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Computer Vision – Lecture 21 

Structure-from-Motion 
 

29.01.2015 

Bastian Leibe 
 

RWTH Aachen 

http://www.vision.rwth-aachen.de 

 

leibe@vision.rwth-aachen.de 

 

 

 TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAAAAAAAA 

Many slides adapted from Svetlana Lazebnik, Martial Hebert, Steve Seitz 
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Announcements 

• Exam 

 1st Date: Monday,    23.02., 13:30 – 17:30h 

 2nd Date: Thursday, 26.03., 09:30 – 12:30h 

 Closed-book exam, the core exam time will be 2h. 

 Admission requirement: 50% of the exercise points or passed 

test exam 

 We will send around an announcement with the exact starting 

times and places by email. 
 

• Test exam 

 Date: Thursday, 05.02., 09:15 – 10:45h, room UMIC 025 

 Core exam time will be 1h 

 Purpose: Prepare you for the questions you can expect. 

 Possibility to collect bonus exercise points! 

 
2 

B. Leibe 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 W

S
 1

4
/1

5
 

Announcements (2) 

• Last lecture next Monday: Repetition 

 Summary of all topics in the lecture 

 “Big picture” and current research directions 

 Opportunity to ask questions 

 

 Please use this opportunity and prepare questions! 
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Course Outline 

• Image Processing Basics 
 

• Segmentation & Grouping 
 

• Object Recognition 

• Local Features & Matching 

• Object Categorization 

• 3D Reconstruction 

 Epipolar Geometry and Stereo Basics 

 Camera calibration & Uncalibrated Reconstruction 

 Active Stereo 
 

• Motion  

 Motion and Optical Flow 
 

• 3D Reconstruction (Reprise) 

 Structure-from-Motion 

 

4 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 W

S
 1

4
/1

5
 

Recap: Estimating Optical Flow 

 

 

 

 

 

• Given two subsequent frames, estimate the apparent 

motion field u(x,y) and v(x,y) between them. 
 

• Key assumptions 

 Brightness constancy:  projection of the same point looks the 

same in every frame. 

 Small motion:  points do not move very far. 

 Spatial coherence: points move like their neighbors. 
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I(x,y,t–1) I(x,y,t) 

Slide credit: Svetlana Lazebnik 
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Recap: Lucas-Kanade Optical Flow 

• Use all pixels in a KK window to get more equations. 

• Least squares problem: 

 

 

 

 

• Minimum least squares solution given by solution of 
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B. Leibe Slide adapted from Svetlana Lazebnik 

Recall the 

Harris detector! 
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Recap: Iterative Refinement 

• Estimate velocity at each 

pixel using one iteration of  

LK estimation. 

• Warp one image toward the  

other using the estimated  

flow field. 

• Refine estimate by repeating  

the process. 

 

• Iterative procedure 

 Results in subpixel accurate localization. 

 Converges for small displacements. 
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B. Leibe Slide adapted from Steve Seitz 

Initial guess:  

Estimate: 

estimate 

update 

x x0 x x0 

estimate 

update 
Initial guess:  

Estimate: 

x x0 

Initial guess:  

Estimate: estimate 

update 

x x0 

x x0 
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Recap: Coarse-to-fine Estimation 

8 
B. Leibe 

Image 2 Image 1 

Gaussian pyramid of image 1 Gaussian pyramid of image 2 

Image 2 Image 1 u=10 pixels 

u=5 pixels 

u=2.5 pixels 

u=1.25 pixels 

Slide credit: Steve Seitz 
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Recap: Coarse-to-fine Estimation 

9 
B. Leibe 

Image 2 Image 1 

Gaussian pyramid of image 1 Gaussian pyramid of image 2 

Image 2 Image 1 

Run iterative L-K 

Run iterative L-K 

Warp & upsample 

. 

. 

. 

Slide credit: Steve Seitz 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 W

S
 1

4
/1

5
 

Topics of This Lecture 

• Structure from Motion (SfM) 
 Motivation 

 Ambiguity 
 

• Affine SfM 
 Affine cameras 

 Affine factorization 

 Euclidean upgrade 

 Dealing with missing data 
 

• Projective SfM 
 Two-camera case 

 Projective factorization 

 Bundle adjustment 

 Practical considerations 
 

• Applications 
 

10 
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Structure from Motion 

 

 

 

 

 

 

 
 

• Given: m images of n fixed 3D points  
 

xij = Pi Xj ,  i = 1, … , m,    j = 1, … , n   
 

• Problem: estimate m projection matrices Pi and  

n 3D points Xj from the mn correspondences xij 
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x1j 

x2j 

x3j 

Xj 

P1 

P2 

P3 

B. Leibe Slide credit: Svetlana Lazebnik 
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• E.g. movie special effects 

 

 

 

 

 

 

 

 
 

Video 

What Can We Use This For? 

12 
B. Leibe Video Credit: Stefan Hafeneger 

../cv-ws08/videos/MotivationFilm.mov
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Structure from Motion Ambiguity 

• If we scale the entire scene by some factor k and, at the 

same time, scale the camera matrices by the factor of 

1/k, the projections of the scene points in the image 

remain exactly the same: 

 

 

 

 

 

 

 It is impossible to recover the absolute scale of the 

scene! 
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B. Leibe Slide credit: Svetlana Lazebnik 

x = PX =

µ
1

k
P

¶
(kX)
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Structure from Motion Ambiguity 

• If we scale the entire scene by some factor k and, at the 

same time, scale the camera matrices by the factor of 

1/k, the projections of the scene points in the image 

remain exactly the same. 
 

• More generally: if we transform the scene using a 

transformation Q and apply the inverse transformation 

to the camera matrices, then the images do not change 
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B. Leibe Slide credit: Svetlana Lazebnik 

x =PX= (PQ¡1)QX
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Reconstruction Ambiguity: Similarity 

15 
B. Leibe Slide credit: Svetlana Lazebnik Images from Hartley & Zisserman 

x =PX= (PQ¡1S )QSX
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Reconstruction Ambiguity: Affine 

16 
B. Leibe Slide credit: Svetlana Lazebnik Images from Hartley & Zisserman 

Affine 

x =PX= (PQ¡1A )QAX
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Reconstruction Ambiguity: Projective 

17 
B. Leibe Slide credit: Svetlana Lazebnik Images from Hartley & Zisserman 

x=PX= (PQ¡1P )QPX
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Projective Ambiguity 
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B. Leibe Slide credit: Svetlana Lazebnik Images from Hartley & Zisserman 
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From Projective to Affine 

 

19 
B. Leibe Slide credit: Svetlana Lazebnik Images from Hartley & Zisserman 
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From Affine to Similarity 
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B. Leibe Slide credit: Svetlana Lazebnik Images from Hartley & Zisserman 
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Hierarchy of 3D Transformations 

 

 

 

 

 

 

 

 

 
 

• With no constraints on the camera calibration matrix or on the 
scene, we get a projective reconstruction. 

• Need additional information to upgrade the reconstruction to 
affine, similarity, or Euclidean. 
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vTv

tAProjective 

15dof 

Affine 

12dof 

Similarity 

7dof 

Euclidean 
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Preserves intersection 
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Preserves parallellism, 
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of length 



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



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

10
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T
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
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tR
T

Preserves angles, 

lengths 

Slide credit: Svetlana Lazebnik 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 W

S
 1

4
/1

5
 

Topics of This Lecture 

• Structure from Motion (SfM) 
 Motivation 

 Ambiguity 
 

• Affine SfM 
 Affine cameras 

 Affine factorization 

 Euclidean upgrade 

 Dealing with missing data 
 

• Projective SfM 
 Two-camera case 

 Projective factorization 

 Bundle adjustment 

 Practical considerations 
 

• Applications 
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Structure from Motion 

• Let’s start with affine cameras (the math is easier) 
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center at 

infinity 

Slide credit: Svetlana Lazebnik Images from Hartley & Zisserman 
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Orthographic Projection 

• Special case of perspective projection 

 Distance from center of projection to image plane is infinite 

 

 

 

 

 

 

 

 Projection matrix: 
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B. Leibe Slide credit: Steve Seitz 

Image World 
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Affine Cameras 
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Orthographic Projection 

Parallel Projection 

Slide credit: Svetlana Lazebnik 
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Affine Cameras 

• A general affine camera combines the effects of an 

affine transformation of the 3D space, orthographic 

projection, and an affine transformation of the image: 

 

 

 

 

• Affine projection is a linear mapping + translation in 

inhomogeneous coordinates 
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Slide credit: Svetlana Lazebnik 
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Affine Structure from Motion 

• Given: m images of n fixed 3D points: 

•  xij = Ai Xj + bi ,     i = 1,… , m,  j = 1, … , n   
 

• Problem: use the mn correspondences xij  to estimate m 
projection matrices Ai and translation vectors bi,  
and n points Xj  

• The reconstruction is defined up to an arbitrary affine 
transformation Q (12 degrees of freedom): 
 
 
 
 

• We have 2mn knowns and 8m + 3n unknowns (minus 12 
dof for affine ambiguity). 
 Thus, we must have 2mn >= 8m + 3n – 12. 

 For two views, we need four point correspondences. 
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Slide credit: Svetlana Lazebnik 
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Affine Structure from Motion 

• Centering: subtract the centroid of the image points 

 

 

 

 

 
 

• For simplicity, assume that the origin of the world 

coordinate system is at the centroid of the 3D points. 

• After centering, each normalized point xij is related to 

the 3D point Xi by 
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Slide credit: Svetlana Lazebnik 
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Affine Structure from Motion 

• Let’s create a 2m × n data (measurement) matrix: 
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C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:  

A factorization method. IJCV, 9(2):137-154, November 1992.  

Slide credit: Svetlana Lazebnik 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
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Affine Structure from Motion 

• Let’s create a 2m × n data (measurement) matrix: 

 

 

 

 

 

 

 
 

• The measurement matrix D = MS must have rank 3! 
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C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:  

A factorization method. IJCV, 9(2):137-154, November 1992.  

Slide credit: Svetlana Lazebnik 
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http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
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Factorizing the Measurement Matrix 
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B. Leibe Slide credit: Martial Hebert 
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Factorizing the Measurement Matrix 

• Singular value decomposition of D: 
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Factorizing the Measurement Matrix 

• Singular value decomposition of D: 
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Factorizing the Measurement Matrix 

• Obtaining a factorization from SVD: 
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Factorizing the Measurement Matrix 

• Obtaining a factorization from SVD: 
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Slide credit: Martial Hebert 

This decomposition minimizes 

|D-MS|2 
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Affine Ambiguity 

 

 

 

 

 

 

• The decomposition is not unique. We get the same D by 
using any 3£3 matrix C and applying the transformations 

M → MC, S →C-1S. 

• That is because we have only an affine transformation 

and we have not enforced any Euclidean constraints 

(like forcing the image axes to be perpendicular, for 

example). We need a Euclidean upgrade. 
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Estimating the Euclidean Upgrade 

• Orthographic assumption: image axes are perpendicular 

and scale is 1. 

 

 

 

 

 
• This can be converted into a system of 3m equations: 

 

 

 
 

for the transformation matrix C   goal: estimate C 
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Estimating the Euclidean Upgrade 

• System of 3m equations: 

 

 

 

 
 

• Let 

 

• Then this translates to 3m equations in L 

 
 

 Solve for L 

 Recover C from L by Cholesky decomposition: L = CCT 

 Update M and S:  M = MC, S = C-1S  
 38 
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1 2 1 2

1 1 1

2 2 2

ˆ ˆ 0 0

ˆ 1 1 ,     1,...,

ˆ 1 1

T T

i i i i

T T

i i i

T T

i i i

a a a CC a

a a CC a i m

a a CC a

   


    
   

1

2

,     1,...,
T

i

i T

i

a
A i m

a

 
  
 

,     1,...,T

i iALA I i m 

TL CC



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 W

S
 1

4
/1

5
 

Algorithm Summary 

• Given: m images and n features xij 

• For each image i, center the feature coordinates. 

• Construct a 2m × n measurement matrix D: 

 Column j contains the projection of point j in all views 

 Row i contains one coordinate of the projections of all the n 

points in image i 

• Factorize D: 

 Compute SVD: D = U W VT 

 Create U3 by taking the first 3 columns of U 

 Create V3 by taking the first 3 columns of V 

 Create W3 by taking the upper left 3 × 3 block of W 

• Create the motion and shape matrices: 

 M = U3W3
½  and S = W3

½ V3
T (or M = U3 and S = W3V3

T) 

• Eliminate affine ambiguity 
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Reconstruction Results 
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C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:  

A factorization method. IJCV, 9(2):137-154, November 1992.  

Slide credit: Svetlana Lazebnik Image Source: Tomasi & Kanade 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
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Dealing with Missing Data 

• So far, we have assumed that all points are visible in all 

views 

• In reality, the measurement matrix typically looks 

something like this: 
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Cameras 

Points 

Slide credit: Svetlana Lazebnik 
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Dealing with Missing Data 

• Possible solution: decompose matrix into dense sub-

blocks, factorize each sub-block, and fuse the results 

 Finding dense maximal sub-blocks of the matrix is NP-complete 

(equivalent to finding maximal cliques in a graph) 

• Incremental bilinear refinement 
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(1) Perform 

factorization on a 

dense sub-block 

F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Segmenting, Modeling, 

and Matching Video Clips Containing Multiple Moving Objects. PAMI 2007. 

Slide credit: Svetlana Lazebnik 

http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf
http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf
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Dealing with Missing Data 

• Possible solution: decompose matrix into dense sub-

blocks, factorize each sub-block, and fuse the results 

 Finding dense maximal sub-blocks of the matrix is NP-complete 

(equivalent to finding maximal cliques in a graph) 

• Incremental bilinear refinement 
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(1) Perform 

factorization on a 

dense sub-block 

(2)  Solve for a new 3D 

point visible by at least 

two known cameras 

(linear least squares) 

F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Segmenting, Modeling, 

and Matching Video Clips Containing Multiple Moving Objects. PAMI 2007. 

Slide credit: Svetlana Lazebnik 

http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf
http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf
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Dealing with Missing Data 

• Possible solution: decompose matrix into dense sub-

blocks, factorize each sub-block, and fuse the results 

 Finding dense maximal sub-blocks of the matrix is NP-complete 

(equivalent to finding maximal cliques in a graph) 

• Incremental bilinear refinement 
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(1) Perform 

factorization on a 

dense sub-block 

(2)  Solve for a new 3D 

point visible by at least 

two known cameras 

(linear least squares) 

(3)  Solve for a new camera 

that sees at least three 

known 3D points (linear 

least squares) 

F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Segmenting, Modeling, 

and Matching Video Clips Containing Multiple Moving Objects. PAMI 2007. 

Slide credit: Svetlana Lazebnik 

http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf
http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf
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Comments: Affine SfM 

• Affine SfM was historically developed first. 

• It is valid under the assumption of affine cameras. 

 Which does not hold for real physical cameras… 

 …but which is still tolerable if the scene points are far away 

from the camera. 

 

• For good results with real cameras, we typically need 

projective SfM. 

 Harder problem, more ambiguity 

 Math is a bit more involved… 

(Here, only basic ideas. If you want to implement it, please look 

at the H&Z book for details). 
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Topics of This Lecture 

• Structure from Motion (SfM) 
 Motivation 

 Ambiguity 
 

• Affine SfM 
 Affine cameras 

 Affine factorization 

 Euclidean upgrade 

 Dealing with missing data 
 

• Projective SfM 
 Two-camera case 

 Projective factorization 

 Bundle adjustment 

 Practical considerations 
 

• Applications 
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Projective Structure from Motion 

 

 

 

 

 

 

 
 

• Given: m images of n fixed 3D points  
 

xij = Pi Xj ,  i = 1, … , m,    j = 1, … , n   
 

• Problem: estimate m projection matrices Pi and  

n 3D points Xj from the mn correspondences xij 
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x1j 

x2j 

x3j 

Xj 

P1 

P2 

P3 

B. Leibe Slide credit: Svetlana Lazebnik 
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Projective Structure from Motion 

• Given: m images of n fixed 3D points  
 

• zij xij = Pi Xj ,  i = 1,… , m,    j = 1, … , n   
 

• Problem: estimate m projection matrices Pi and n 3D 

points Xj from the mn correspondences xij 

• With no calibration info, cameras and points can only be 
recovered up to a 4£4 projective transformation Q: 

X → QX, P → PQ-1 

• We can solve for structure and motion when  

2mn >= 11m +3n – 15 

• For two cameras, at least 7 points are needed. 
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Projective SfM: Two-Camera Case 

• Assume fundamental matrix F between the two views 

 First camera matrix:       [I|0]Q-1 

 Second camera matrix:   [A|b]Q-1 

• Let                 , then  

• And 

 

 

 

 

 
 

• So we have 

 
49 

B. Leibe 

[ ]z z     x A I | 0 X b Ax b
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( ) ( )z z       x b x Ax b x

0][T 
 Axbx

AbF ][ 

[ ] , [ | ]z z  x I | 0 X x Ab X

b: epipole (FTb = 0),    A = –[b×]F 

Slide adapted from Svetlana Lazebnik 

0 ( )z   Ax b x

F&P sec. 13.3.1 
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Projective SfM: Two-Camera Case 

• This means that if we can compute the fundamental 

matrix between two cameras, we can directly estimate 

the two projection matrices from F. 
 

• Once we have the projection matrices, we can compute 

the 3D position of any point X by triangulation. 
 

• How can we obtain both kinds of information at the 

same time? 
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Projective Factorization 

 

 

 

 

 

 

 
 

• If we knew the depths z, we could factorize D to 

estimate M and S. 

• If we knew M and S, we could solve for z. 

• Solution: iterative approach (alternate between above 

two steps). 
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Slide credit: Svetlana Lazebnik 
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Sequential Structure from Motion 

• Initialize motion from two images  

using fundamental matrix 

• Initialize structure 

• For each additional view: 

 Determine projection matrix 

of new camera using all the  

known 3D points that are  

visible in its image –  

calibration  
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Slide credit: Svetlana Lazebnik 
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Sequential Structure from Motion 

• Initialize motion from two images  

using fundamental matrix 

• Initialize structure 

• For each additional view: 

 Determine projection matrix 

of new camera using all the  

known 3D points that are  

visible in its image –  

calibration  

 Refine and extend structure: 

compute new 3D points,  

re-optimize existing points  

that are also seen by this camera –  

triangulation  
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Slide credit: Svetlana Lazebnik 
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• Initialize motion from two images  

using fundamental matrix 

• Initialize structure 

• For each additional view: 

 Determine projection matrix 

of new camera using all the  

known 3D points that are  

visible in its image –  

calibration  

 Refine and extend structure: 

compute new 3D points,  

re-optimize existing points  

that are also seen by this camera –  

triangulation  

• Refine structure and motion: bundle adjustment 

 

 

 

Sequential Structure from Motion 
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Slide credit: Svetlana Lazebnik 
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Bundle Adjustment 

• Non-linear method for refining structure and motion 

• Minimizing mean-square reprojection error 
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Slide credit: Svetlana Lazebnik 
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Bundle Adjustment 

• Seeks the Maximum Likelihood (ML) solution assuming 

the measurement noise is Gaussian. 

• It involves adjusting the bundle of rays between each 

camera center and the set of 3D points. 

• Bundle adjustment should generally be used as the final 

step of any multi-view reconstruction algorithm. 

 Considerably improves the results. 

 Allows assignment of individual covariances to each 

measurement. 
 

• However… 

 It needs a good initialization. 

 It can become an extremely large minimization problem. 

• Very efficient algorithms available. 
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Projective Ambiguity 

• If we don’t know anything about the camera or the 

scene, the best we can get with this is a reconstruction 

up to a projective ambiguity Q. 

 This can already be useful.  

 E.g. we can answer questions like  

“at what point does a line  

  intersect a plane”? 
 

• If we want to convert this to a  

“true” reconstruction, we need  

a Euclidean upgrade. 

 Need to put in additional knowledge 

about the camera (calibration) or 

about the scene (e.g. from markers). 

 Several methods available  

(see F&P Chapter 13.5 or H&Z Chapter 19) 
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Self-Calibration 

• Self-calibration (auto-calibration) is the process of 

determining intrinsic camera parameters directly from 

uncalibrated images. 

• For example, when the images are acquired by a single 

moving camera, we can use the constraint that the 

intrinsic parameter matrix remains fixed for all the 

images. 

 Compute initial projective reconstruction and find 3D projective 

transformation matrix Q such that all camera matrices are in the 

form Pi = K [Ri | ti]. 

• Can use constraints on the form of the calibration 

matrix: square pixels, zero skew, fixed focal length, etc. 
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Practical Considerations (1) 

 

 

 

 

 

 

 

1. Role of the baseline 

 Small baseline:  large depth error 

 Large baseline:  difficult search problem 
 

• Solution 

 Track features between frames until baseline is sufficient. 
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Large Baseline Small Baseline 

Slide adapted from Steve Seitz 
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Practical Considerations (2) 

2. There will still be many outliers 

 Incorrect feature matches 

 Moving objects 
 

 Apply RANSAC to get robust estimates based on the 

inlier points. 
 

3. Estimation quality depends on the point configuration 

 Points that are close together  

in the image produce less stable 

solutions. 
 

 Subdivide image into a grid and try 

to extract about the same number of 

features per grid cell. 
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General Guidelines 

• Use calibrated cameras wherever possible. 

 It makes life so much easier, especially for SfM. 
 

• SfM with 2 cameras is far more robust than with a single 

camera. 

 Triangulate feature points in 3D using stereo. 

 Perform 2D-3D matching to recover the motion. 

 More robust to loss of scale (main problem of 1-camera SfM). 
 

• Any constraint on the setup can be useful 

 E.g. square pixels, zero skew, fixed focal length in each camera 

 E.g. fixed baseline in stereo SfM setup 

 E.g. constrained camera motion on a ground plane 

 Making best use of those constraints may require adapting the 

algorithms (some known results are described in H&Z). 
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Structure-from-Motion: Limitations 

• Very difficult to reliably estimate metric SfM unless 

 Large (x or y) motion or 

 Large field-of-view and depth variation 

• Camera calibration important for Euclidean 

reconstruction 

• Need good feature tracker 

62 
B. Leibe Slide adapted from Steve Seitz 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 W

S
 1

4
/1

5
 

Topics of This Lecture 

• Structure from Motion (SfM) 
 Motivation 

 Ambiguity 
 

• Affine SfM 
 Affine cameras 

 Affine factorization 

 Euclidean upgrade 

 Dealing with missing data 
 

• Projective SfM 
 Two-camera case 

 Projective factorization 

 Bundle adjustment 

 Practical considerations 
 

• Applications 
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Commercial Software Packages 

• boujou  

(http://www.2d3.com/) 

• PFTrack  

(http://www.thepixelfarm.co.uk/) 

• MatchMover  

(http://www.realviz.com/) 

• SynthEyes  

(http://www.ssontech.com/) 

• Icarus  

(http://aig.cs.man.ac.uk/research/reveal/icarus/) 

• Voodoo Camera Tracker  

(http://www.digilab.uni-hannover.de/) 
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Applications: Matchmoving 
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• Putting virtual objects into real-world videos 

 Original sequence Tracked features 

SfM results Final video 

Videos from Stefan Hafeneger 

../cv-ws08/material-hafeneger/Presentation/Presentation.ppt_media/S8 720p25.mov
../cv-ws08/material-hafeneger/Presentation/Presentation.ppt_media/Tracking.mov
../cv-ws08/material-hafeneger/Presentation/Presentation.ppt_media/Rekonstruktion.mov
../cv-ws08/material-hafeneger/Presentation/Presentation.ppt_media/Sequence.mov
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Applications: Large-Scale SfM from Flickr 
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S. Agarwal, N. Snavely, I. Simon, S.M. Seitz, R. Szeliski, Building Rome in a Day,  

ICCV’09, 2009. (Video from http://grail.cs.washington.edu/rome/) 

http://grail.cs.washington.edu/rome/rome_paper.pdf
http://grail.cs.washington.edu/rome/
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References and Further Reading 

• A (relatively short) treatment of affine and projective 

SfM and the basic ideas and algorithms can be found in 

Chapters 12 and 13 of 

 

 

 
 

• More detailed information (if you really 

want to implement this) and better 

explanations can be found in Chapters 10,  

18 (factorization) and 19 (self-calibration)  

of 
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