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Computer Vision - Lecture 15

Camera Calibration & 3D Reconstruction

15.01.2015

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

RWTH CHE
Recap: What Is Stereo Vision?
¢ Generic problem formulation: given several images of

the same object or scene, compute a representation of
its 3D shape c

Slide credit: Svetlana L azebnik, Steve Seit; B. Leibe

RWTH ACHET
Recap: Epipolar Geometry
e Geometry of two views allows us to constrain where the

corresponding pixel for some image point in the first
view must occur in the second view.

epipolar line

epipolar line .

¢ Epipolar constraint:

» Correspondence for point P in IT must lie on the epipolar line /’
in IT’ (and vice versa).

» Reduces correspondence problem to 1D search along conjugate
epipolar lines.

slide adapted from Steve Seit: B. Leibe
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Course Outline

Image Processing Basics

Segmentation & Grouping

Object Recognition

e Local Features & Matching

¢ Object Categorization

¢ 3D Reconstruction

» Epipolar Geometry and Stereo Basics

» Camera calibration & Uncalibrated Reconstruction
» Structure-from-Motion

¢ Motion and Tracking

Computer Vision WS 14/15
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Recap: Depth with Stereo - Basic Idea

¢ Basic Principle: Triangulation
» Gives reconstruction as intersection of two rays
» Requires
- Camera pose (calibration)
- Point correspondence

Computer Vision WS 14/15

ide credit: Steve Seit; B. Leibe
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Recap: Stereo Geometry With Calibrated Cameras

\X world point

P=|Y -
\f\‘ p
P /,f-x X \\\‘ p
7z, ) Z; N x!
O, . T (o}
' X ~ v v!!
Y. -t
R

« Camera-centered coordinate systems are related by
known rotation R and translation T:

X =RX+T

ide credit: Kristen Grauman LA
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RWTH/CET
Recap: Essential Matrix

X'-(TxRX)=0 ——
X'-(Tx RX)=0 P L
Let E=T:R ’ T : Z
XTEX =0 ' .

¢ This holds for the rays p and p’ that
are parallel to the camera-centered

position vectors X and X’, so we have:

* E is called the essential matrix, which relates
corresponding image points [Longuet-Higgins 1981]

ide credit: Kristen Grauman B. Leibe
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Recap: Stereo Image Rectification

¢ In practice, it is
convenient if image
scanlines are the
epipolar lines.

¢ Algorithm

Reproject image planes onto a common

plane parallel to the line between optical

centers

- Pixel motion is horizontal after this transformation

» Two homographies (3x3 transforms), one for each
input image reprojection

Computer Vision WS 14/15

Correspondence Problem

Multiple match
hypotheses satisfy

® Hypothesis 1

2 . - vypeess2  EPIPOLAr constraint,
y Hypothess 3 DUt which is
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ide credit: Kristen Grauman LA Eique ffiom Gee & Cipolla 1990)

RWTH/CET
Recap: Essential Matrix and Epipolar Lines

T Epipolar constraint: if we observe
P Ep 0 point p in one image, then its
position p’ in second image must

satisfy this equation.

I'= Ep is the coordinate vector represen-
ting the epipolar line for point p

(i.e., the line is given
by: I''x=0)
—

l= ET p' is the coordinate vector representing
the epipolar line for point p’

Computer Vision WS 14/15

ide credit: Kristen Grauman B. Leibe

Recap: Stereo Reconstruction

¢ Main Steps
» Calibrate cameras
» Rectify images
» Compute disparity
» Estimate depth

Computer Vision WS 14/15

ide credit: Kristen Grauman B. Leibe

Dense Correspondence Search

T HON. ABRATIAM LINC President of United States. wﬁ—;

g

¢ For each pixel in the first image
» Find corresponding epipolar line in the right image

» Examine all pixels on the epipolar line and pick the best match
(e.g. SSD, correlation)

» Triangulate the matches to get depth information

¢ This is easiest when epipolar lines are scanlines
= Rectify images first

adaoted from Svetlana lazebnik, 1iZhags
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http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

Example: Window Search

¢ Data from University of Tsukuba

Scene Ground truth

Computer Vision WS 14/15

ide credit: Kristen Grauman B. Leibe

Effect of Window Size

]
3 W =20
1
; . . s : :
H Want window large enough to have sufficient intensity
Zg variation, yet small enough to contain only pixels with
5 about the same disparity.
5
=8
£
8
; 17
ide credit: Kristen Grauman B. Leibe Eigures from Li Zhangl

Dense vs. Sparse

e Sparse
» Efficiency
» Can have more reliable feature matches, less
sensitive to illumination than raw pixels
» But...
- Have to know enough to pick good features
- Sparse information

- Breaks down in textureless regions anyway
- Raw pixel distances can be brittle
- Not good with very different viewpoints

ide credit: Kristen Grauman

=Y e Dense

o . Simple process

= » More depth estimates, can be useful for surface
g reconstruction

> » But...

g
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Example: Window Search

¢ Data from University of Tsukuba

Window-based matching
(best window size)

Ground truth

ide credit: Kristen Grauman B. Leibe

Alternative: Sparse Correspondence Search ‘

N, President of United States. wﬁ;
4

TION. ADRATIAM 1.

¢ ldea:
» Restrict search to sparse set of detected features

> Rather than pixel values (or lists of pixel values) use feature
descriptor and an associated feature distance

» Still narrow search further by epipolar geometry

What would make good features?
B. Leibe

ide credit: Kristen Grauman
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Occlusions

ide credit: Kristen Grauman LA




Possible Sources of Error?

¢ Low-contrast / textureless image regions
¢ Occlusions
¢ Camera calibration errors

* Violations of brightness constancy (e.g., specular
reflections)

¢ Large motions

Computer Vision WS 14/15

Slide credit: Kristen Grauman B. Leibe

Recap: A General Point

¢ Equations of the form

Ax=0
* How do we solve them? (always!)
» Apply SVD
SVD
dll vll
A=UDV' =U :
dNN VNl

Singular values Singular vectors

» Singular values of A = square roots of the eigenvalues of ATA.
» The solution of Ax=0 is the nullspace vector of A.

» This corresponds to the smallest singular vector of A.
B. Leibe

Computer Vision WS 14/15
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RWTHAACHER
Recall: Pinhole Camera Model
Y \l .
P . X
c S z c ol 1
N P [ P z
I mm e I
X,Y,Z2)=>(fX/1Z,fY12Z)
2 X X
2 v XY [f 0 v
g Y |= f 0 x=PX
B z z
5 z 10
= 1 1
© 25
slide credit- Svetlana | azebnik B. Leibe Images from Hartlev & Zisserman!
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Summary: Stereo Reconstruction

¢ Main Steps
~ Calibrate cameras
» Rectify images
» Compute disparity
» Estimate depth

¢ So far, we have only considered v
calibrated cameras... .

¢ Today
» Uncalibrated cameras
» Camera parameters
» Revisiting epipolar geometry
» Robust fitting

de credit: Kristen Grauman B. Leibe

Topics of This Lecture

¢ Camera Calibration
~ Camera parameters
» Calibration procedure

« Revisiting Epipolar Geometry
» Triangulation
Calibrated case: Essential matrix
» Uncalibrated case: Fundamental matrix
» Weak calibration
» Epipolar Transfer

v

¢ Active Stereo
» Laser scanning
» Kinect sensor

B. Leibe

Pinhole Camera Model

cere - image plane

fX f 1 0
fy |= f 1 0
0

X
Y
z
1

P =diag(f, f 1[1]0]

B. Leibe
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\mages from Hartley & Zisserman

ide credit:. Svetlana Lazebnik
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Camera Coordinate System

e Principal axis:

» Line from the camera center perpendicular to the image plane
¢ Normalized (camera) coordinate system:

» Camera center is at the origin and the principal axis is the z-axis
e Principal point (p):

» Point where principal axis intersects the image plane (origin of
normalized coordinate system)

27

B. Leibe Image from Hartlev & Zisserman

Slide credit: Svetlana | azebnik

Principal Point Offset

(X,Y,2) > (£X/Z+p,, fYIZ+p,)

X X
y fX+Zp, f p, O y
| fY+Z = f 0

z 1 0
1 1

29

Slide credit: Svetlana L azebnik B. Leibe

Image from Hartlev & Zisserman|

RWTH ACHET
Pixel Coordinates: Non-Square Pixels

. . 1 1
Pixel size: —x—
m, m

X Y

m, pixels per meter in horizontal direction,
m, pixels per meter in vertical direction

mx f px a, XO
K = my f py = ay y0
1 1 1

pixels/m m pixels

Slide credit: Svetlana | azebnik LA

Computer Vision WS 14/15
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Principal Point Offset

principal point: ( Py py)

¢ Camera coordinate system: origin at the principal point
¢ Image coordinate system: origin is in the corner

28

B. Leibe Image from Hartlev & Zissermay

ide credit: Svetlana Lazebnik

Principal Point Offset

1 0 X

Py v

p, 1 0 7

1 10

1

f pX
K= f p,| calibration matrix P= K[| | O]

1

30

Image from Hartley & Zisserma

ide credit: Svetlana Lazebnik 8. Leibe
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RWTHAACHER
Camera Rotation and Translation

¢ In general, the camera

z coordinate frame will be
il related to the world
' \':.. coordinate frame by a
° rotation and a translation
.
X
X =R(X-C

coords. of point

¢ coords. of camera center
in camera frame

X in world frame
coords. of a point

in world frame (nonhomogeneous)

ide credit: Svetlana | azebnik LA Image from Hartley & Zi
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Camera Rotation and Translation Summary: Camera Parameters

¢ Intrinsic parameters

In non-homogeneous - : :

z S Principal point coordinates m, £ 5 p] e S %
Focal length K{ m, H f py}:{ a, yﬂ}
1 1

. " Ll coordinates:

LT N X =R(X-C)

s TIRHE T

x=K[110]X,, =K[R|-RC|X  P=KI[R|t], t=-RC

v

v

Pixel magnification factors
Skew (non-rectangular pixels)
Radial distortion

v

v

v

cadial distoetion linear image

Q cemtion j

ide credit: Svetlana Lazebnik B. Leibe
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Note: C is the null space of the camera projection matrix (P C=0)

ide credit: Svetlana | azebnik B. Leibe

Image from Hartlev & Zisserman|

RWTH CHE RWTH CHE
Summary: Camera Parameters Camera Parameters: Degrees of Freedom
¢ Intrinsic parameters ¢ Intrinsic parameters DoF
» Principal point coordinates m, £ s p] e, S % » Principal point coordinates 2 & s p
» Focal length K { m, H f py}{ a, yﬂ} » Focal length 1 K _[ f, p;ﬂ
» Pixel magnification factors 1 1 1 » Pixel magnification factors 1 14
» Skew (non-rectangular pixels) » Skew (non-rectangular pixels) 1
» Radial distortion » Radial distortion
%  Extrinsic parameters « EXtrlnSl.C parameters
3 > Rotation R s » Rotation R 3
%] 4] » Translation t
i 3
E - Translanon. t . i (both relative to world coordinate system)
5 (both relative to world coordinate system) pP. P P p 5
< Borow M =| « Camera projection matrix P=K[R|t]
| * Camera projection matrix P= KIRIt]=|Py Pp P Py g = General pinhole camera: 9 DoF
5 5
E Py B, By By g = CCD Camera with square pixels: 10 DoF
S How many degrees of freedom does P have? 3 S = General camera: 11 DoF 3
ide adapted from Svetlana | azebnik B. teile B. Leibe
RWTH ACHET RWTH ACHET

Calibrating a Camera Camera Calibration

¢ Compute intrinsic and extrinsic
parameters using observed camera
data.

¢ Given n points with known 3D coordinates X; and known
image projections x;, estimate the camera parameters

Main idea

¢ Place “calibration object” with
known geometry in the scene

¢ Get correspondences

¢ Solve for mapping from scene to
image: estimate P=P; P,

i n
=] &
5 53
& S
0 »
= =
= =
o =
2 2
> >
g g
= S
a 2
2 £
1 1
o O

ide credit: Kristen Grauman LA

ide credit: Svetlana | azebnik. B. Leibe




RWTH/CET
Camera Calibration: Obtaining the Points

¢ For best results, it is important that the calibration
points are measured with subpixel accuracy.

¢ How this can be done depends on the exact pattern.

¢ Algorithm for checkerboard pattern
1. Perform Canny edge detection.
2. Fit straight lines to detected linked edges.
3. Intersect lines to obtain corners.

» If sufficient care is taken, the points can
then be obtained with localization accuracy < 1/10 pixel.

¢ Rule of thumb

> Number of constraints should exceed number of unknowns by a
factor of five.

= For 11 parameters of P, at least 28 points should be used.
B. Leibe

Computer Vision WS 14/15
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Camera Calibration: DLT Algorithm X
o 2

T T T P?
Xp 00 =xX (R
P, =0 Ap=0
T T T
0" X, =y X, (P Solve using... SVD!
T T T
X, 0 —=xX,
]
5| * Notes
g » P has 11 degrees of freedom (12 parameters, but scale is
= arbitrary).
g » One 2D/3D correspondence gives us two linearly independent
5 equations.
é » Homogeneous least squares (similar to homography est.)
8 = 5 % correspondences needed for a minimal solution.

“

lide adapted from Svetlana Lazebnik. B. Leibe

RWTHAACHER
Camera Calibration

Once we’ve recovered the numerical form of the camera
matrix, we still have to figure out the intrinsic and
extrinsic parameters

¢ This is a matrix decomposition problem, not an
estimation problem (see F&P sec. 3.2, 3.3)
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Slide credit: Svetlana | azebnik LA

RWTH//CHEN
Camera Calibration: DLT Algorithm
(DLT = “Direct Linear Transform”
><I
MR R e R [
Axi :Pxi AYi|=|Pu Pp Ps Py XI‘Z = P; X;
A e
X, xPX; =0
g T T
a 0 =X yiX; P,
- X7 0 —xX|P,|=0
S
@ T T
; - yixi XiXi O P3 X
E’ Only two linearly independent equations
S P2 40
Slide adapted from Svetlana | azebnik B. Leibe
RWTH CHE

Camera Calibration: DLT Algorithm X
o X 22

X1 0" —xX]|P "
P, |=0 Ap=0
0" XI -y Xl |\P
X0 —x X!
¢ Notes

» For coplanar points that satisfy [1"X=0,
we will get degenerate solutions (I1,0,0), (0,I1,0), or (0,0,IT).
= We need calibration points in more than one plane!

Computer Vision WS 14/15

ide credit: Svetlana Lazebnik B. Leibe

RWTH ACHET
Camera Calibration: Some Practical Tips

¢ For numerical reasons, it is important to carry out some
data normalization.
» Translate the image points x; to the (image) origin and scale
them such that their RMS distance to the origin is \/2.

» Translate the 3D points X; to the (world) origin and scale them
such that their RMS distance to the origin is J§

» (This is valid for compact point distributions on calibration
objects).

¢ The DLT algorithm presented here is easy to implement,
but there are some more accurate algorithms available
(see H&Z sec. 7.2).

¢ For practical applications, it is also often needed to
correct for radial distortion. Algorithms for this can be
found in H&Z sec. 7.4, or LF.,&P sec. 3.3. m
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Topics of This Lecture

¢ Revisiting Epipolar Geometry

» Triangulation
Calibrated case: Essential matrix
Uncalibrated case: Fundamental matrix
Weak calibration
Epipolar Transfer

v

v

v

v

B. Leibe

45

Revisiting Triangulation

¢ Given projections of a 3D point in two or more images
(with known camera matrices), find the coordinates of

the point
<

(X2

0O, 0,

lide credit: Svetlana Lazebnik B. Leibe

RWTHACHEN
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Triangulation: 1) Geometric Approach

¢ Find shortest segment connecting the two viewing rays
and let X be the midpoint of that segment.

/

X

(o} 0,

Slide credit: Svetlana | azebnik LA

RWTHACHEN

49

Two-View Geometry

¢ Scene geometry (structure):
» Given corresponding points in two or more images, where is the
pre-image of these points in 3D?
¢ Correspondence (stereo matching):
» Given a point in just one image, how does it constrain the
position of the corresponding point x’ in another image?
e Camera geometry (motion):

» Given a set of corresponding points in two images, what are the
cameras for the two views?

Computer Vision WS 14/15
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Slide credit: Svetlana | azebnik B. Leibe

RWTH CHE
Revisiting Triangulation
¢ We want to intersect the two visual rays corresponding

to x; and x,, but because of noise and numerical errors,
they will never meet exactly. How can this be done?

R
/;,, '

R,

E
§ . " Ol o B. Leibe Oz 8
RWTH ACHET
Triangulation: 2 )Linear Algebraic Approach
A% =PX = xxPX=0 [x,]JPX=0
X, =P, X X, xP,X=0 [x,]P,X =0

Cross product as matrix multiplication:

0 -a, a, |b

y X
axb=| a, 0 -a b |=[alo
-a, a, 0 | b,

)
<
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ide credit: Svetlana | azebnik. B. Leibe




RWTH/CET
Triangulation: 2) Linear Algebraic Approach

RWTH/CET
Triangulation: 3) Nonlinear Approach
X, =PX X, xPX=0 [x,JPX=0
LX,=PX  X,xP,X=0 [X,]P,X=0

¢ Find X that minimizes

d* (%, BX)+d*(x,, P,X)

Two independent equations each in terms of
three unknown entries of X

0 0
S . K
3 = Stack them and solve using SVD! 3
12 [
2 2
§ ¢ This approach is often preferable to the geometric §
> approach, since it nicely generalizes to multiple >
Q Q
5 cameras. s
=8 Q
51 52
Slide credit: Svetlana | azebnik B. Leibe de credit: Svetlana | azebnik B. Leibe

RWTH CHE
Triangulation: 3) Nonlinear Approach Revisiting Epipolar Geometry

¢ Find X that minimizes

d*(x, RX)+d*(x,, P,X)

¢ This approach is the most accurate, but unlike the other
two methods, it doesn’t have a closed-form solution.

¢ [terative algorithm
- Initialize with linear estimate.

» Optimize with Gauss-Newton or Levenberg-Marquardt

¢ Let’s look again at the epipolar constraint
(see F&P sec. 3.1.2 or H&Z Appendix 6).

» For the calibrated case (but in homogenous coordinates)
» For the uncalibrated case

Computer Vision WS 14/15
Computer Vision WS 14/15

B. Leibe B. Leibe

RWTH/ACHEN
Epipolar Geometry: Calibrated Case

RWTH/ACHEN
Epipolar Geometry: Calibrated Case

o

the first one.

(Longuet-Higgins, 1981)

g g , e, .

5 5 x[tx(RX)]=0 == Xx'Ex'=0 with E=[t]R
1 [

2 2

5| Camera matrix: [1|0] Camera matrix: [RT| -RTt] £ l

A X=(uv,w, )T Vector x’ in second coord. 2 : .
> >

B x=(uy, w)T system has coordinates Rx’ in B Essential Matrix
2 2

£ £

I=3 o

o o

The vectors x, {, and Rx’ are coplanar

Slide credit: Svetlana | azebnik LA

56

ide credit: Svetlana | azebnik. B. Leibe
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RWTH/CET
Epipolar Geometry: Calibrated Case

X

o ] | = o

x[tx(Rx)]=0 =2 Xx'ExX'=0 with E=[t]R

e E x’ is the epipolar line associated with x’ ([ = E x’)
e ETx is the epipolar line associated with x (I’ = E"x)
e Ee’=0 and ETe=0
¢ Eis singular (rank two)
¢ E has five degrees of freedom (up to scale)
Slide credit: Svetlana | azebnik B. Leibe >
RWTH CHE

Epipolar Geometry: Uncalibrated Case

X

o - | " : o

LTEX' =0 mm) x'Fx'=0 with F=KTEK'"?

8
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3
=
1
=
=
o
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X =KX
' o Fundamental Matrix
X'=K (Faugeras and Luong, 1992)
59
slide credit: Svetlana | azebnik B. Leibe
RWTH ACHET

Estimating the Fundamental Matrix

¢ The Fundamental matrix defines the epipolar geometry
between two uncalibrated cameras.

¢ How can we estimate F from an image pair?
» We need correspondences...

B. Leibe

Computer Vision WS 14/15
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RWTH/CET
Epipolar Geometry: Uncalibrated Case

X

o
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¢ The calibration matrices K and K’ of the two cameras
are unknown
¢ We can write the epipolar constraint in terms of
unknown normalized coordinates:
R'ER' =0 x=Kg&, X =K%
58
de credit: Svetlana | azebnik B. Leibe
RWTH CHE
Epipolar Geometry: Uncalibrated Case
X
o - | ‘ ' i o
R'EX'=0 mm) xX'Fx'=0 with F=KTEK'™
e F x’ is the epipolar line associated with x’ ([ = F x’)
e FTx is the epipolar line associated with x ([’ = FTx)
e Fe’=0 and FTe=0
¢ Fis singular (rank two)
¢ F has seven degrees of freedom 6
ide credit: Svetlana | azebnik B. Leibe
RWTH ACHET
The Eight-Point Algorithm
x= UV, 1T, x'= @), 1T ?ﬁ
Fiz

'

Fy
v =0 ‘ [u'u, u'v, o w00’ v w0, 1) | Faa | =0
1 Fas

Fy F Fy
(u,0,1) | For P Fy

Fp Fp Py
Fyy
. . Fiy
¢ Taking 8 correspondences: Fis
’ ’ ’ . V) Fyy
wjuy  wivr wy o wpvy vivy vy our vp 1 5 0
/ ’ , N A Fip
UhUy  UHVy Uy UVh Vpvh Uy Uz vy 1 0
T ’ T Fig
Uzuz  uzvz Uy uzvy vzvy vz uz vy 1 F 0
. ’ ’ A 21
Wyuy YUy Wy UAVY  vavy V) ug vg 1 0
’ , b v Fo| =
usus  ugvs  uy  usvy vsvy vy us v L 7 0
ufug ufve uly ugvy vevy vy ug v 1| |2 0
ubur  uhvr uh o urvhy wvrvp vh up vr 1 ﬁ__““ 0 Thi PRI .
ugug  ugus ug ugvy vsvgy Vg ug v 1 FRZ 0 1S minimizes:
33 N
Af=0 T Fx 2
Sol i SVD! XX
olve using... : ®
i=1 62
ide adapted from Svetlana | azebnik 5. Leibe
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Excursion: Properties of SVD

¢ Frobenius norm
» Generalization of the Euclidean norm to matrices

1A = >y =
=1 j=1

min(m,n)

2
Z G
i=1

¢ Partial reconstruction property of SVD
- Let o; i=1,...,N be the singular values of A.
- Let Ay = UprVpT be the reconstruction of A when we set
Op+1, -+ Oy to zero.
- Then A, = UprVpT is the best rank-p approximation of A in the
sense of the Frobenius norm
(i.e. the best least-squares approximation). 6
B. Leibe
Problem with the Eight-Point Algorithm
¢ In practice, this often looks as follows:
wiuy  whvy uw) owv] ve) o) wp vy 1 i 0
h / / ; - Fip
Uyly UGV Uy Uy VaUh Uy Uz vy 1 Iy 0
uhus uhvs uh ugvy vsvy vy uz vy 1 FM 0
uhug  whvy uy o ugvy vgvh vy oug vy 1 Fz‘l _ |0
ubus uhvs uh usvh vsvh vf us vy 1 1412% |0
ugus  ugUs U Ugvy veug vp ug v 1 F“ 0
upur  upvr uh urvp vpvp vp up wvp 1 F“ 0
ugus ugvs uf usvy vsvg vk ug vs 1 f‘ji 0
’ 65
lide adapted from Svetlana L azebnik B. Leibe

The Normalized Eight-Point Algorithm

1. Center the image data at the origin, and scale it so the
mean squared distance between the origin and the data
points is 2 pixels.

2. Use the eight-point algorithm to compute F from the
normalized points.

3. Enforce the rank-2 constraint using SVD. Set dy, to
SVD d, . i zero and
EUDV™ =U d reconstruct F
- - 22

4. Transform fundamental matrix back to original units: if
T and T’ are the normalizing transformations in the two
images, than the fundamental matrix in original
coordinatesis TTF T’.

Slide credit: Svetlana | azebnik LA

67
[Hartley, 19901
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The Eight-Point Algorithm

¢ Problem with noisy data

» The solution will usually not fulfill the constraint that F only has
rank 2.

= There will be no epipoles through which all epipolar lines pass!

¢ Enforce the rank-2 constraint using SVD
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ide credit: Svetlana | azebnik. B. Leibe

Set dj; to
zero and
reconstruct F
¢ As we have just seen, this provides the best least-
squares approximation to the rank-2 solution.
64
B. Leibe
Problem with the Eight-Point Algorithm
¢ In practice, this often looks as follows:
1 | 0
250906.36) 183269.57 921.81| 200931.10| 146766.13 738. 21| 272.19, 198.81 F12
2692.28) 131633.03) 176.27) 6196.73) 302975, 58| 405. 71| 15.27] 746. 79 1 F 0
416374, 23| 871684.30) 935,47 408110.89| 854354.92) 916. 90| 445,10 931.8] 1 F“ 0
191183.60) 171759. 40 410.27| 416435.62| 374125.90, 893. 65| 465.99 418.65 1 FZl — 0
4898886  3040L.75) 57.68) 28660457 185308, 58| 392.67) 845.22 525.15; 1 1412,2 0
164786.04 546559.67 813, 17| 1998.37 6628, 15| 9. 86| 202.65) 672,14 1 F}s 0
116407.01 2727.75 138.89| 169941.27, 3982.21 202.77| B838.12, 19.64 1 F:il 0
135384, 58| 754L1.13) 198,72 411350.03| 229127.78) 603.79) 681.28) 373,48 1 Fjj 0
= Poor numerical conditioning
= Can be fixed by rescaling the data
66
ide adapted from Svetlana Lazebnik B. Leibe

The Eight-Point Algorithm
N

 Meaning of error Z:(X,T Fx)?:
i-1
Sum of Euclidean distances between points x;and
epipolar lines Fx’; (or points x’; and epipolar lines F'x;),
multiplied by a scale factor

Nonlinear approach: minimize

ZN:[dz(xi, Fx)+d’(x, FTx)]

» Similar to nonlinear minimization
approach for triangulation.

» lterative approach (Gauss-Newton,
Levenberg-Marquardt,...)

11



Computer Vision WS 14/15

Computer Vision WS 14/15

UNI
Comparison of Estimation Algorithms

8-point Normalized 8-point Nonlinear least squares
Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel
Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel
6
ide credit: Svetlana | azebnik B Leibe

UNI
Stereo Pipeline with Weak Calibration

¢ So, where to start with uncalibrated cameras?

» Need to find fundamental matrix F and the correspondences
(pairs of points (u’,v’) & (u,v)).

¢ Procedure
1. Find interest points in both images
2. Compute correspondences
3. Compute epipolar geometry
4. Refine

ide credit: Kristen Grauman B. Leibe

71
Example from Andrew Zisserman

Computer Vision WS 14/15

ide credit: Kristen Grauman B Lefbe

UNI
Stereo Pipeline with Weak Calibration

2. Match points using only proximity

Example from Andrew Zisserman|

Computer Vision WS 14/15

Computer Vision WS 14/15

3D Reconstruction with Weak Calibration

¢ Want to estimate world geometry without requiring
calibrated cameras.
¢ Many applications:
» Archival videos
» Photos from multiple unrelated users
» Dynamic camera system

¢ Main idea:

» Estimate epipolar geometry from a (redundant) set of
point correspondences between two uncalibrated
cameras.

ide credit: Kristen Grauman B. Leibe

Stereo Pipeline with Weak Calibration

1. Find interest points (e.g. Harris corners)

; 72
ide credit: Kristen Grauman B. Leibe Example from Andrew Zisserman)
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Putative Matches based on Correlation Search

* Many wrong matches (10-50%), but enough to compute F

74

Example from Andrew Zisserman|

B. Leibe
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RANSAC for Robust Estimation of F

¢ Select random sample of correspondences
¢ Compute F using them
» This determines epipolar constraint

¢ Evaluate amount of support - number of inliers within
threshold distance of epipolar line

¢ Choose F with most support (#inliers)

75

ide credit: Kristen Grauman B. Leibe

RWTH//CHEN
UNIVERSITY,
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Pruned Matches

¢ Correspondences consistent with epipolar geometry

X"

. 77
B. Leibe Example from Andrew Zisserman|
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Epipolar Transfer

¢ Assume the epipolar geometry is known

¢ Given projections of the same point in two images, how
can we compute the projection of that point in a third
image?

X1 X2 :

ide credit: Svetlana | azebnik B Lefbe
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Putative Matches based on Correlation Search

* Many wrong matches (10-50%), but enough to compute F

B. Leibe

RWTH//CHEN
UNIVERSITY,

Example from Andrew Zisserman|

RWTH/CHET]
. . UNIVERSITY
Resulting Epipolar Geometry

78
Example from Andrew Zisserman|

B. Leibe
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Extension: Epipolar Transfer
¢ Assume the epipolar geometry is known
¢ Given projections of the same point in two images, how
can we compute the projection of that point in a third
image?
° ° ><
X1 X2 X3
|31 |32
Iy = FTisX;
ls2 = FTasX,
When does epipolar transfer fail?
ide credit: Svetlana | azebnik. B. Leibe 80
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Topics of This Lecture

¢ Active Stereo
» Laser scanning
» Kinect sensor

B. Leibe
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RWTHACHEN
Recall: Optical Triangulation
3D Scene points” X?
Image plan
0,
b Camera center

83

RWTHACHEN

Active Stereo with Structured Light

X

3D Scene point

Image plan

0,

b, Camera center

0,

Projector@

¢ |dea: Replace one camera by a projector.
» Project “structured” light patterns onto the object
» Simplifies the correspondence problem

Computer Vision WS 14/15

Computer Vision WS 14/15

RWTHACIEN
Microsoft Kinect - How Does It Work?

KINECT

for &

¢ Built-in IR
projector

¢ IR camera for
depth

¢ Regular camera
for color

B. Leibe

RWTH CHE
Recall: Optical Triangulation
3D Scene pointe( X
Image plan
0, 0,
b Camera center
¢ Principle: 3D point given by intersection of two rays.
» Crucial information: point correspondence
» Most expensive and error-prone step in the pipeline...
84
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What the Kinect Sees...

B. Leibe
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3D Reconstruction with the Kinect

SIGGRAPH Talks 2011
KinectFusion:

Real-Time Dynamic 3D Surface
Reconstruction and Interaction

Shahram Izadi 1, Richard Newcombe 2, David Kim 1,3, Otmar Hilliges 1,
David Molyneaux 1,4, Pushmeet Kohli 1, Jamie Shotton 1,
Steve Hodges 1, Dustin Freeman 5, Andrew Davison 2, Andrew Fitzgibbon 1

1 Microsoft Research Cambridge 2 Imperial College London
3 Newcastle University 4 Lancaster University
S University of Toronto

B. Leibe

Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.

lide credit: Steve Seit. B. Leibe

Laser Scanned Models

Laser Scanning

Object

Direction of travel
—_

Laser sheet
CCD image plane

Cylindrical lens

4
Laser ccp LA

Digital Michelangelo Project

http://gr tanford.edu/pr

1/

¢ Optical triangulation
» Project a single stripe of laser light
» Scan it across the surface of the object
» This is a very precise version of structured light scanning

Computer Vision WS 14/15

Slide credit: Steve Seit: B. Leibe

Laser Scanned Models

Computer Vision WS 14/15

The Digital Michelangelo Project, Levoy et al.

ide credit: Steve Seit; B. Leibe

Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.

Slide credit: Steve Seit: B. Leibe
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The Digital Michelangelo Project, Levoy et al.

ide credit: Steve Seit LA
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http://graphics.stanford.edu/projects/mich/

Laser Scanned Models

Computer Vision WS 14/15

The Digital Michelangelo Project, Levoy et al.

Slide credit: Steve Seit B. Leibe
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RWTH CHE
Slightly More Elaborate (But Still Cheap)

-

Software freely available from Robotics Institute TU Braunschweig
http://www.david-laserscanner.com/
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Poor Man’s Scanner

Desk N
Lamp Stick or

pencil

101
Bouget and Perona, ICCV’98]

RWTH/ACHEN
References and Further Reading

¢ Background information on camera models and
calibration algorithms can be found in Chapters 6 and 7

of .
R. Hartley, A. Zisserman
Multiple View Geometry in Computer Vision |

2nd Ed., Cambridge Univ. Press, 2004

¢ Also recommended: Chapter 9 of the same book on
Epipolar geometry and the Fundamental Matrix and
Chapter 11.1-11.6 on automatic computation of F.

’ 103
B. Leibe
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