Computer Vision - Lecture 10

Sliding-Window based Object Detection
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Course Outline

e Image Processing Basics
e Segmentation & Grouping

e Recognition
~ Global Representations

e Object Categorization |
> Sliding Window based Object Detection

e Local Features & Matching

e Object Categorization Il
~ Part based Approaches

e 3D Reconstruction
e Motion and Tracking
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Recap: Subspace Methods

Subspace methods

L Reconstructive J [ Discriminative}
PCA, ICA, NMF FLD, SVM, CCA
B[]0 .
representation
classification
regression

Slide credit: Ales Leonardis B. Leibe



RWNTH
Recap: Obj. Detection by Distance TO Eigenspace

e For each test image, compute the reprojection error

> An n-pixel image xeR" can be
projected to the low-dimensional
feature space yeR™ by

y =UX

> From yeR™, the reconstruction
of the point is UTy

> The error of the reconstruction is

HX—UTUA‘

X3

e Accept a detection if this error is low.
> Assumption: subspace is optimized to the target object (class).
~ Other classes are not represented well = large error.
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Slide credit: Peter Belhumeur B. Leibe



R\WNTH
Recap: Obj Identification by Distance IN Eigenspace

e Objects are represented as coordinates in
an N-dim. eigenspace.

e Example:

~ 3D space with points representing individual objects or a
manifold representing parametric eigenspace (e.g., orientation,
pose, illumination).
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e Estimate parameters by finding the NN in the eigenspace
6

Slide adapted from Ales Leonardis B. Leibe
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Recap: Eigenfaces

Slide credit: Peter Belhumeur
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Important Footnote

e We’ve derived PCA by computing the eigenvectors of 2....

e Don’t implement PCA this way!
> Why7

1. How bigis 2.?
> NxN, where N is the number of pixels in an image!
- However, we only have M training examples, typically m<<n.

= > will at most have rank m!

2. You only need the first k eigenvectors
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Slide credit: Peter Belhumeur B. Leibe



RWTH
Singular Value Decomposition (SVD)

e Any mxn matrix A may be factored such that
A=UzV'
[mxn]=[mxm][mxn][nxn]

* U: mxm, orthogonal matrix

» Columns of U are the eigenvectors of AAT
* V: nxn, orthogonal matrix

. Columns are the eigenvectors of ATA
* 2. mxn, diagonal with non-negative entries (o, o,,..., ©;)

with s=min(m,n) are called the singular values.

~ Singular values are the square roots of the eigenvalues of both
AAT and ATA. Columns of U are corresponding eigenvectors!

> Result of SVD algorithm: ¢,26,2... 20, 9
Slide credit: Peter Belhumeur
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Performing PCA with SVD

Slide credit: Peter Belhumeur

Singular values of A are the square roots of eigenvalues
of both AAT and ATA.

» Columns of U are the corresponding eigenvectors.
n
T T T
And > aa' =[a, ... aj[a ... a,] =AA
=1

Covariance matrix

I~ o

X=— > (@ — )@ — )"
1=1

So, ignoring the factor 1/n, subtract mean image u from
each input image, create data matrix A = (Z; — i),
and perform SVD on the data matrix.
> And you’re done.

B. Leibe
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SVD Properties

e Matlab: [u s v] = svd(a)
> where A = u*s*y’

* r = rank(A)
> Number of non-zero singular values

U, V give us orthonormal bases for the subspaces of A

» first r columns of U: column space of A
> last m-r columns of U: left nullspace of A
~ first r columns of V: row space of A

> last n-r columns of V:  nullspace of A

e Ford<r, the first d columns of U provide the best d-
dimensional basis for columns of A in least-squares sense

L0
=,
v
—
2
c
2
L
>
[
S
Q
=
(@]
@)

11

Slide credit: Peter Belhumeur B. Leibe



CHEN
. . . UNIVERSITY
Limitations

e Global appearance method: not robust to misalignment,
background variation

e Easy fix (with considerable manual overhead)
> Need to align the training examples
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Slide credit: Svetlana Lazebnik B. Leibe



Limitations

e PCA assumes that the data has a Gaussian distribution
(mean u, covariance matrix 2)
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Slide credit: Svetlana Lazebnik B. Leibe



L0
d
q—
—
2
c
2
L
>
[
S
Q
=
(@]
O

Restrictions of PCA

e PCA minimizes projection error

~_| ,00°%8°%
/> %% %0
T~ 00 : e
> ° :: ‘:‘ : ‘o‘
] N
Best discriminating // \\

projection S
PCA projection

e PCAis ,,unsupervised“ no information on classes is used
e Discriminating information might be lost

Slide credit: Ales Leonardis B. Leibe
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Topics of This Lecture

e Object Categorization
» Problem Definition
~ Challenges

e Sliding-Window based Object Detection
~ Detection via Classification
~ Global Representations
» Classifier Construction

e (Classification with Boosting
> AdaBoost
> Viola-Jones Face Detection

e (Classification with SVMs
» Support Vector Machines
> HOG Detector
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Ildentification vs. Categorization
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Ildentification vs. Categorization

e Find this particular object ¢ Recognize ANY car

T P -

=y ! =

e Recognize ANY cow

N ]

L0
d
q—
—
n
=
c
o
2
>
[z
S
Q
S
@)
O

18

B. Leibe



RWTH
Object Categorization - Potential Applications

There is a wide range of applications, including.

Autonomous robots Navigation, driver safety = Consumer electronics

e
Web Images Video News Maps Desktop more» You Tuhe
Goc)gle [ferris wheel |[ Search | Advanced imege Se

Images Moderate SafeSearch is on Broadcast Yourself™ Videos Categories

Images Showing: | All image sizes v |

Videos being watched right now...

mscan s s coce [ I | [FF T T
o ; | HH
| -
| | 0985 | 01:04 | ‘

5.0thk/-4.05p y
W:163 L:82

Content-based retrieval and analysis for

images and videos Medical image

analysis 19
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Slide adapted from Kristen Grauman



Biederman 1987

RWTHAACHEN

How many object categories are there?"='!"
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Source: Fei-Fei Li, Rob Fergus, Antonio Torralba.
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Challenges: Robustness

Intra-class
appearance

Occlusions

Slide credit: Kristen Grauman

Viewpoint
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e Detection in crowded, real-world scenes
~ Learn object variability
- Changes in appearance, scale, and articulation

LO
d
=~
—
7))
=
C
@)
Kz
S
2 :
= > Compensate for clutter, overlap, and occlusion
£

@)

O

28
B. Leibe [Leibe, Seemann, Schiele, CVPR’05]
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Topics of This Lecture

e Sliding-Window based Object Detection
~ Detection via Classification
~ Global Representations
» Classifier Construction

B. Leibe
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Detection via Classification: Main Idea

e Basic component: a binary classifier

Slide credit: Kristen Grauman

B. Leibe

r

.

Car/non-car
Classifier
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Detection via Classification: Main Idea

e |f the object may be in a cluttered scene, slide a window
around looking for it.

( )

Car/non-car

Classifier
\_ Y,

e Essentially, this is a brute-force approach with many
local decisions.
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Slide credit: Kristen Grauman B. Leibe
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What is a Sliding Window Approach?

e Search over space and scale

H’uan ATS

#ﬁ

uWhpyBATS

JuanATs
yhw ¥
a "éﬁ -¢

e Detection as subwindow classification problem

e “In the absence of a more intelligent strategy, any
global image classification approach can be converted
into a localization approach by using a sliding-window

search.”

B. Leibe
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Detection via Classification: Main Idea

Fleshing out this
pipeline a bit more,
we need to:

1. Obtain training data
2. Define features
3. Define classifier

Slide credit: Kristen Grauman

Training examples

il

A ~ ™
o —»| Car/non-car
\‘ Classifier
\_ _J
Feature
kextraction Y
B. Leibe
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> Grayscale / color histogram
» Vector of pixel intensities

Simple holistic descriptions of image content

Feature extraction
Global Appearance

Slide credit: Kristen Grauman
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RWNTH
Eigenfaces: Global Appearance Description

This can also be applied in a sliding-window framework...

Generate low-
dimensional
representation
of appearance
with a linear
subspace.

Eigenvectors computed
from covariance matrix

L0

—i

3 Project new

2 images to “face
3

S space”.
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= Detection via distance Identification via distance

§ TO eigenspace IN eigenspace

Slide credit: Kristen Grauman B. Leibe [Turk & Pentland, 1993%]
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Gradient-based Representations

e |dea
~ Consider edges, contours, and (oriented) intensity gradients

Slide credit: Kristen Grauman B. Leibe
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Gradient-based Representations

e |dea
> ConSIder edges contours, and (orlented) mtenSIty gradlents

e Summarize local distribution of gradients with histogram
> Locally orderless: offers invariance to small shifts and rotations

> Localized histograms offer more spatial information than a single
global histogram (tradeoff invariant vs. discriminative)

> Contrast-normalization: try to correct for variable illumination
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Slide credit: Kristen Grauman B. Leibe



R\WNTH
Gradient-based Representations:

Histograms of Oriented Gradients (HoG)

Orientation Voting

~
.,

T e

. =—Overlapping Blocks

\\\\‘

N
>~
P =

Input Image Gradient Image

Ny N, - .

—~__Local Normalization

e Map each grid cell in the input
window to a histogram counting the
gradients per orientation.

e (Code available:
http://pascal.inrialpes.fr/soft/olt/
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Slide credit: Kristen Grauman [Dalal & Triggs, CVPR 2005]


http://pascal.inrialpes.fr/soft/olt/
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Classifier Construction

e How to compute a decision for each subwindow?

car non-car car non-car car non-car

e
s | '
= Image feature
=
c
o
2
=
g
)
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S
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Slide credit: Kristen Grauman B. Leibe
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Discriminative Methods

e Learn a decision rule (classifier) assigning image features
to different classes

-------
----------------------
.........
e
. ‘e
. .
.
‘e
.,

o,

boundary
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Slide adapted from Svetlana Lazebnik B. Leibe
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Nearest Neighbor

e
o

Berg, Berg, Malik 2005,

Chum, Zisserman 2007,
Boiman, Shechtman, Irani 2008, ...

Classifier Construction: Many Choices...

Neural networks

LeCun Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998

Boosting

Viola, Jones 2001,
Torralba et al. 2004,
Opelt et al. 2006,
Benenson 2012, ...

Support Vector Machines

Vapnik, Scholkopf 1995,

Papageorgiou, Poggio ‘01,

Dalal, Triggs 2005,
Vedaldi, Zisserman 2012

Slide adapted from Kristen Grauman B. Leibe

Randomlzed Forests

E‘/\H

} £

Amit, Geman 1997,
Breiman 2001,

Lepetit, Fua 2006,
Gall, Lempitsky 2009,...
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Linear Classifiers

@
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B. Leibe
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Linear Classifiers

e Find linear function to separate positive and negative

examples
® PR, |
o x, positive: w'x, 4+ 0> 10
® x, negative: wix, + b <0
@
@
@
® o e o
@ . \
@
@
° @
Which line
O is best?
@

Slide credit: Kristen Grauman B. Leibe
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Support Vector Machines (SVMs)

e Discriminative classifier
based on optimal
separating hyperplane
(i.e. line for 2D case)

« Maximize the margin
between the positive
and negative training
examples
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Slide credit: Kristen Grauman B. Leibe



Support Vector Machines

e Want line that maximizes the margin.

% %
2, 6 S, x, positive (t, = 1): w'x,6 +b > 1
S © 7\ ® x, hegative (t, = -1): w'x, + b <-1

For support, vectors, WTXn +b=+1

O

g O

S, O @ Quadratic optimization problem
92

=

= Minimize %WTW

= Subject to tn(WTXn + b) > 1
)

é Support vectors ® » Margin Packages available for that...
(@]

O

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, 48
Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the Maximum Margin Line

N
e Solution: W = Z AntnXn,
—

Learned Support
weight vector
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,
Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

RWTH
Finding the Maximum Margin Line

N
e Solution: W = E AntnXn,
n=1

e (Classification function:

f(x) = sign(w!x+b)

N
= sign (Z a,tixtxH b)

n=1

If f(x) < 0, classify as neg.,
if f(x) > 0, classify as pos.

S

» Notice that this relies on an inner product between the test
point x and the support vectors x,,

> (Solving the optimization problem also involves computing the
inner products x, 'x _between all pairs of training points)
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, 50
Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
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Questions

e What if the features are not 2d?
e What if the data is not linearly separable?
e What if we have more than just two categories?

Slide credit: Kristen Grauman B. Leibe
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Questions

e What if the features are not 2d?
~ Generalizes to d-dimensions - replace line with “hyperplane”

e What if the data is not linearly separable?
e What if we have more than just two categories?

52
B. Leibe



Questions

e What if the features are not 2d?
~ Generalizes to d-dimensions - replace line with “hyperplane”

e What if the data is not linearly separable?
> Non-linear SVMs with special kernels

e What if we have more than just two categories?
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Slide credit: Kristen Grauman B. Leibe
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Non-Linear SVMs: Feature Spaces

e General idea: The original input space can be mapped to
some higher-dimensional feature space where the
training set is separable:

"""
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More on that in the Machine Learning lecture...

54

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html



http://www.autonlab.org/tutorials/svm.html
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Nonlinear SVMs

e The kernel trick: instead of explicitly computing the
lifting transformation ¢(x), define a kernel function K
such that

K(x;, Xj) = o(x;) - (P(Xj)

e This gives a nonlinear decision boundary in the original
feature space:

Z antn K(Xp,x) + b

n

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, 55
Data Mining and Knowledge Discovery, 1998


http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
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RWNTH
Some Often-Used Kernel Functions

e Linear:
K(Xi,%;)= X; TX;

e Polynomial of power p:
K(Xi,%;)= (1+ X; Tx;)P

e Gaussian (Radial-Basis Function): :
N
(Xi’xj)_exp(_ 2 )
20

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html

56


http://www.autonlab.org/tutorials/svm.html

Questions

e What if the features are not 2d?
~ Generalizes to d-dimensions - replace line with “hyperplane”

e What if the data is not linearly separable?
> Non-linear SVMs with special kernels

e What if we have more than just two categories?
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Slide credit: Kristen Grauman B. Leibe
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Multi-Class SVMs

e Achieve multi-class classifier by combining a number of
binary classifiers

e One vs. all
> Training: learn an SVM for each class vs. the rest

~ Testing: apply each SVM to test example and assign to
it the class of the SVM that returns the highest
decision value

e One vs. one
> Training: learn an SVM for each pair of classes

> Testing: each learned SVM “votes” for a class to
assign to the test example

58

Slide credit: Kristen Grauman B. Leibe



SVMs for Recognition

1.Define your representation for each
example.

NON-FACES

2.Select a kernel function. -

3.Compute pairwise kernel values
between labeled examples

4.Given this “kernel matrix” to SVM | © "
optimization software to identify 5 00
support vectors & weights. ‘

5.To classify a new example: compute
kernel values between new input
and support vectors, apply weights,
check sign of output.

L0
=,
q
—
2
c
2
L
>
[
S
Q
=
(@]
@)

Slide credit: Kristen Grauman B. Leibe
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Pedestrian Detection

e Detecting upright, walking humans using sliding window’s
appearance/texture; e.g.,

SVM with Hf'aar wavelgts Space tlme rectangle SVM with HoGs [Dalal &
[Papageorgiou & Poggio, IJCV features [Viola, Jones & Triggs, CVPR 2005]
2000] Snow, ICCV 2003]

Slide credit: Kristen Grauman B. Leibe
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HOG Descriptor Processing Chain
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Image Window

61
Slide adapted from Navneet Dalal



HOG Descriptor Processing Chain

e Optional: Gamma compression

» Goal: Reduce effect of overly
strong gradients

~ Replace each pixel color/intensity
by its square-root

T — T

= Small performance improvement

Gamma compression

T
Image Window
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Slide adapted from Navneet Dalal



HOG Descriptor Processing Chain

e Gradient computation

» Compute gradients on all color
channels and take strongest one

» Simple finite difference filters
work best (no Gaussian smoothing)

Image Window

—1
-1 0 1] 0
= LT
3
%2
=
c
= Compute gradients
> t
< Gamma compression
2 ¢
S
o
O

63

Slide adapted from Navneet Dalal
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HOG Descriptor Processing Chain

e Spatial/Orientation binning

» Compute localized histograms of
oriented gradients

~ Typical subdivision:
8 x 8 cells with 8 or 9 orientation bins

Slide adapted from Navneet Dalal

Weighted vote in spatial &
orientation cells

?

Compute gradients

?

Gamma compression

T
Image Window
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HOG Cell Computation Details

e Gradient orientation voting

» Each pixel contributes to localized
gradient orientation histogram(s)

~ Vote is weighted by the pixel’s
gradient magnitude

/ 4 =tan_1 (8f/8f)
k VA= (D7 + (3

e Block-level Gaussian weighting

~ An additional Gaussian weight is
applied to each 2x2 block of cells

~ Each cell is part of 4 such blocks,
resulting in 4 versions of the
histogram.

65
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HOG Cell Computation Details (2)

e Important for robustness: Tri-linear interpolation
> Each pixel contributes to (up to) 4

neighboring cell histograms (21, 1) (z2, y1)

~ Weights are obtained by bilinear .
interpolation in image space:

h(xl,yl)%w-(l— x—m1>(1_ y—yl)
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» Contribution is further split over
(up to) 2 neighboring orientation bins
via linear interpolation over angles.
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HOG Descriptor Processing Chain

e 2-Stage contrast normalization

> L2 normalization, clipping, L2 normalization

Contrast normalize over
overlapping spatial cells

?

Weighted vote in spatial &
orientation cells

Slide adapted from Navneet Dalal

?

Compute gradients

?

Gamma compression

T
Image Window
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HOG Descriptor Processing Chain

e Feature vector construction
> Collect HOG blocks into vector

Collect HOGs over
detection window
?

Contrast normalize over
overlapping spatial cells

Image Window

10 t

—

s Weighted vote in spatial &
) orientation cells
= i

C 3

2 Compute gradients
> t

< Gamma compression
2 ¢

=

@]

O

68

Slide adapted from Navneet Dalal
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HOG Descriptor Processing Chain

Collect HOGs over
detection window
?

Contrast normalize over
overlapping spatial cells

e SVM Classification Object/ Nin-obJect
~ Typically using a linear SVM Linear SYM
?
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Slide adapted from Navneet Dalal



Pedestrian Detection with HOG

e Train a pedestrian template using a linear SVM
e At test time, convolve feature map with template

Template Detector response map

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection,
CVPR 2005
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Slide credit: Svetlana Lazebnik


http://lear.inrialpes.fr/pubs/2005/DT05
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Non-Maximum Suppression

After multi-scale dense scan

(==

Goal

Fusion of multiple detections

B. Leibe

Clip detection score

Map each detection to 3D
[x,y,scale] space

Y

Apply robust mode detection,
e.g. mean shift

Non-maximum suppression
71

Image source: Navneet Dalal, PhD Thesis
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Pedestrian detection with HoGs & SVMs

e Navneet Dalal, Bill Triggs, Histograms of Oriented Gradients for Human Detection,
CVPR 2005

Slide credit: Kristen Grauman B. Leibe


http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs
http://lear.inrialpes.fr/pubs/2005/DT05/
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References and Further Reading

e Read the HOG paper
> N. Dalal, B. Triggs,

Histograms of Oriented Gradients for Human Detection,
CVPR, 2005.

e HOG Detector
> Code available: http://pascal.inrialpes.fr/soft/olt/
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http://pascal.inrialpes.fr/soft/olt/

