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Recap: Sliding-Window Object Detection

* If object may be in a cluttered scene, slide a window
around looking for it.

T

Classifier

— F“a N Car/non-car

« Essentially, this is a brute-force approach with many
local decisions.
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Slide credit: Kristen Grauman B. Leibe

Recap: AdaBoost
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Slide credit: Kristen Grauman LA
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Course Outline

Image Processing Basics
Segmentation & Grouping
Object Recognition
Object Categorization |
» Sliding Window based Object Detection

e Local Features & Matching
» Local Features - Detection and Description
» Recognition with Local Features

¢ Object Categorization I
» Part based Approaches

¢ 3D Reconstruction

¢ Motion and Tracking

RWTH CHE
Classifier Construction: Many Choices...

Nearest Neighbor
- st
rf
LR
Shakhnarovich, Viola, Darrell 2003

Berg, Berg, Malik 2005,
Boiman, Shechtman, Irani 2008, ...

<.

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998

Boosting Randomized Forests

§ L

Amit, Geman 1997,
Breiman 2001,

Lepetit, Fua 2006,
Gall, Lempitsky 2009,...

Support Vector Machines

° o
Viola, Jones 2001, Vapnik, Scholkopf 1995,
Torralba et al. 2004, | Papageorgiou, Poggio ‘01,
Opelt et al. 2006, Dalal, Triggs 2005,
Benenson 2012, ... Vedaldi, Zisserman 2012

ide adapted from Kristen Grauman B. Leibe
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Recap: AdaBoost Feature+Classifier Selectiorn

¢ Want to select the single rectangle feature and threshold
that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

& : 9, . 6, Resulting weak classifier:
"5 oeeooresee

bix) = { 1 f £e0 > 6,

-1 otherwise

For next round, reweight the
examples according to errors,
choose another filter/threshold
combo.

 — LX) —
Outputs of a
possible rectangle
feature on faces
and non-faces.

6.
[Viola & Jones, CVPR 2007]

ide credit: Kristen Grauman LA
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Recap: Viola-Jones Face Detector

Train cascade o
classifiers with
AdaBoost

—‘“_.n:

Sl W=
= .n|~=

Selected features,
thresholds, and weights

z N
Non-faces

« Train with 5K positives, 350M negatives
* Real-time detector using 38 layer cascade
* 6061 features in final layer

¢ [Implementation available in OpenCV:
http://sourceforge.net/projects/opencvlibrary/]

ide credit: Kristen Grauman B. Leibe

Limitations (continued)

Non-rigid, deformable objects not captured well with
representations assuming a fixed 2D structure; or must
assume fixed viewpoint

Objects with less-regular textures not captured well
with holistic appearance-based descriptions

L i &l

ide credit: Kristen Grauman B. Leibe
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Limitations (continued)

¢ In practice, often entails large, cropped training set
(expensive)

¢ Requiring good match to a global appearance description
can lead to sensitivity to partial occlusions

Image credit: Adam, Rivlin, & Shimshoni K. Grauman, B. Leibe
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Limitations of Sliding Windows (continued)

¢ Not all objects are “box” shaped

ide credit: Kristen Grauman B. Leibe

Limitations (continued)

e If considering windows in isolation, context is lost

1.1
Detector’s view

Sliding window

Figure credit: Derek Hoiem B. Leibe
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Topics of This Lecture

e Local Invariant Features
» Motivation
» Requirements, Invariances

¢ Keypoint Localization
» Harris detector
» Hessian detector

¢ Scale Invariant Region Selection
» Automatic scale selection
» Laplacian-of-Gaussian detector
» Difference-of-Gaussian detector
» Combinations

¢ Local Descriptors
» Orientation normalization
» SIFT

B. Leibe



http://sourceforge.net/projects/opencvlibrary/
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Motivation Application: Image Matching

¢ Global representations have major limitations

¢ Instead, describe and match only local regions

¢ Increased robustness to
» Occlusions

3 3
Ei » Articulation 3
3 3
12 [
2 2
5 5 . X
@ @ by Diva Sian
S S
5] » Intra-category variations g
= = by swashford
£ £
o o
o o 1
B. Leibe ide credit: Steve Seit; B. Leibe
RWTH/CHET
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Harder Case Harder Still?

by Diva Sian by scgbt

NASA Mars Rover images

Computer Vision WS 14/15

ide credit: Steve Seitz B. Leibe ide credit: Steve Seit; B. Leibe

UNIVERS

RWTH/ACHEN
UNIVERSITY
Answer Below (Look for tiny colored squares)

Application: Image Stitching

NASA Mars Rover images
with SIFT feature matches
(Figure by Noah Snavely)

Computer Vision WS 14/15

0
!
<
S|
[
=
.
8
@
S
g
E
2
£
o
8]

ide credit: Steve Seit: B. Leibe ide credit: Darva Frolova, Denis Simako B. Leibe



http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/swashford/428567562/
http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/scpgt/328570837/

UNIVERSITY
Application: Image Stitching

¢ Procedure:
~ Detect feature points in both images

Computer Vision WS 14/15
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ide credit: Darya Frolova. Denis Simako B. Leibe

RWTH/CHET
e - UNIVERSITY
Application: Image Stitching

¢ Procedure:
» Detect feature points in both images
» Find corresponding pairs
» Use these pairs to align the images

Computer Vision WS 14/15

ide credit: Darva Frolova, Denis Simakov B. Leibe
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Common Requirements

¢ Problem 1:
» Detect the same point independently in both images

BN
No chance to match!

‘ We need a repeatable detector!
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ide credit: Darva Frolova. Denis Simako B. Leibe

Computer Vision WS 14/15

Computer Vision WS 14/15

RWTH//CHEN
UNIVERSITY,

Application: Image Stitching

¢ Procedure:
» Detect feature points in both images
» Find corresponding pairs

ide credit: Darya Frolova, Denis Simakov. B. Leibe

UNIVERSITY
General Approach

-

. Find a set of
distinctive key-
points

2. Define a region
around each
keypoint

w

. Extract and
normalize the
region content

fa Similarity

$ | || e | 4. Compute a local

£ uhill. <= bl descriptor from thq
e.g. color e.g. color

normalized region
N pixels d(f,, fg)<T

5. Match local

descriptors
24

B. Leibe
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RWTH/ACHEN
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Common Requirements

e Problem 1:
» Detect the same point independently in both images

e Problem 2:
» For each point correctly recognize the corresponding one

‘ We need a reliable and distinctive descriptor!

ide credit: Darva Frolova. Denis Simakoy B. Leibe
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UNI
Invariance: Geometric Transformations

Multiple View
Geometry

In comautervision

ide credit: Steve Seit; B. Leibe

27

Requirements

¢ Region extraction needs to be repeatable and accurate
» Invariant to translation, rotation, scale changes
» Robust or covariant to out-of-plane (~affine) transformations
» Robust to lighting variations, noise, blur, quantization

Locality: Features are local, therefore robust to
occlusion and clutter.

Quantity: We need a sufficient number of regions to
cover the object.

Distinctiveness: The regions should contain
“interesting” structure.

Efficiency: Close to real-time performance.

B. Leibe
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Keypoint Localization

¢ Goals:
» Repeatable detection
» Precise localization
» Interesting content

= Look for two-dimensional signal changes

B. Leibe
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Levels of Geometric Invariance

4 .
) similarity projective
translation|
—r

—_iiind

Euclidean

B. Leibe

Many Existing Detectors Available

Hessian & Harris
Laplacian, DoG
Harris-/Hessian-Laplace
Harris-/Hessian-Affine

[Beaudet ‘78], [Harris ‘88]
[Lindeberg ‘98], [Lowe ‘99]
[Mikolajczyk & Schmid ‘01]
[Mikolajczyk & Schmid ‘04]

EBR and IBR [Tuytelaars & Van Gool ‘04]
MSER [Matas ‘02]

Salient Regions [Kadir & Brady ‘01]
Others...

Those detectors have become a basic building block for
many recent applications in Computer Vision.

32

B. Leibe
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Finding Corners

o Corners are repeatable and distinctive

ide credit:. Svetlana Lazebnik

Key property:

» In the region around a corner, image gradient has two or more
dominant directions

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.*
Proceedings of the 4th Alvey Vision Conference, 1988.

B. Leibe



http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf

RWTHACIEN
Corners as Distinctive Interest Points

¢ Design criteria
» We should easily recognize the point by looking through a small
window (locality)
» Shifting the window in any direction should give a large change
in intensity (good localization)
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B “flat” region: “edge”: “corner”:

2 no change in all no change along significant change

g directions the edge direction in all directions

& 35
slide credit: Alexej Efro: B. Leibe
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Harris Detector Formulation

¢ This measure of change can be approximated by:

E(u,v) = [uv] M

where M is a 2x2 matrix computed from image
derivatives:

12 Ll
g M= w(xy)| * %, [ Gradientwith
<
D Xy | X | y | y rfespect to .X,
2 times gradient
s .
E Sum over image region - the area with respect to y
5 we are checking for corner
2
£ — Yol Y Iely _ Ir
3 M =50, Son | =2 g, | V=7 i
lide credit: Rick Szeliski B. Leibe

What Does This Matrix Reveal?

e First, let’s consider an axis-aligned corner:
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Slide credit: Kristen Grauman LA

Harris Detector Formulation

¢ Change of intensity for the shift [u,v]:

E(u,v) =D w(x, Y)[I(x+u,y+v)—1(x, y)]2

XY,
Window Shifted Intensity
functio intensity

Harris Detector Formulation

I, Iy

where M is a 2x2 matrix computed from image
derivatives:

C‘_\
ae

Image |

12 Ll
g M= w(xy)| * %, [ Gradentwith
<
2 X,y Ix | y | y rf-!spect to .X,
E times gradient
s ..
Zg' Sum over image region - the area with respect to y
= we are checking for corner
2
£ _ | Tl Ty | _ I
3 M SLdy Yyl 3 I [I= Iy] .
ide credit: Rick Szeliskj B. Leibe
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slide credit: Rick Szelicki B. Leibe

What Does This Matrix Reveal?

o First, let’s consider an axis-aligned corner:

M = D>, _[4 0
DLl >l 0 4

¢ This means:
» Dominant gradient directions align with x or y axis

» If either 1 is close to 0, then this is not a corner, so look for
locations where both are large.

* What if we have a corner that is not aligned with the
image axes?
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ide credit: David Jacoh: B. Leibe
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General Case Interpreting the Eigenvalues

« Classification of image points using eigenvalues of M:

0
* Since M is symmetric, we have M = R‘1|:/;1 AJR

(Eigenvalue decomposition)

e We can visualize M as an ellipse with axis lengths
determined by the eigenvalues and orientation
determined by R

Direction of the
fastest change

<\

ide credit: Kristen Grauman B. Leibe

Direction of the
slowest change
A, and 4, are small;
E is almost constant
in all directions

Computer Vision WS 14/15
Computer Vision WS 14/15
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adapted from Darva Frolova, Denis Simakoy
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ide credit: Kristen Grauman B. Leibe
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Corner Response Function
R =det(M)—atrace(M)* = 4,4, —a(l, + 4,)°

Az

Window Function w(X,y)
12 L1,
M =>"w(x,y) o
Xy Xy y
¢ Option 1: uniform window
» Sum over square window

IZ
m-glh ]
Xy Xty y

» Problem: not rotation invariant

1 in window, 0 outside
¢ Fast approximation
» Avoid computing the
eigenvalues
» a: constant
(0.04 to 0.06)

Option 2: Smooth with Gaussian
» Gaussian already performs weighted sum

Computer Vision WS 14/15
Computer Vision WS 14/15

~ Result is rotation invariant

B TeTe

" 43
ide credit: Kristen Grauman B. Leibe
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Summary: Harris Detector [Harrisss] Harris Detector: Workflow
¢ Compute secqnd mom.ent matrix jo‘l\
(autocorrelation matrix) =4

(HCHRERNCS

L1, (o 1X(o, :I 1. Image
* y( o) y( ) derivatives

M(GUGD):Q(G\)*[

2. Square of
derivatives

3. Gaussian
filter g(oy)

4. Cornerness function - two strong eigenvalues
R=det[M (o0 ,)]-altrace(M (0, o))
=9(1)9(17) -[9(1,1,)F —alg(1)) +9 (1))

5. Perform non-maximum suppression

ide credit: Krystian Mikolaiczyk, B Lefbe
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ide adapted from Darva Frolgva, Denis Simakoy B- Leibe




Harris Detector: Workflow Harris Detector: Workflow
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e Compute corner responses R

ide adapted from Darya Frolova, Denis Simakoy B- Leibe

¢ Take only the local maxima of R, where R > threshold.

ide adapted from Darya Frolova, Denis Simakoy B- Leibe
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Harris Detector: Workflow Harris Detector - Responses [Harrisss]

wn wn

] 3

3 3

3 3

E .

= =| Effect: Avery precise
£ | corner detector.
s s

5] 5]

E] H

£ £

5 * Resulting Harris points ; S

ide adapted from Darva Frolova, Denis Simakoy 8- Leibe ide credit: Krystian Mi

Harris Detector - Responses [Harrisss]

Harris Detector - Responses [Harrisgs]

¢ Results are well suited for finding stereo
correspondences
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ide credit: Krystian Mikolaiczyk.

ide credit: Kristen Grauman




Harris Detector: Properties

¢ Rotation invariance?

N |HE>
&7 AN

Ellipse rotates but its shape (i.e.
eigenvalues) remains the same

Corner response R is invariant to image rotation

Computer Vision WS 14/15

ide credit: Kristen Grauman B. Leibe
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Hessian Detector (seaudet7s)

¢ Hessian determinant

1

=
- @
&= e

Hessian (1) =BXX IW}

Xy IW

Note: these are 2
derivatives!

Intuition: Search for strong
derivatives in two
orthogonal directions
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ide credit: Krystian Mikolaiczvk B. Leibe
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Hessian Detector - Responses [seaudet7s]

oY
&= ¢

Effect: Responses mainly
on corners and strongly
textured areas.
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Harris Detector: Properties

¢ Rotation invariance
¢ Scale invariance?

B mm)

Corner All points will be
classified as edges!

Not invariant to image scale!

ide credit: Kristen Grauman B. Leibe

UNIVERSITY]

Hessian Detector (seaudet7s)

RWTH/ACHEN
UNIVERSITY}

¢ Hessian determinant

=
- @
&= e

1

Hessian (1) =BXX :W}

xy

det(Hessian(1)) =1,,1,, —12
In Matlab:
Loexl, —(1,)02

ide credit: Krvstian Mikolaj B. Leibe

Hessian Detector - Responses [seaudet7s]

ide credit: Krystian Mikolaiczyk.
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Topics of This Lecture

¢ Scale Invariant Region Selection
» Automatic scale selection
~ Laplacian-of-Gaussian detector
» Difference-of-Gaussian detector
» Combinations

Computer Vision WS 14/15

B. Leibe

Naive Approach: Exhaustive Search

¢ Multi-scale procedure
» Compare descriptors while varying the patch size
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E e.g. color e.g. color

8 d(f o) .
ide credit: Krystian Mikolaiczvk B. Leibe

Naive Approach: Exhaustive Search

¢ Multi-scale procedure
» Compare descriptors while varying the patch size

!\

" N\

3

: A

(ﬁ LN

=

2 . ¢

@ Similarity

E A measure B

3

2 ! lle =l

£ o, 3.

[} d(f,, f3) N
ide credit: Krystian Mikolaiczyk B. Leibe
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From Points to Regions...

¢ The Harris and Hessian operators define interest points.
» Precise localization
» High repeatability

¢ In order to compare those points, we need to compute a
descriptor over a region.
» How can we define such a region in a scale invariant manner?

¢ |.e. how can we detect scale invariant interest regions?

) 60
B. Leibe

Naive Approach: Exhaustive Search

¢ Multi-scale procedure
» Compare descriptors while varying the patch size

A

fa Similarity fy
measure
! illl. # ol '
e.g. color e.g. color
() @
ide credit: Krystian Mikolai B. Leibe

n
&
53
S
»
=
=
=
2
>
g
S
2
£
1
8]

Naive Approach: Exhaustive Search

¢ Multi-scale procedure
» Compare descriptors while varying the patch size

f A Serilarity fB
leasure
! [|||I|||| h = [III|I|||||IL
d(fa T o
ide credit: Krystian Mikolaiczvk B. Leibe
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Naive Approach: Exhaustive Search

¢ Comparing descriptors while varying the patch size
» Computationally inefficient
» Inefficient but possible for matching

» Prohibitive for retrieval in large [III||I|IIII|
databases s

» Prohibitive for recognition

lor

Ll
e.g. color

3
3
3
z linl
2 111
_5 e.g. color
] f Similarity
= A measure f 8
£ —
2 ! illl = illl
g e.g. color e.g. color
O d(f, fs)

ide credit: Krystian Mikolajczyk B. Leibe
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Automatic Scale Selection

¢ Common approach:
» Take a local maximum of this function.

» Observation: region size for which the maximum is achieved
should be invariant to image scale.

Important: this scale invariant region size is
found in each image independently!

wn
g
<
=
E
= f Image 1 f Image 2
(=}
.g ' scale =12 H
i i
5 : —) :
2 H s3= 25 i
3 ' '
3 Sq Region size S2 Region size 7
ide credit: Kristen Grauman B. Leibe

Automatic Scale Selection
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ide credit: Krystian Mikolaiczyk, B Lefbe

¢ Function responses for increasing scale (scale signature)

69

Automatic Scale Selection

¢ Solution:

» Design a function on the region, which is “scale invariant”
(the same for corresponding regions, even if they are at
different scales)

Example: average intensity. For corresponding
regions (even of different sizes) it will be the same.

» For a point in one image, we can consider it as a function of
region size (patch width)

f Image 1 f Image 2

scale=1
/\ IIIJI:> N

Region size

Computer Vision WS 14/15

Region size 6

ide credit: Kristen Grauman B. Leibe

Automatic Scale Selection

¢ Function responses for increasing scale (scale signature)

A4,

10, (o £, . (X.0)

ide credit: Krvstian Mikolaj B. Leibe

Computer Vision WS 14/15
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Automatic Scale Selection

¢ Function responses for increasing scale (scale signature)

X 7

o 3 L Al LS
scale ¢

(1, (xo) (., (x.0)
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ide credit: Krystian Mikolaiczyk B. Leibe
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Automatic Scale Selection Automatic Scale Selection

¢ Function responses for increasing scale (scale signature) ¢ Function responses for increasing scale (scale signature)

A

S S .

2 g

g g

3 (1, (xo) (1, (x,0)) 8 (1., (xo) (1, (x,0))

ide credit: Krystian Mikolajczyk B. Leibe m ide credit: Krystian Mikolajczyk B. Leibe 2
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. . UNIVERSITY] UNIVERSITY]

Automatic Scale Selection

Automatic Scale Selection

* Normalize: Rescale to fixed size

g g
3 3
1 [
= =
< <
2 2 T
2 < £, (4.0
& ]
S S
3 seie " s =
S (1, (x0) LCRCSY)) S
S i . 73 o . 74
ide credit: Krvstian Mikolaiczvk B. Leibe ide credit: Tinne B. Leibe
RWTH/ACHET RWTH/ACHET]
. . UNIVERSITY] L. UNIVERSITY]
What Is A Useful Signature Function? Characteristic Scale
¢ Laplacian-of-Gaussian = “blob” detector * We define the characteristic scale as the scale that
produces peak of Laplacian response
) > 0 {
B o [
3 3 /
12 %) /
2 = / \
5 5 s
2 2
; ; Characteristic scale
E E
E‘ o ‘ . E T. Lindeberg (1998). "Feature detection with automatic scale selection.”
3 38 International Journal of Computer Vision 30 (2): pp 77--116.
75 76
B Lefbe ide credit: Svetlana | azebnik B. Leibe



http://www.nada.kth.se/cvap/abstracts/cvap198.html
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Laplacian-of-Gaussian (LoG) Laplacian-of-Gaussian (LoG)

e Interest points:

¢ Interest points:

Computer Vision WS 14/15
Computer Vision WS 14/15

ide adapted from Krystian Mikolajczyk B. Leibe ide adapted from Krystian Mikolajczyk B. Leibe
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Laplacian-of-Gaussian (LoG) Laplacian-of-Gaussian (LoG)

¢ Interest points:

» Local maxima in scale
space of Laplacian-of-
Gaussian

gl L)L, () o |

e
o a
[

ide adapted from Krystian Mikolaiczvk B. Leibe

¢ Interest points:

» Local maxima in scale
space of Laplacian-of-

Gaussian
e P
A S
S S
S A

-
Scale A
W - i
W
W

= List of (x, y, o)

Computer Vision WS 14/15
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ide adapted from Krystian Mikolai B. Leibe
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LoG Detector: Workflow LoG Detector: Workflow
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ide credit: Svetlana | azehnik. LA ide credit: Svetlana | azebnik LA




Difference-of-Gaussian (DoG)

¢ Difference of Gaussians as approximation of the LoG

» This is used e.g. in Lowe’s SIFT pipeline
for feature detection.

¢ Advantages
» No need to compute 2"d derivatives

» Gaussians are computed anyway, e.g.
in a Gaussian pyramid.

Computer Vision WS 14/15

B. Leibe

UNIVERSITY
LoG Detector: Workflow
S
Z%
= 83
ide credit: Svetlana lazebnik. B. Leibe
RWTHACHET]
UNIVERSITY

DoG - Efficient Computation

¢ Computation in Gaussian scale pyramid

RWTH/ACHER
UNIVERSITY

Scale
(next
octave)
Sampling with
step o*=2
0
i~
3
n Scale
; (first
- octave)
'% 1
S . . =24
= Original image —o=2" ,
g Difference of
E- Gaussian Gaussian (DOG)
S
- 87
ide adapted from Krystian Mikolaiczyic B. Leibe
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Technical Detail

¢ We can efficiently approximate the Laplacian with a
difference of Gaussians:

L=0(G,(xy,0)+G, (% Y,0))

(Laplacian)

ag

DoG =G(x,y,ko)-G(x,y,0)

(Difference of Gaussians)

B. Leibe

RWTH//CHEN
UNIVERSITY,

UNIVERSITY
Key point localization with DoG

¢ Detect maxima of
difference-of-Gaussian
(DoG) in scale space

¢ Then reject points with
low contrast (threshold)

¢ Eliminate edge responses

Candidate keypoints:
list of (x,y,0)

ide credit: David Lowe
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Results: Lowe’s DoG

B. Leibe
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Example of Keypoint Detection

(a) 233x189 image

75§ (b) 832 DoG extrema

(c) 729 left after peak
value threshold

(d) 536 left after testing
ratio of principle
curvatures (removing
edge responses)

ide credit: David | owe B. Leibe

Harris-Laplace miotajczyk ‘01]

1. Initialization: Multiscale Harris corner detection

2. Scale selection based on Laplacian
(same procedure with Hessian = Hessian-Laplace)

Harris points

Harris-Laplace points

ide adapted from Krystian Mikolaiczvk B. Leibe
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You Can Try It At Home...

¢ For most local feature detectors, executables are
available online:

¢ http://robots.ox.ac.uk/~vgg/research/affine

¢ http://www.cs.ubc.ca/~lowe/keypoints/

o http://www.vision.ee.ethz.ch/~surf

¢ http://homes.esat.kuleuven.be/~ncorneli/gpusurf/

104

K. Grauman, B. Leibe
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Harris-Laplace miotajczyk ‘01]

1. Initialization: Multiscale Harris corner detection

. . . . .90
\de adanted from Kevstian Mikalaicavk Computing Harris function Detecting local maxima

Summary: Scale Invariant Detection

Given: Two images of the same scene with a large scale
difference between them.

Goal: Find the same interest points independently in
each image.

Solution: Search for maxima of suitable functions in
scale and in space (over the image).

Two strategies
» Laplacian-of-Gaussian (LoG)
~ Difference-of-Gaussian (DoG) as a fast approximation

» These can be used either on their own, or in combinations with
single-scale keypoint detectors (Harris, Hessian).

B. Leibe
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Image with dsplayed regions
- s

://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html#binaries

15


http://www.vision.ee.ethz.ch/~surf
http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html#binaries
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References and Further Reading

* Read David Lowe’s SIFT paper
> D. Lowe,

Distinctive image features from scale-invariant keypoints,
1JCV 60(2), pp. 91-110, 2004

¢ Good survey paper on Int. Pt. detectors and descriptors

» T. Tuytelaars, K. Mikolajczyk, Local Invariant Feature
Detectors: A Survey, Foundations and Trends in Computer
Graphics and Vision, Vol. 3, No. 3, pp 177-280, 2008.

¢ Try the example code, binaries, and Matlab wrappers

» Good starting point: Oxford interest point page
http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html#binaries

16


http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://homes.esat.kuleuven.be/~tuytelaa/tmp/survey_inv_features.pdf
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