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Recap: Appearance-Based Recognition

e Basic assumption

» Objects can be represented
by a set of images
(“appearances”).

» For recognition, it is
sufficient to just compare
the 2D appearances.

» No 3D model is needed.
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= Fundamental paradigm shift in the 90’s
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Recap: Comparison Measures

e Vector space interpretation
» Euclidean distance
» Mahalanobis distance

¢ Statistical motivation
» Chi-square
» Bhattacharyya

¢ Information-theoretic motivation
» Kullback-Leibler divergence, Jeffreys divergence

¢ Histogram motivation
» Histogram intersection

Ground distance
~ Earth Movers Distance (EMD)
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Course Outline

¢ Image Processing Basics
* Segmentation & Grouping
¢ Recognition

» Global Representations

» Subspace Representations

¢ Object Categorization |
» Sliding Window based Object Detection
e Local Features & Matching
¢ Object Categorization I
» Part based Approaches
¢ 3D Reconstruction
¢ Motion and Tracking

RWTH/JCHET]
Recap: Recognition Using Histograms

¢ Histogram comparison

Test image

Known objects
5
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RWTH/ACHEN
Recap: Recognition Using Histograms

e Simple algorithm
1. Build a set of histograms H={h;} for each known object
> More exactly, for each view of each object
2. Build a histogram h, for the test image.
3. Compare h, to each h;eH
> Using a suitable comparison measure

4. Select the object with the best matching score
> Orreject the test image if no object is similar enough.

“Nearest-Neighbor” strategy

B. Leibe
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Generalization of the Idea

¢ Histograms of derivatives

B. Leibe

Multidimensional Representations

¢ Combination of several descriptors
» Each descriptor is

applied to the whole image. D

X

» Corresponding pixel values
are combined into one D
feature vector.

. Feature vectors are collected Lapf,,
in multidimensional histogram.

B. Leibe

Multidimensional Representations

¢ Useful simple combinations

» DDy Rotation-variant
— Descriptor changes when
image is rotated.
— Useful for recognizing
oriented structures
(e.g. vertical lines)

Rotation-invariant

— Descriptor does not change
when image is rotated.

— Can be used to recognize
rotated objects.

— Less discriminant than
rotation-variant descriptor.

» Mag-Lap

B. Leibe
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General Filter Response Histograms o

¢ Any local descriptor (e.g. filter, filter combination) can
be used to build a histogram.

e Examples:
» Gradient magnitude

Mag =

D
» Gradient direction Dir = arctan —=~

x

Lap = Dy, + Dy,

» Laplacian

B. Leibe

Multidimensional Histograms

¢ Examples

B. Leibe

12
Schiele & Crowley, 2000]]
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Special Case: Multiscale Representations

¢ Combination of several scales

~ Descriptors are computed at
different scales.

v

Each scale captures different
information about the object.

v

Size of the support region
grows with increasing o.

v

Feature vectors capture both
local details and larger-scale
structures.

B. Leibe




Generalization: Filter Banks

Oriery\ations
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¢ What filters to put in the bank?

» Typically we want a combination of scales and orientations,
different types of patterns.

Matlab code available for these examples:
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
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ide credit: Kristen Grauman B. Leibe

Extension: Colored Derivatives

¢ YC,C, color space
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2 I Color-opponent space
S » Inspired by models of the human visual system
g » Y =intensity
3 » C,=red-green
5
g » C, = blue-yellow
o
o . 17
5. Leibe [Hall & Crowlev, 2000]
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Summary: Multidimensional Representations

* Pros
» Work very well for recognition.
» Usually, simple combinations are sufficient
(e.g. D,-D,, Mag-Lap)
» But multiple scales are very important!
» Generalization: filter banks

¢ Cons
» High-dimensional histograms = lots of storage space
» Global representation = not robust to occlusion
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Example Application of a Filter Bank

8 response images: magnitude
of filtered outputs, per filter
lide credit: Kristen Grauman B. Leibe
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Extension: Colored Derivatives

¢ Generalization: derivatives along
» Y axis — intensity differences
» C, axis — red-green differences
» C, axis — blue-yellow differences

* Feature vector is rotated such that D, =0
» Rotation-invariant descriptor
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[Hall & Crowlev, 20001
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You’re Now Ready for First Applications...

Histogram
— based
recognition

Circle
detection

Binary
Segmen-
tation

Computer Vision WS 14/15

Skin color detection

Moment descriptors
lmage Source: flickr, 2806412807/



http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Topics of This Lecture

¢ Subspace Methods for Recognition
> Motivation

¢ Principal Component Analysis (PCA)
» Derivation
» Object recognition with PCA
» Eigenimages/Eigenfaces
» Limitations

¢ Discussion: Global representations for recognition
» Vectors of pixel intensities
» Histograms
» Localized Histograms

¢ Application: Image completion

Computer Vision WS 14/15

B. Leibe
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Example: The Space of All Face Images

When viewed as vectors of pixel
values, face images are extremely
high-dimensional.

» 100x100 image = 10,000 dimensions
However, relatively few 10,000-
dimensional vectors correspond to
valid face images.

* We want to effectively model the
subspace of face images.

Computer Vision WS 14/15

Slide credit: Svetlana L azebnik B. Leibe

Subspace Methods

¢ |dea
» Represent images as points in a high-dim. vector space
» Valid images populate only a small fraction of the space
» Characterize the subspace spanned by images
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Slide adapted from Alec | eonard; B. Leibe
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Representations for Recognition

¢ Global object representations
» We’ve seen histograms as one example
» What could be other suitable
representations?
* More generally, we want to obtain representations that
are well-suited for
» Recognizing a certain class of objects
» Identifying individuals from that class (identification)

¢ How can we arrive at such a representation?

e Approach 1:

» Come up with a brilliant idea and tweak it until it works.

Computer Vision WS 14/15

e Can we do this more systematically?

B. Leibe
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The Space of All Face Images

¢ We want to construct a low-dimensional linear subspace
that best explains the variation in the set of face images

Pixel value 2

\

Pixel value 1

@ Aface image
@ A (non-face) image

Computer Vision WS 14/15

ide credit: Svetlana Lazebnik 8. Leibe

Subspace Methods

Subspace methods

Reconstructive

Discriminative

PCA, ICA, NMF FLD, SVM, CCA

BE-8-8-E-

representation

classification
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e Today’s topic: PCA

ide credit: Ales 1 eqnardi LA




Topics of This Lecture

¢ Principal Component Analysis (PCA)
» Derivation
» Object recognition with PCA
» Eigenimages/Eigenfaces
» Limitations

Computer Vision WS 14/15

B. Leibe
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Principal Component Analysis

¢ Direction that maximizes the variance of the projected
data: N

var(u) = % Z u' (x; — p)(ua (x; — )"

Projection of data point
N

:%u'r { Z (x; — p)(x; — ) |u

i=1

1 Covariance matrix of data
==u'Yu
N
» The direction that maximizes the variance is the eigenvector
associated with the largest eigenvalue of X.

Slide credit: Svetlana L azebnik B. Leibe
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Interpretation of PCA
¢ Compute eigenvectors of covariance .

» Eigenvectors: main directions
» Eigenvalues: variances along eigenvector

uy ’ u

\ 1

¢ Result: coordinate transform to best represent the
variance of the data
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Principal Component Analysis

¢ Given: N data points z,, ...,z in R?

* We want to find a new set of features that are linear
combinations of original ones:

u(xi) =u'(x; — p)
(u: mean of data points)

¢ What unit vector u in R? captures the most variance of
the data?

Computer Vision WS 14/15

de credit: Svetlana lazebnik B. Leibe
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Remember: Fitting a Gaussian

¢ Mean and covariance matrix of data define a Gaussian
model

Computer Vision WS 14/15
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Interpretation of PCA
¢ Now, suppose we want to represent the data using
just a single dimension.

» l.e., project it onto a single axis
» What would be the best choice for this axis?

T2
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Interpretation of PCA

* Now, suppose we want to represent the data using
just a single dimension.
» l.e., project it onto a single axis
» What would be the best choice for this axis?

T2

¢ The first eigenvector gives us the best reconstruction.
» Direction that retains most of the variance of the data.

RWTHAACHE

Projection and Reconstruction

¢ An n-pixel image XeR" can be
projected to a low-dimensional
feature space yeR™ by

y =UxX

* From yeR™, the reconstruc
tion of the point is UTy

¢ The error of the reconstruc-

tion is
||x -u TUx||

X3

lide credit: Peter B. Leibe

Principal Component Analysis

Eg eI EEDOETENEEERS

Get a compact
representation
by keeping only
the first k&
eigenvectors!

-0 &

B. Leibe

slide credit: Ales | egnardi:
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Slide credit: Ales | eopnardi

RWTHAACTE
Properties of PCA
e It can be shown that the mean square error between X;

and its reconstruction using only m principle
eigenvectors is given by the expression:

N

Z*J—Z*Jf >

j=m+1

| 90% of variance

» where ); are the eigenvalues
k elgenvecturs

Cumulatwe influence
of eigenvectors

¢ Interpretation
» PCA minimizes reconstruction error
» PCA maximizes variance of projection
» Finds a more “natural” coordinate system for the sample data.

37
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Example: Object Representation
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ide credit: Ales Leonardi:

ide credit: Peter

RWTH ACHET
Object Detection by Distance TO Eigenspace

¢ Is an image window o likely to
contain a learned object?

» Project window to subspace
and reconstruct as earlier.

» Compute the distance bet-
ween o and the reconstruc-
tion (reprojection error).

» Local minima of distance over
all image locations = object
locations

41
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Eigenfaces: Key Idea

Assume that most face images lie on a low-dimensional
subspace determined by the first k directions of
maximum variance (where k < d ).

Use PCA to determine the vectors Uy, ...u; that span that
subspace:

X=pu+wly +Wou, + o+ wly

Represent each face using its “face space” coordinates
(Wl’ e Wk)

¢ Perform nearest-neighbor recognition in “face space”

Computer Vision WS 14/15

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991 ,

RWTH//CHEN
UNIVERSITY,

ide credit: Svetlana Lazebnik B. Leibe

RWTH/CHET
. UNIVERSITY
Eigenfaces Example

Top eigenvectors:
Uy,.. Uy

Computer Vision WS 14/15

' 44
ide credit: Svetlana Lazebnik B. Leibe
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) UNIVERSITY
Eigenfaces Example

e Face x in “face space” coordinates:

x — [uj(x —p), ..., uj(x — p)]

= wy, ..., Wk
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ide credit: Svetlana | azebnik B Lefbe
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RWTH/ I
. UNIVERSITY
Eigenfaces Example

¢ Training images
Xqyeees XN

ide credit: Svetlana | azebnik B. Leibe

UNIVERSITY
Eigenface Example 2 (Better Alignment&

45

ide credit: Peter B. Leibe
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. UNIVERSITY
Eigenfaces Example

e Face x in “face space” coordinates:

X = u +

Wily + Woly + Wally + Wyly + ...

47

ide credit: Svetlana | azebnik. B. Leibe



http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf
http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf
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Recognition with Eigenspaces

¢ Process labeled training images:
» Find mean p and covariance matrix X
» Find k principal components (eigenvectors of X) u,...u,

» Project each training image x; onto subspace spanned by
principal components:
(WigseeesWid) = (UgT(X = B), oo, UT(Xi- 1))

« Given novel image x:
» Project onto subspace:
Wiy Wi) = (UT(X - ), e, U T(X - 1))
Optional: check reconstruction error x - X to determine whether
image is really a face

Classify as closest training face in k-dimensional subspace

v

v

48

lide credit: Svetlana | azebnik B. Leibe

Parametric Eigenspace

< u@
c, <
¢ Object identification / pose estimation

» Find nearest neighbor in eigenspace [Murase & Nayar, IJCV’95]
50

lide adaoted from Ales | eonardi B. Leibe
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Inspection

Applications: Visua

S. K. Nayar, S. A. Nene, and H. Murase, Subspace Methods for Robot Vision,
IEEE Transactions on Robotics and Automation, 1996. 52

RWTH/CET
Obj. Identification by Distance IN Eigenspace

¢ Objects are represented as coordinates in an n-dim.
eigenspace.
e Example:
» 3D space with points representing individual objects or a

manifold representing parametric eigenspace (e.g., orientation,
pose, illumination).

« Estimate parameters by finding the NN in the eigenspace
49

Slide credit: Ales | eonardi B. Leibe
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Applications: Recognition, Pose Estimation

Computer Vision WS 14/15

H. Murase and S. Nayar, Visual learning and recognition of 3-d objects from
appearance, 1JCV 1995

Important Footnote

¢ Don’t really implement PCA this way!
- Why?

1. How bigis X?
» Nxn, where N is the number of pixels in an image!
» However, we only have m training examples, typically m<<n.
= X will at most have rank m!

2. You only need the first k eigenvectors
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ftp://ftp.cs.columbia.edu/pub/CAVE/papers/nayar/nayar-nene-murase-robot_ijra-96.ps

Computer Vision WS 14/15

i
=
5
&
0
=
=
o
2
>
g
=
a
2
1
o

Computer Vision WS 14/15

RWTH/ G
Singular Value Decomposition (SVD)

¢ Any mxn matrix A may be factored such that
A=UzVT
[mxn]=[mxm][mxn][nxn]

¢ U: mxm, orthogonal matrix

» Columns of U are the eigenvectors of AAT
* V: nxn, orthogonal matrix

» Columns are the eigenvectors of ATA
* X: mxn, diagonal with non-negative entries (c,, o,,..., ;)

with s=min(m,n) are called the singular values.

» Singular values are the square roots of the eigenvalues of both
AAT and ATA. Columns of U are corresponding eigenvectors!

» Result of SVD algorithm: 6,>c,2... 20,
Slide credit: Peter.
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Performing PCA with SVD

¢ Singular values of A are the square roots of eigenvalues
of both AAT and ATA.

» Columns of U are the corresponding eigenvectors.
. T
e And Y aa =[a
i=1

a,|[a a"]T = AAT

* Covariance matrix N
1
»=—_ 2 (72— i\
n ;(xz i)(Z; — fi)
« So, ignoring the factor 1/n, subtract mean image  from

each input image, create data matrix A = (Z; — i),
and perform (thin) SVD on the data matrix.

Slide credit: Peter. B. Leibe
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Limitations

e PCA assumes that the data has a Gaussian distribution
(mean p, covariance matrix )

10 L A T
. P

* + ¥

» The shape of this dataset is not well described by its principal
components 59

Slide credit: Svetlana | azebnik LA
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SVD Properties

e Matlab: [u s v] = svd(a)
» where A = u*s*y’
e r = rank(A)

» Number of non-zero singular values

* U, V give us orthonormal bases for the subspaces of A
» first r columns of U: column space of A
» last m-r columns of U:  left nullspace of A
» first r columns of V: row space of A
» last n-r columns of V:  nullspace of A

e For d<r, the first d columns of U provide the best d-
dimensional basis for columns of A in least-squares sense

ide credit: Peter B. Leibe

RWTHACEN
Limitations

¢ Global appearance method: not robust to misalignment,
background variation

¢ Easy fix (with considerable manual overhead)
» Need to align the training examples

ide credit: Svetlana Lazebnik B. Leibe
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RWTHAACHER
Limitations

¢ The direction of maximum variance is not always good
for classification

ide credit: Svetlana | azebnik. B. Leibe




Topics of This Lecture

¢ Discussion: Global representations for recognition
» Vectors of pixel intensities
» Histograms
» Localized Histograms

Computer Vision WS 14/15

B. Leibe
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Eigenfaces: Global Appearance Description
This can also be applied in a sliding-window framework...

Generate low-
dimensional
representation
of appearance
with a linear

Eigenvectors computed

from covariancematrix  SUDspace.

Project new

m T F v
@z - +_}{E}+w ;E:E::'to face

Computer Vision WS 14/15

2 Mean Recognition via
nearest neighbors
in face space

; 63
ide adapted from Kristen Grauman B. Leibe [Turk & Pentland, 1991

RWTHACHEN

Feature Extraction: Global Appearance

¢ Simple holistic descriptions of image content
» Vector of pixel intensities
» Grayscale / color histograms
= Color or grayscale-based appearance
description can be sensitive to illumination e
and intra-class appearance variation! %

Cartoon example:
an albino koala 65
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ide adapted from Kristen Grauman B. Leibe
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Feature Extraction: Global Appearance

« Simple holistic descriptions of image content
» Vector of pixel intensities

Computer Vision WS 14/15

ide adapted from Kristen Grauman

RWTH CHE
Feature Extraction: Global Appearance

¢ Simple holistic descriptions of image content
» Vector of pixel intensities
= Pixel based representations sensitive to small shifts!
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ide adapted from Kristen Grauman B. Leibe
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Gradient-based Representations

o Better: Edges, contours, and (oriented) intensity
gradients

Computer Vision WS 14/15

ide credit: Kristen Grauman B. Leibe
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Matching Edge Templates

¢ Example: Chamfer matching

A

Template Best

Input Edges Distance
§ image detected transform shape match
g
= At each window position,
S i I
7l compute average min Dopaengen (.1 = 2 S0
= distance between points on I
=l template (T) and input (1).
=8
£
o
[$}
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slide credit: Kristen Grauman B. Leibe [Gavrila & Philomin, ICCV 1999]

Gradient-based Representations:
Histograms of Oriented Gradients (HOG)

Orientation Voting

=— Overlapping Blocks

Local Normalization

Map each grid cell in the input
window to a histogram counting
the gradients per orientation.

Code available:
http://pascal.inrialpes.fr/soft/olt/
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Slide credit: Kristen Grauman B. Leibe

9.
[Dalal & Triggs, CVPR ZO(?S
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Gradient-based Representations

¢ Improved discriminance: localized gradients

e Summarize local distribution of gradients with histogram
» Locally orderless: offers invariance to small shifts and rotations
» Contrast-normalization: try to correct for variable illumination

ide credit: Kristen Grauman B. Leibe
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