

Computer Vision - Lecture 10

Sliding-Window based Object Detection

27.11.2014

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Course Outline

- Image Processing Basics
- Segmentation & Grouping
- Recognition
 - Global Representations
- Object Categorization I
 - Sliding Window based Object Detection
- Local Features & Matching
- Object Categorization II
 - Part based Approaches
- 3D Reconstruction
- Motion and Tracking

Recap: Subspace Methods

Recap: Obj. Detection by Distance TO Eigenspace

- For each test image, compute the reprojection error
 - > An *n*-pixel image $x \in \mathbb{R}^n$ can be projected to the low-dimensional feature space $y \in \mathbb{R}^m$ by

$$y = Ux$$

- From $y \in \mathbb{R}^m$, the reconstruction of the point is $\underline{U}^T y$
- The error of the reconstruction is

$$||x-U^TUx||$$

- Accept a detection if this error is low.
 - Assumption: subspace is optimized to the target object (class).
 - \triangleright Other classes are not represented well \Rightarrow large error.

Recap: Obj Identification by Distance IN Eigenspace

- Objects are represented as coordinates in an n-dim. eigenspace.
- Example:
 - 3D space with points representing individual objects or a manifold representing parametric eigenspace (e.g., orientation, pose, illumination).

Estimate parameters by finding the NN in the eigenspace

Recap: Eigenfaces

Important Footnote

- We've derived PCA by computing the eigenvectors of Σ ...
- Don't implement PCA this way!
 - Why?
- 1. How big is Σ ?
 - \rightarrow $n \times n$, where n is the number of pixels in an image!
 - > However, we only have m training examples, typically m << n.
 - $\Rightarrow \Sigma$ will at most have rank m!
- 2. You only need the first k eigenvectors

Singular Value Decomposition (SVD)

Any m×n matrix A may be factored such that

$$A = U\Sigma V^T$$

$$[m \times n] = [m \times m][m \times n][n \times n]$$

- $U: m \times m$, orthogonal matrix
 - ightharpoonup Columns of U are the eigenvectors of AA^T
- $V: n \times n$, orthogonal matrix
 - \triangleright Columns are the eigenvectors of A^TA
- Σ : $m \times n$, diagonal with non-negative entries (σ_1 , σ_2 ,..., σ_s) with $s=\min(m,n)$ are called the singular values.
 - > Singular values are the square roots of the eigenvalues of both AA^T and A^TA . Columns of U are corresponding eigenvectors!
 - ▶ Result of SVD algorithm: $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_s$

Performing PCA with SVD

- Singular values of A are the square roots of eigenvalues of both AA^T and A^TA .
 - \triangleright Columns of U are the corresponding eigenvectors.

• And
$$\sum_{i=1}^{n} a_i a_i^T = [a_1 \ \dots \ a_n][a_1 \ \dots \ a_n]^T = AA^T$$

Covariance matrix

$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} (\vec{x}_i - \vec{\mu}) (\vec{x}_i - \vec{\mu})^T$$

- So, ignoring the factor 1/n, subtract mean image μ from each input image, create data matrix $A=(\vec{x}_i-\vec{\mu})$, and perform SVD on the data matrix.
 - And you're done.

SVD Properties

- Matlab: [u s v] = svd(A)
 - \rightarrow where $A = u *_S *_V$
- r = rank(A)
 - Number of non-zero singular values
- U, V give us orthonormal bases for the subspaces of A
 - \triangleright first r columns of U: column space of A
 - > last m-r columns of U: left nullspace of A
 - > first r columns of V: row space of A
 - > last n-r columns of V: nullspace of A
- For $d \le r$, the first d columns of U provide the best ddimensional basis for columns of A in least-squares sense

Limitations

 Global appearance method: not robust to misalignment, background variation

- Easy fix (with considerable manual overhead)
 - Need to align the training examples

Limitations

• PCA assumes that the data has a Gaussian distribution (mean μ , covariance matrix Σ)

The shape of this dataset is not well described by its principal

components Slide credit: Svetlana Lazebnik

Restrictions of PCA

PCA minimizes projection error

- PCA is "unsupervised" no information on classes is used
- Discriminating information might be lost

Topics of This Lecture

- Object Categorization
 - Problem Definition
 - Challenges
- Sliding-Window based Object Detection
 - Detection via Classification
 - Global Representations
 - Classifier Construction
- Classification with Boosting
 - AdaBoost
 - Viola-Jones Face Detection
- Classification with SVMs
 - Support Vector Machines
 - HOG Detector

Identification vs. Categorization

Identification vs. Categorization

Find this particular object

Recognize ANY cow

RWTHAACHEN UNIVERSITY

Object Categorization - Potential Applications

There is a wide range of applications, including.

Autonomous robots

Navigation, driver safety

Consumer electronics

Content-based retrieval and analysis for images and videos

Medical image analysis

How many object categories are there? VERSITY

Challenges: Robustness

Illumination

Object pose

Clutter

Occlusions

Intra-class appearance

Viewpoint

Challenges: Robustness

- Detection in crowded, real-world scenes
 - Learn object variability
 - Changes in appearance, scale, and articulation
 - Compensate for clutter, overlap, and occlusion

Topics of This Lecture

- Object Categorization
 - Problem Definition
 - Challenges
- Sliding-Window based Object Detection
 - Detection via Classification
 - Global Representations
 - Classifier Construction
- Classification with Boosting
 - AdaBoost
 - Viola-Jones Face Detection
- Classification with SVMs
 - Support Vector Machines
 - > HOG Detector

Detection via Classification: Main Idea

• Basic component: a binary classifier

Detection via Classification: Main Idea

 If the object may be in a cluttered scene, slide a window around looking for it.

• Essentially, this is a brute-force approach with many local decisions.

33

What is a Sliding Window Approach?

Search over space and scale

- Detection as subwindow classification problem
- "In the absence of a more intelligent strategy, any global image classification approach can be converted into a localization approach by using a sliding-window search."

35

Detection via Classification: Main Idea

Fleshing out this pipeline a bit more, we need to:

- Obtain training data
- **Define features**
- 3. Define classifier

Feature extraction: Global Appearance

Simple holistic descriptions of image content

- Grayscale / color histogram
- Vector of pixel intensities

Eigenfaces: Global Appearance Description

This can also be applied in a sliding-window framework...

Training images

Eigenvectors computed from covariance matrix

Generate lowdimensional representation of appearance with a linear subspace.

Project new images to "face space".

Detection via distance
TO eigenspace

IN eigenspace

Feature Extraction: Global Appearance

Pixel-based representations are sensitive to small shifts

 Color or grayscale-based appearance description can be sensitive to illumination and intra-class appearance variation

Cartoon example: an albino koala

Gradient-based Representations

- Idea
 - > Consider edges, contours, and (oriented) intensity gradients

Gradient-based Representations

- Idea
 - Consider edges, contours, and (oriented) intensity gradients

- Summarize local distribution of gradients with histogram
 - Locally orderless: offers invariance to small shifts and rotations
 - Localized histograms offer more spatial information than a single global histogram (tradeoff invariant vs. discriminative)
 - Contrast-normalization: try to correct for variable illumination

Gradient-based Representations: Histograms of Oriented Gradients (HoG)

- Map each grid cell in the input window to a histogram counting the gradients per orientation.
- Code available: http://pascal.inrialpes.fr/soft/olt/

[Dalal & Triggs, CVPR 2005]

Classifier Construction

How to compute a decision for each subwindow?

Image feature

Discriminative Methods

 Learn a decision rule (classifier) assigning image features to different classes

Classifier Construction: Many Choices... UNIVERSITY

Linear Classifiers

Linear Classifiers

 Find linear function to separate positive and negative examples

Which line is best?

46

Support Vector Machines (SVMs)

- Discriminative classifier based on optimal separating hyperplane (i.e. line for 2D case)
- Maximize the margin between the positive and negative training examples

Support Vector Machines

Want line that maximizes the margin.

C. Burges, <u>A Tutorial on Support Vector Machines for Pattern Recognition</u>, Data Mining and Knowledge Discovery, 1998

Finding the Maximum Margin Line

Finding the Maximum Margin Line

• Solution:
$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n$$

Classification function:

$$f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$$
 If $f(\mathbf{x}) < 0$, classify as neg., if $f(\mathbf{x}) > 0$, classify as pos.
$$= \operatorname{sign}\left(\sum_{n=1}^{N} a_n t_n \mathbf{x}_n^T \mathbf{x} + b\right)$$

- Notice that this relies on an *inner product* between the test point ${\bf x}$ and the support vectors ${\bf x}_n$
- (Solving the optimization problem also involves computing the inner products $\mathbf{x}_n^T \mathbf{x}_m$ between all pairs of training points)

- What if the features are not 2d?
- What if the data is not linearly separable?
- What if we have more than just two categories?

- What if the features are not 2d?
 - Generalizes to d-dimensions replace line with "hyperplane"
- What if the data is not linearly separable?
- What if we have more than just two categories?

- What if the features are not 2d?
 - Generalizes to d-dimensions replace line with "hyperplane"
- What if the data is not linearly separable?
 - Non-linear SVMs with special kernels
- What if we have more than just two categories?

Non-Linear SVMs: Feature Spaces

 General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:

More on that in the Machine Learning lecture...

Nonlinear SVMs

• The kernel trick: instead of explicitly computing the lifting transformation $\varphi(x)$, define a kernel function K such that

$$K(\mathbf{x}_i, \mathbf{x}_i) = \varphi(\mathbf{x}_i) \cdot \varphi(\mathbf{x}_i)$$

 This gives a nonlinear decision boundary in the original feature space:

$$\sum_{n} a_n t_n K(\mathbf{x}_n, \mathbf{x}) + b$$

Some Often-Used Kernel Functions

Linear:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$$

Polynomial of power p:

$$K(x_i,x_j) = (1 + x_i^T x_j)^p$$

Gaussian (Radial-Basis Function):

$$K(\mathbf{x_i}, \mathbf{x_j}) = \exp(-\frac{\|\mathbf{x_i} - \mathbf{x_j}\|^2}{2\sigma^2})$$

- What if the features are not 2d?
 - Generalizes to d-dimensions replace line with "hyperplane"
- What if the data is not linearly separable?
 - Non-linear SVMs with special kernels
- What if we have more than just two categories?

Multi-Class SVMs

 Achieve multi-class classifier by combining a number of binary classifiers

One vs. all

- > Training: learn an SVM for each class vs. the rest
- Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value

One vs. one

- Training: learn an SVM for each pair of classes
- Testing: each learned SVM "votes" for a class to assign to the test example

SVMs for Recognition

- 1. Define your representation for each example.
- 2. Select a kernel function.
- 3. Compute pairwise kernel values between labeled examples
- 4. Given this "kernel matrix" to SVM optimization software to identify support vectors & weights.
- 5. To classify a new example: compute kernel values between new input and support vectors, apply weights, check sign of output.

Pedestrian Detection

 Detecting upright, walking humans using sliding window's appearance/texture; e.g.,

SVM with Haar wavelets [Papageorgiou & Poggio, IJCV 2000]

Space-time rectangle features [Viola, Jones & Snow, ICCV 2003]

SVM with HoGs [Dalal & Triggs, CVPR 2005]

Image Window

- Optional: Gamma compression
 - Goal: Reduce effect of overly strong gradients
 - Replace each pixel color/intensity by its square-root

$$x \mapsto \sqrt{x}$$

⇒ Small performance improvement

Gamma compression

Image Window

Gradient computation

- Compute gradients on all color channels and take strongest one
- Simple finite difference filters work best (no Gaussian smoothing)

$$\begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

- Spatial/Orientation binning
 - Compute localized histograms of oriented gradients
 - Typical subdivision:8×8 cells with 8 or 9 orientation bins

HOG Cell Computation Details

- Gradient orientation voting
 - Each pixel contributes to localized gradient orientation histogram(s)
 - Vote is weighted by the pixel's gradient magnitude

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$
$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

- Block-level Gaussian weighting
 - An additional Gaussian weight is applied to each 2×2 block of cells
 - Each cell is part of 4 such blocks, resulting in 4 versions of the histogram.

HOG Cell Computation Details (2)

- Important for robustness: Tri-linear interpolation
 - Each pixel contributes to (up to) 4 neighboring cell histograms
 - Weights are obtained by bilinear interpolation in image space:

$$h(x_1, y_1) \leftarrow w \cdot \left(1 - \frac{x - x_1}{x_2 - x_1}\right) \left(1 - \frac{y - y_1}{y_2 - y_1}\right)^{-1}$$

$$h(x_1, y_2) \leftarrow w \cdot \left(1 - \frac{x - x_1}{x_2 - x_1}\right) \left(\frac{y - y_1}{y_2 - y_1}\right)$$

$$h(x_2, y_1) \leftarrow w \cdot \left(\frac{x - x_1}{x_2 - x_1}\right) \left(1 - \frac{y - y_1}{y_2 - y_1}\right)$$

$$h(x_2, y_2) \leftarrow w \cdot \left(\frac{x - x_1}{x_2 - x_1}\right) \left(\frac{y - y_1}{y_2 - y_1}\right)$$

 Contribution is further split over (up to) 2 neighboring orientation bins via linear interpolation over angles.

 $(x_1,y_1) \mid (x_2,y_1)$

(x,y)

- 2-Stage contrast normalization
 - L2 normalization, clipping, L2 normalization

- Feature vector construction
 - Collect HOG blocks into vector

Collect HOGs over detection window

Contrast normalize over overlapping spatial cells

Weighted vote in spatial & orientation cells

Compute gradients

Gamma compression

Image Window

- SVM Classification
 - Typically using a linear SVM

Pedestrian Detection with HOG

- Train a pedestrian template using a linear SVM
- At test time, convolve feature map with template

N. Dalal and B. Triggs, <u>Histograms of Oriented Gradients for Human Detection</u>, CVPR 2005

Slide credit: Svetlana Lazebnik

Non-Maximum Suppression

RWTHAACHEN UNIVERSITY

Pedestrian detection with HoGs & SVMs

Navneet Dalal, Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

References and Further Reading

- Read the HOG paper
 - N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR, 2005.
- HOG Detector
 - Code available: http://pascal.inrialpes.fr/soft/olt/