Computer Vision - Lecture 9

Recognition with Global Representations Il
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Course Outline

e Image Processing Basics
e Segmentation & Grouping
e Recognition

~ Global Representations

» Subspace Representations

e Object Categorization |
> Sliding Window based Object Detection

e Local Features & Matching

e Object Categorization Il
~ Part based Approaches

e 3D Reconstruction
e Motion and Tracking
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RWNTH
Recap: Appearance-Based Recognition

e Basic assumption

- Objects can be represented ﬁ
by a set of images Qrﬁy

( appearan.c.es )', , 3D object
> For recognition, it is

sufficient to just compare
the 2D appearances. ‘

> No 3D model is needed.

Y@

= Fundamental paradigm shift in the 90’s

B. Leibe



RWNTH
Recap: Recognition Using Histograms

e Histogram comparison

Test image
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Known objects
5

B. Leibe



Recap: Comparison Measures

e Vector space interpretation
> Euclidean distance
> Mahalanobis distance

e Statistical motivation
> Chi-square
- Bhattacharyya

e Information-theoretic motivation
~ Kullback-Leibler divergence, Jeffreys divergence

e Histogram motivation
> Histogram intersection

S8e
e Ground distance % II
» Earth Movers Distance (EMD) II I
6
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RWTH
Recap: Recognition Using Histograms

e Simple algorithm
1. Build a set of histograms H={h.} for each known object
> More exactly, for each view of each object

2. Build a histogram h, for the test image.

3. Compare h, to each h;eH
» Using a suitable comparison measure

4. Select the object with the best matching score
> Orreject the test image if no object is similar enough.

“Nearest-Neighbor” strategy
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RWTHAACHEN
o UNIVERSITY
Generalization of the Ildea

e Histograms of derivatives
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RWNTH
General Filter Response Histograms

e Any local descriptor (e.g. filter, filter combination) can
be used to build a histogram.

e Examples:
> Gradient magnitude jl.fjag - \/D% + D2

Yy

D.
> Gradient direction Dir = arctan —2
D;I‘-
- Laplacian Lap = D, + D,,

B. Leibe
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RWNTH
Multidimensional Representations

e Combination of several descriptors

~ Each descriptor is
applied to the whole image. D

X =
~ Corresponding pixel values
are combined into one Dy b
feature vector. )
. Feature vectors are collected Lap =
in multidimensional histogram. °
\ a
1.22) ey |
0.39| > | |
2.78 e
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B. Leibe
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Multidimensional Histograms

e Examples

Biere
'.il( 1\:.1."
L{L_' PL'I [AI 1M
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B. Leibe [Schiele & Crowley, 2000]




Multidimensional Representations

e Useful simple combinations

> DD, Rotation-variant
— Descriptor changes when
image is rotated.
— Useful for recognizing
oriented structures
(e.g. vertical lines)

> Mag-Lap Rotation-invariant

— Descriptor does not change
when image is rotated.

— Can be used to recognize
rotated objects.

— Less discriminant than
rotation-variant descriptor.
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RWTH
Special Case: Multiscale Representations

e Combination of several scales

~ Descriptors are computed at
different scales.

. D, = / 5=2.0
> Each scale captures different ) ;
information about the object.
D, / o=4.0
~ Size of the support region : : ;
grows with increasing o. D, 5=8.0
8 ~ Feature vectors capture both j
S local details and larger-scale
%) R
2 structures. ANV | iﬁ }
S 1.22] (|
S 0.39| —> | EE |
) 2.78 Lt
5 Vo bl
o
£
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Generalization: Filter Banks
Orien/aations

ENNIREESNNTE
/)

- SSNNDE - -
..+ mEoD

e What filters to put in the bank?

~ Typically we want a combination of scales and orientations,
different types of patterns.

Matlab code available for these examples:
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
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Slide credit: Kristen Grauman B. Leibe


http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
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RWNTH
Example Application of a Filter Bank

NI

Filtr ban of 8 flters

Input image

8 response images: magnitude
of filtered outputs, per filter

Slide credit: Kristen Grauman B. Leibe
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Extension: Colored Derivatives

e YC,C, color space

/ gr Yq gb \ Y
Y 3 g q 3 qr, 0 R C,
Ch | = 2 2 v
Cy gv9r  _9bYq B o

GoGr _Gv9g 4
\9r +97 - +9. )

e Color-opponent space
> Inspired by models of the human visual system
> Y =intensity
> C,=red-green
> C, =blue-yellow
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B. Leibe [Hall & Crowley, 2000]
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Extension: Colored Derivatives

e Generalization: derivatives along
> Y axis — intensity differences
- C, axis — red-green differences
- C, axis — blue-yellow differences

e Feature vector is rotated such that D,=0
» Rotation-invariant descriptor
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RWTH
Summary: Multidimensional Representations

e Pros
> Work very well for recognition.
> Usually, simple combinations are sufficient
(e.g. D,-D,, Mag-Lap)
~ But multiple scales are very important!
~ Generalization: filter banks

e Cons
~ High-dimensional histograms = lots of storage space
» Global representation = not robust to occlusion

19
B. Leibe
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RWNTH
You’re Now Ready for First Applications...

Line _
detection

Circle
detection

Binary
Segmen-
tation

Skin color detection Moment descriptors 73

Image Source: http://www.flickr.com/photos/angelsk/2806412807/
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Topics of This Lecture

Subspace Methods for Recognition
> Motivation

Principal Component Analysis (PCA)
> Derivation

~ Object recognition with PCA

> Eigenimages/Eigenfaces

> Limitations

Discussion: Global representations for recognition
» Vectors of pixel intensities

> Histograms

» Localized Histograms

Application: Image completion

B. Leibe

24



Representations for Recognition

e Global object representations

» We’ve seen histograms as one example

> What could be other suitable
representations?

e More generally, we want to obtain representations that
are well-suited for
» Recognizing a certain class of objects
> ldentifying individuals from that class (identification)

e How can we arrive at such a representation?

e Approach 1:

» Come up with a brilliant idea and tweak it until it works.
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e Can we do this more systematically?

B. Leibe
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RWNTH
Example: The Space of All Face Images

L

e When viewed as vectors of pixel
values, face images are extremely
high-dimensional.

> 100x100 image = 10,000 dimensions
e However, relatively few 10,000-

dimensional vectors correspond to
valid face images.

e We want to effectively model the
subspace of face images.

pael

g o mmﬁiﬂ

=
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Slide credit: Svetlana Lazebnik B. Leibe
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The Space of All Face Images

e We want to construct a low-dimensional linear subspace
that best explains the variation in the set of face images

\ Pixel value 2
[
>
\.
®
®
®

Pixel value 1

@ A face image
@® A (non-face) image

27

Slide credit: Svetlana Lazebnik B. Leibe



Subspace Methods

e |dea
» Represent images as points in a high-dim. vector space
> Valid images populate only a small fraction of the space
~ Characterize the subspace spanned by images
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Subspace Methods

Subspace methods

L Reconstructive J

PCA, ICA, NMF

E=E+a16+aﬁ +am + .

representation

e Today’s topic: PCA

B. Leibe

Slide credit: Ales Leonardis

[ Discriminative}

FLD, SVM, CCA

classification
regression

29
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Topics of This Lecture

e Principal Component Analysis (PCA)
> Derivation
~ Object recognition with PCA
> Eigenimages/Eigenfaces
> Limitations

B. Leibe
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Principal Component Analysis

e Given: N data points =, ... ,z, in R?

e We want to find a new set of features that are linear

combinations of original ones:
u(x;) = u'(x; — )

(u: mean of data points)

e What unit vector u in R¢ captures the most variance of
the data?

Slide credit: Svetlana Lazebnik B. Leibe
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Principal Component Analysis

e Direction that maximizes the variance of the projected

data: 1 N
var(u) = — u (x; — p)(ut(x; —p))
N «
i=1 - ~ /
Projection of data point
1 N
LTS e - s —
N 1=1
N _/
. N
Covariance matrix of data
— L y'Su

» The direction that maximizes the variance is the eigenvector
associated with the largest eigenvalue of X.

Slide credit: Svetlana Lazebnik B. Leibe

32



O
—
S~~~
#
—
%2
=
c
£
D
>
[2
S
Q
S
@)
@)

Remember: Fitting a Gaussian

e Mean and covariance matrix of data define a Gaussian
model

33
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Interpretation of PCA

e Compute eigenvectors of covariance ..

~ Eigenvectors: main directions

~ Eigenvalues: variances along eigenvector

e Result: coordinate transform to best represent the

variance of the data

L1

34
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Interpretation of PCA

e Now, suppose we want to represent the data using
just a single dimension.
- l.e., project it onto a single axis
> What would be the best choice for this axis?

L2

35
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Interpretation of PCA

e Now, suppose we want to represent the data using
just a single dimension.
- l.e., project it onto a single axis
> What would be the best choice for this axis?

L2

L1

e The first eigenvector gives us the best reconstruction.
> Direction that retains most of the variance of the data.

36



Properties of PCA

|t can be shown that the mean square error between X;

and its reconstruction using only m principle
eigenvectors is given by the expression:

N m N ) )/
s — N\ — . + /| 90% of variance

j=1 j=m+1

> Where )\j are the eigenvalues

k eigenvectors

° |nterpretation Cumulative influence
. e . of eigenvectors
> PCA minimizes reconstruction error g
> PCA maximizes variance of projection

» Finds a more “natural” coordinate system for the sample data.
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Slide credit: Ales Leonardis B. Leibe
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e An n-pixel image XeR" can be
e The error of the reconstruc-

e From yeR™

Slide credit: Peter Belhumeur
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RWTH
Example: Object Representation

bhbESddsdseER SO
AANN NI /AL LSRG P>

R b1 e s e B

|7 670
eStEhbbevRrecesEd
e i R D R

Slide credit: Ales Leonardis
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RWNTH
Principal Component Analysis "

S8 NIFERRATRINEEE

Get a compact
representation
by keeping only
the first k
eigenvectors!
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Slide credit: Ales Leonardis
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RWTHA/
Object Detection by Distance TO Eigenspace

e |s an image window o likely to
contain a learned object?

» Project window to subspace
and reconstruct as earlier.

» Compute the distance bet-
ween o and the reconstruc- i

tion (reprojection error). '{;5:~}:~:-:¢:’~:~::—:?‘::§.:~'=-'{:,~
. Local minima of distance over N

all image locations = object pE ;",

locations s

A . o
L LR LaE q
I_i.l".l’.lr}l’il' Fd 4]
T by
J.l'.‘.- A Fl'.l' s
"l"l'l '."ll.'l "l".'. 'l'l'l

TR ,mm ;.;_{ T

b B R
1.1.| R e
“AEE T
AhR R Ak bR,
i o f‘;‘i‘i‘i
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Eigenfaces: Key ldea

e Assume that most face images lie on a low-dimensional
subspace determined by the first k directions of
maximum variance (where k < d).

e Use PCA to determine the vectors U, ...u, that span that
subspace:

xX=u+wl +wWu, + .. +wu,

e Represent each face using its “face space” coordinates
(Wl’ Wk)

e Perform nearest-neighbor recognition in “face space”
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M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991
B. Leibe
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Slide credit: Svetlana Lazebnik


http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf
http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf

Eigenfaces Example

e Training images
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B. Leibe

Slide credit: Svetlana Lazebnik



Eigenfaces Example

Top eigenvectors:
Ug,...U,

Mean: p
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Slide credit: Svetlana Lazebnik B. Leibe



Computer Vision WS 14/15

UN

Slide credit: Peter Belhumeur B. Leibe
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Eigenface Example 2 (Better Alignment
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Eigenfaces Example

e Face x in “face space” coordinates:
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B. Leibe

Slide credit: Svetlana Lazebnik



RWTHAACHEN
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Eigenfaces Example

e Face x in “face space” coordinates:

X = W+ WUt Wou,+ Walg WU, t ..
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Slide credit: Svetlana Lazebnik B. Leibe



Recognition with Eigenspaces

 Process labeled training images:
> Find mean p and covariance matrix 2
> Find k principal components (eigenvectors of X) u,,...u,

> Project each training image x; onto subspace spanned by
principal components:

(Wi1’"-:wik) = (u1T(Xi B ”)’ cee ukT(Xi- U))

e Given novel image x:
~ Project onto subspace:
(W1,...,Wk) = (u1T(X- IJ), e UkT(X- ”))
. Optional: check reconstruction error x - X to determine whether
image is really a face

» Classify as closest training face in k-dimensional subspace
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Slide credit: Svetlana Lazebnik B. Leibe



RWTH
Obj. Identification by Distance IN Eigenspace

e Objects are represented as coordinates in an N-dim.
eigenspace.

e Example:

~ 3D space with points representing individual objects or a
manifold representing parametric eigenspace (e.g., orientation,

pose, illuminatZ

<
St

e Estimate parameters by finding the NN in the eigenspace
49
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Slide credit: Ales Leonardis B. Leibe



Parametric Eigenspace

i

CE C1
e Object identification / pose estimation

> Find nearest neighbor in eigenspace [Murase & Nayar, IJCV’95]
50
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Slide adapted from Ales Leonardis B. Leibe



RWTH
Applications: Recognition, Pose Estimation
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H. Murase and S. Nayar, Visual learning and recognition of 3-d objects from
appearance, IJCV 1995




R\WNTH

Applications: Visual Inspection
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S. K. Nayar, S. A. Nene, and H. Murase, Subspace Methods for Robot Vision,

IEEE Transactions on Robotics and élet_(t))mation, 1996. 52
. Leibe



ftp://ftp.cs.columbia.edu/pub/CAVE/papers/nayar/nayar-nene-murase-robot_ijra-96.ps
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Important Footnote

e Don’t really implement PCA this way!
> Why7

1. How bigis 2?
> NxN, where N is the number of pixels in an image!
- However, we only have M training examples, typically m<<n.

= > will at most have rank m!

2. You only need the first k eigenvectors

Slide credit: Peter Belhumeur B. Leibe
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RWTH
Singular Value Decomposition (SVD)

e Any mxn matrix A may be factored such that
A=UzV'
[mxn]=[mxm][mxn][nxn]

* U: mxm, orthogonal matrix

- Columns of U are the eigenvectors of AAT
* V: nxn, orthogonal matrix

. Columns are the eigenvectors of ATA
* 2. mxn, diagonal with non-negative entries (o, o,,..., ©;)

with s=min(m,n) are called the singular values.

~ Singular values are the square roots of the eigenvalues of both
AAT and ATA. Columns of U are corresponding eigenvectors!

> Result of SVD algorithm: 0,>0,2... 20, 54
Slide credit: Peter Belhumeur



SVD Properties

e Matlab: [u s v] = svd(a)
> where A = u*s*y’

* r = rank(A)
> Number of non-zero singular values

U, V give us orthonormal bases for the subspaces of A

» first r columns of U: column space of A
> last m-r columns of U: left nullspace of A
~ first r columns of V: row space of A

> last n-r columns of V:  nullspace of A

e For d<r, the first d columns of U provide the best d-
dimensional basis for columns of A in least-squares sense

LO
—
~~
#
—
)
=
c
©
D
>
2
S
Q
S
(@]
@)

55

Slide credit: Peter Belhumeur B. Leibe



Performing PCA with SVD

e Singular values of A are the square roots of eigenvalues
of both AAT and ATA.

» Columns of U are the corresponding eigenvectors.
n
T T T
e And > aa =[a, ... a]la ... a] =AA
=1

e Covariance matrix
le—, . ..
¥ = T—LZ(%‘ — )& — {@)"
1=1

e So, ignoring the factor 1/n, subtract mean image / from

—>

each input image, create data matrix A = (&; — [i),
and perform (thin) SVD on the data matrix.
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Slide credit: Peter Belhumeur B. Leibe
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Limitations

e Global appearance method: not robust to misalignment,
background variation

e Easy fix (with considerable manual overhead)
> Need to align the training examples
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Slide credit: Svetlana Lazebnik B. Leibe



Limitations

e PCA assumes that the data has a Gaussian distribution
(mean u, covariance matrix 2)

10k #  ®# NF 4ok
# # FF *
8 # % e * "
i . *ae * g .
4 % ® * ﬁﬁ*
5 # ** ¥ L .
oL . H&H&*
N/ L
7)) 4 # ¥ g + ¥
= ol " L
(- + :ﬁ: " *
% 8 & *x " #* *
S 10 | ¥ * *f# o F
E | | & | | |
*5 10 5 0 5 10
o
§ » The shape of this dataset is not well described by its principal

components _ 59
Slide credit: Svetlana Lazebnik B. Leibe
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Limitations

e The direction of maximum variance is not always good
for classification

Slide credit: Svetlana Lazebnik B. Leibe
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Topics of This Lecture

e Discussion: Global representations for recognition
» Vectors of pixel intensities
> Histograms
» Localized Histograms

B. Leibe
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Global Appearan

EEOTC T EEEE

e Simple holistic descriptions of image content
» Vector of pixel intensities

Feature Extraction

sl PV Y [y 1))

Slide adapted from Kristen Grauman

GT/YT SM UOISIA 181ndwo)
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Eigenfaces: Global Appearance Description

This can also be applied in a sliding-window framework...

Eigenvectors computed
from covariance matrix

Slide adapted from Kristen Grauman

B. Leibe

Generate low-
dimensional
representation
of appearance
with a linear
subspace.

Project new
images to “face
space”.

Recognition via
nearest neighbors
in face space

63
[Turk & Pentland, 1991]
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RWTHAACHEN

Feature Extraction: Global Appearance

LO

—

i e Simple holistic descriptions of image content

= » Vector of pixel intensities

c

2 > Grayscale / color histograms

> = Color or grayscale-based appearance

= description can be sensitive to illumination

3 and intra-class appearance variation! ok

8 Cartoon example:
B. Leibe an albino koala 65

Slide adapted from Kristen Grauman
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Gradient-based Representations

e Better: Edges, contours, and (oriented) intensity
gradients

B. Leibe

Slide credit: Kristen Grauman
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Matching Edge Templates

e Example: Chamfer matching

4

Input Edges Distance Template Best
image detected transform shape match

At each window position,

compute average min D T = L N
distance between points on cham fer (T 1) = T t; (1)
template (T) and input (l).
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Slide credit: Kristen Grauman B. Leibe [Gavrila & Philomin, ICCV 1999]



RO ONVERSITY
Gradient-based Representations

e Improved discriminance: localized gradients

e Summarize local distribution of gradients with histogram
» Locally orderless: offers invariance to small shifts and rotations
> Contrast-normalization: try to correct for variable illumination
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Slide credit; Kristen Grauman B. Leibe



Gradient-based Representations:
Histograms of Oriented Gradients (HOG)

Orientation Voting
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N N Overlapping Blocks
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Input Image Gradient Image

—_ - Local Normalization

Map each grid cell in the input
window to a histogram counting
the gradients per orientation.

Code available:
http://pascal.inrialpes.fr/soft/olt/
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Slide credit; Kristen Grauman B. Leibe [Dalal & Triggs, CVPR 2005]


http://pascal.inrialpes.fr/soft/olt/

RWTH
References and Further Reading

e Background information on PCA can be found in Chapter
22.3 of

~ D. Forsyth, J. Ponce,
Computer Vision - A Modern Approach.
Prentice Hall, 2003

Computer
Vision
A

e Important Papers (available on webpage)

> M. Turk, A. Pentland
Eigenfaces for Recognition
J. Cognitive Neuroscience, Vol. 3(1), 1991.

> P.N. Belhumeur, J.P. Hespanha, D.J. Kriegman
Eigenfaces vs. Fisherfaces: Recognition Using Class Specific
Linear Projection, IEEE Trans. PAMI, Vol. 19(7), 1997.
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