software Packages

e boujou
(http://www.2d3.com/)

e PFTrack
(http://www.thepixelfarm.co.uk/)

e MatchMover
(http://www.realviz.com/)

e SynthEyes
(http://www.ssontech.com/)

e |carus
(http://aig.cs.man.ac.uk/research/reveal/icarus/)

e Voodoo Camera Tracker
(http://www.digilab.uni-hannover.de/)

B. Leibe
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Applications: Matchmoving

=
N/
n
=
c
o
.2 [ [J [J [ [
— ¢ Putting virtual objects into real-world videos
(0]
= Original sequence Tracked features
£ . .
5 SfM results Final video
B. Leibe o0

Videos from Stefan Hafeneger


../cv-ws08/material-hafeneger/Presentation/Presentation.ppt_media/S8 720p25.mov
../cv-ws08/material-hafeneger/Presentation/Presentation.ppt_media/Tracking.mov
../cv-ws08/material-hafeneger/Presentation/Presentation.ppt_media/Rekonstruktion.mov
../cv-ws08/material-hafeneger/Presentation/Presentation.ppt_media/Sequence.mov

U VEF%;II%I
Applications: Large-Scale SfM from Flickr

S. Agarwal, N. Snavely, I. Simon, S.M. Seitz, R. Szeliski, Building Rome in a Day,
ICCV’09, 2009. (Video from http://grail.cs.washington.edu/rome/)

B. Leibe
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http://grail.cs.washington.edu/rome/rome_paper.pdf
http://grail.cs.washington.edu/rome/

RWTH
References and Further Reading

e A (relatively short) treatment of affine and projective
SfM and the basic ideas and algorithms can be found in
Chapters 12 and 13 of

D. Forsyth, J. Ponce,
Computer Vision - A Modern Approach.
Prentice Hall, 2003

Computer
Vision

e More detailed information (if you really
want to implement this) and better e
explanations can be found in Chapters 10,
18 (factorization) and 19 (self-calibration)
of

R. Hartley, A. Zisserman
Multiple View Geometry in Computer Vision
2nd Ed., Cambridge Univ. Press, 2004

B. Leibe

Richard Hactley and Andrew Zisserman
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