

Computer Vision - Lecture 8

Recognition with Global Representations

18.11.2014

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Reminder

- Exercise sheet 3 is due this week
 - Hough Transform
 - Mean-shift clustering
 - Mean-shift segmentation [last Tuesday's topic]
 - Image segmentation with Graph Cuts [last Thursdays's topic]
 - The exercise will be on Thursday, 20.11.
 - ⇒ Submit your results by Wednesday night.

Course Outline

- Image Processing Basics
- Segmentation
 - Segmentation and Grouping
 - Graph-Theoretic Segmentation
- Recognition
 - Global Representations
 - Subspace representations
- Local Features & Matching
- Object Categorization
- 3D Reconstruction
- Motion and Tracking

RWTHAACHEN UNIVERSITY

Recap: MRFs for Image Segmentation

MRF formulation

Unary potentials $\phi(x_i,y_i)$

Pairwise potentials

$$\psi(x_i,x_j)$$

$$E(\mathbf{x}, \mathbf{y}) = \sum_{i} \phi(x_i, y_i) + \sum_{i,j} \psi(x_i, x_j)$$

Data (D)

Unary likelihood

Pair-wise Terms

MAP Solution

Energy function

$$E(\mathbf{x},\mathbf{y}) = \sum_{i} \phi(x_i,y_i) + \sum_{i,j} \psi(x_i,x_j)$$
Unary Pairwise potentials

- ullet Unary potentials ϕ
 - Encode local information about the given pixel/patch
 - How likely is a pixel/patch to belong to a certain class (e.g. foreground/background)?
- Pairwise potentials ψ
 - Encode neighborhood information
 - How different is a pixel/patch's label from that of its neighbor?
 (e.g. based on intensity/color/texture difference, edges)

Recap: How to Set the Potentials?

- Unary potentials
 - E.g. color model, modeled with a Mixture of Gaussians

$$\phi(x_i, y_i; \theta_{\phi}) = \log \sum_{k} \theta_{\phi}(x_i, k) p(k|x_i) \mathcal{N}(y_i; \bar{y}_k, \Sigma_k)$$

 \Rightarrow Learn color distributions for each label

Recap: How to Set the Potentials?

Pairwise potentials

Potts Model

$$\psi(x_i, x_j; \theta_{\psi}) = \theta_{\psi} \delta(x_i \neq x_j)$$

- Simplest discontinuity preserving model.
- Discontinuities between any pair of labels are penalized equally.
- Useful when labels are unordered or number of labels is small.
- Extension: "Contrast sensitive Potts model"

$$\psi(x_i, x_j, g_{ij}(\mathbf{y}); \theta_{\psi}) = -\theta_{\psi} g_{ij}(\mathbf{y}) \delta(x_i \neq x_j)$$

where

$$g_{ij}(\mathbf{y}) = e^{-\beta \|y_i - y_j\|^2}$$
 $\beta = \frac{1}{2} \left(\text{avg} \left(\|y_i - y_j\|^2 \right) \right)^{-1}$

⇒ Discourages label changes except in places where there is also a large change in the observations.

RWTHAACHEN UNIVERSITY

Recap: Graph-Cuts Energy Minimization

- Solve an equivalent graph cut problem
 - 1. Introduce extra nodes: source and sink
 - 2. Weight connections to source/sink (t-links) by $\phi(x_i=s)$ and $\phi(x_i=t)$, respectively.
 - 3. Weight connections between nodes (n-links) by $\psi(x_i,\,x_i)$.
 - 4. Find the minimum cost cut that separates source from sink.
 - ⇒ Solution is equivalent to minimum of the energy.

- Dual to the well-known max flow problem
- Very efficient algorithms available for regular grid graphs (1-2 MPixels/s)
- Globally optimal result for 2-class problems

Recap: When Can s-t Graph Cuts Be Applied?

Unary potentials Pairwise potentials
$$E(L) = \sum_p E_p(L_p) + \sum_{pq \in N} E(L_p, L_q)$$

$$\text{t-links} \qquad \text{n-links} \qquad L_p \in \{s, t\}$$

• s-t graph cuts can only globally minimize binary energies that are submodular. [Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

$$\longleftrightarrow E(s,s) + E(t,t) \le E(s,t) + E(t,s)$$
Submodularity ("convexity")

- Submodularity is the discrete equivalent to convexity.
 - > Implies that every local energy minimum is a global minimum.
 - ⇒ Solution will be globally optimal.

GraphCut Applications: "GrabCut"

- Interactive Image Segmentation [Boykov & Jolly, ICCV'01]
 - Rough region cues sufficient
 - Segmentation boundary can be extracted from edges

Procedure

- User marks foreground and background regions with a brush.
- This is used to create an initial segmentation which can then be corrected by additional brush strokes.

User segmentation cues

Slide credit: Matthieu Bray

GrabCut: Data Model

Global optimum of the energy

- Obtained from interactive user input
 - User marks foreground and background regions with a brush
 - Alternatively, user can specify a bounding box

GrabCut: Coherence Model

An object is a coherent set of pixels:

$$\psi(x, y) = \gamma \sum_{(m,n)\in C} \delta[x_n \neq x_m] e^{-\beta \|y_m - y_n\|^2}$$

How to choose γ ?

Slide credit: Carsten Rother

RWTHAACHEN UNIVERSITY

Iterated Graph Cuts

Result

Color model (Mixture of Gaussians)

GrabCut: Example Results

This is included in the newest version of MS Office!

Applications: Interactive 3D Segmentation

RWTHAACHEN UNIVERSITY

Topics of This Lecture

- Object Recognition
 - Appearance-based recognition
 - Global representations
 - Color histograms
- Recognition using histograms
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms
 - Extension: colored derivatives

Object Recognition

Challenges

- Viewpoint changes
 - Translation
 - Image-plane rotation
 - Scale changes
 - Out-of-plane rotation
- Illumination
- Noise
- Clutter
- Occlusion

Appearance-Based Recognition

Basic assumption

- Objects can be represented by a set of images ("appearances").
- For recognition, it is sufficient to just compare the 2D appearances.
- No 3D model is needed.

⇒ Fundamental paradigm shift in the 90's

Global Representation

Idea

Represent each object (view) by a global descriptor.

- For recognizing objects, just match the descriptors.
- Some modes of variation are built into the descriptor, the others have to be incorporated in the training data.
 - e.g. a descriptor can be made invariant to image-plane rotations.
 - Other variations:

Viewpoint changes

Translation

Scale changes

Out-of-plane rotation

Illumination

Noise

Clutter

Occlusion

Color: Use for Recognition

Color:

- Color stays constant under geometric transformations
- Local feature
 - Color is defined for each pixel
 - Robust to partial occlusion

Idea

- Directly use object colors for recognition
- Better: use statistics of object colors

Color Histograms

- Color statistics
 - Here: RGB as an example
 - > Given: tristimulus R,G,B for each pixel
 - Compute 3D histogram
 - H(R,G,B) = #(pixels with color (R,G,B))

Color Normalization

- One component of the 3D color space is intensity
 - If a color vector is multiplied by a scalar, the intensity changes, but not the color itself.
 - This means colors can be normalized by the intensity.
 - Intensity is given by I = R + G + B:
 - "Chromatic representation"

$$r = \frac{R}{R + G + B} \qquad g = \frac{G}{R + G + B}$$

$$b = \frac{B}{R + G + B}$$

Color Normalization

Observation:

- > Since r + g + b = 1, only 2 parameters are necessary
- \triangleright E.g. one can use r and g
- > and obtains b = 1 r g

Color Histograms

Robust representation

Color Histograms

- Use for recognition
 - Works surprisingly well
 - In the first paper (1991), 66 objects could be recognized almost without errors

Topics of This Lecture

- Object Recognition
 - Appearance-based recognition
 - Global representations
 - Color histograms
- Recognition using histograms
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms
 - Extension: colored derivatives

Recognition Using Histograms

Histogram comparison

Recognition Using Histograms

• With multiple training views

What Is a Good Comparison Measure?

• How to define matching cost?

31

Comparison Measures: Euclidean Distance

Definition

Euclidean Distance (=L₂ norm)

$$d(Q, V) = \sum_{i} (q_i - v_i)^2$$

- > Focuses on the differences between the histograms.
- Interpretation: distance in feature space.
- ▶ Range: [0,∞]
- > All cells are weighted equally.
- Not very robust to outliers!

RWTHAACHEN UNIVERSITY

Comparison Measures: Mahalanobis Distance

Definition

Mahalanobis distance(Quadratic Form)

$$d(Q, V) = (Q - V)^{\top} \Sigma^{-1} (Q - V)$$
$$= \sum_{i} \sum_{j} \frac{(q_{i} - v_{i})(q_{j} - v_{j})}{\sigma_{ij}}$$

- Interpretation:
 - Weighted distance in feature space.
 - Compensate for correlated data.
- Range: [0,∞]
- More robust to certain outliers.

Comparison Measures: Chi-Square

Definition

Chi-square

$$\chi^{2}(Q, V) = \sum_{i} \frac{(q_{i} - v_{i})^{2}}{q_{i} + v_{i}}$$

- Statistical background:
 - Test if two distributions are different
 - Possible to compute a significance score
- ▶ Range: [0,∞]
- Cells are not weighted equally!
- More robust to outliers than Euclidean distance.
 - If the histograms contain enough observations...

Comp. Measures: Bhattacharyya Distance

Definition

> Bhattacharyya coefficient

$$BC(Q,V) = \sum_{i} \sqrt{q_i v_i}$$

Common distance measure:

$$d_{BC}(Q,V) = \sqrt{1 - BC(Q,V)}$$

- Statistical background
 - -BC measures the statistical separability between two distributions.
- ▶ Range: [0,∞]
- \rightarrow (Reason for d_{BC} : triangle inequality)

Comparison Measures: Kullback-Leibler

Definition

KL-divergence

$$KL(Q,V) = \sum_{i} q_{i} \log \frac{q_{i}}{v_{i}}$$

- Information-theoretic background:
 - Measures the expected difference (#bits) required to code samples from distribution Q when using a code based on Q vs. based on V.
 - Also called: information gain, relative entropy
- Not symmetric!
- Symmetric version: Jeffreys divergence

$$JD(Q,V) = KL(Q,V) + KL(V,Q)$$

Comp. Measures: Histogram Intersection

Definition

Intersection

$$\cap (Q, V) = \sum_{i} \min(q_i, v_i)$$

- Measures the common part of both histograms
- Range: [0,1]
- > For unnormalized histograms, use the following formula

$$\cap (Q, V) = \frac{1}{2} \left(\frac{\sum_{i} \min(q_i, v_i)}{\sum_{i} q_i} + \frac{\sum_{i} \min(q_i, v_i)}{\sum_{i} v_i} \right)$$

RWTHAACHEN UNIVERSITY

Comp. Measures: Earth Movers Distance

Motivation: Moving Earth

Motivation: Moving Earth

Motivation: Moving Earth

(distance moved) * (amount moved)

- Motivation: Moving Earth
 - Linear Programming Problem

- Motivation: Moving Earth
 - Linear Programming Problem

- Motivation: Moving Earth
 - **Linear Programming Problem**

⇒ What is the minimum amount of work to convert Q into V? B. Leibe

Constraints

1. Move "earth" only from Q to V

$$f_{ij} \geq 0$$

Constraints

2. Cannot send more "earth" than there is

$$\sum_{i=1}^{n} f_{ij} \le w_{q_i}$$

Constraints

3. V cannot receive more than it can hold

$$\sum_{i=1}^{m} f_{ij} \le W_{v_j}$$

Constraints

- 4. As much "earth" as possible must be moved.
 - Either Q must be completely spent or V must be completely filled.

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij} = \min \left(\sum_{i=1}^{m} w_{q_i}, \sum_{j=1}^{n} w_{v_j} \right)$$

RWTHAACHEN UNIVERSITY

Comp. Measures: Earth Movers Distance

- Motivation: Moving Earth
 - Linear Programming Problem
 - Distance measure

$$D_{EMD}\left(Q,V
ight) = rac{\displaystyle\sum_{i,j} d_{ij} f_{ij}}{\displaystyle\sum_{i,j} f_{ij}}$$

- Advantages
 - Nearness measure without quantization
 - Partial matching
 - A true metric
- Disadvantage: expensive computation
 - Efficient algorithms available for 1D
 - Approximations for higher dimensions...

Summary: Comparison Measures

- Vector space interpretation
 - Euclidean distance
 - Mahalanobis distance

- Chi-square
- Bhattacharyya
- Information-theoretic motivation
 - > Kullback-Leibler divergence, Jeffreys divergence
- Histogram motivation
 - Histogram intersection
- Ground distance
 - Earth Movers Distance (EMD)

Comparison for Image Retrieval

L2 distance

Jeffrey divergence

 χ^2 statistics

Earth Movers Distance

Slide credit: Pete Barnum

B. Leibe

Histogram Comparison

- Which measure is best?
 - Depends on the application...
 - > Euclidean distance is often not robust enough.
 - > Both Intersection and χ^2 give good performance for histograms.
 - Intersection is a bit more robust.
 - χ^2 is a bit more discriminative.
 - KL/Jeffrey works sometimes very well, but is expensive.
 - EMD is most powerful, but also quite expensive
 - There exist many other measures not mentioned here
 - e.g. statistical tests: Kolmogorov-Smirnov
 Cramer/Von-Mises

-

RWTHAACHEN UNIVERSITY

Summary: Recognition Using Histograms

- Simple algorithm
 - 1. Build a set of histograms $H=\{h_i\}$ for each known object
 - > More exactly, for each *view* of each object
 - 2. Build a histogram $\mathbf{h}_{\!\scriptscriptstyle{\mathsf{f}}}$ for the test image.
 - 3. Compare h_t to each $h_i \in H$
 - Using a suitable comparison measure
 - 4. Select the object with the best matching score
 - Or reject the test image if no object is similar enough.

"Nearest-Neighbor" strategy

Topics of This Lecture

- **Object Recognition**
 - Appearance-based recognition
 - Global representations
 - Color histograms
- Recognition using histograms
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms

- Probability density estimation
- Recognition from local samples
- Extension: recognition of multiple objects in an image
- Extension: colored derivatives

Localization by Histogram Backprojection

- "Where in the image are the colors we're looking for?"
 - > Idea: Normalized histogram represents probability distribution

- Histogram backprojection
 - For each pixel x, compute the likelihood that this pixel color was caused by the object: $p(x \mid obj)$.
 - This value is projected back into the image (i.e. the image values are replaced by the corresponding histogram values).

Color-Based Skin Detection

- Used 18,696 images to build a general color model.
- Histogram representation

M. Jones and J. Rehg, <u>Statistical Color Models with Application to Skin</u> Detection, IJCV 2002.

Discussion: Color Histograms

Pros

- Invariant to object translation & rotation
- Slowly changing for out-of-plane rotation
- No perfect segmentation necessary
- Histograms change gradually when part of the object is occluded
- Possible to recognize deformable objects
 - E.g., a pullover

Cons

- Pixel colors change with the illumination ("color constancy problem")
 - Intensity
 - Spectral composition (illumination color)
- Not all objects can be identified by their color distribution.

Topics of This Lecture

- Object Recognition
 - Appearance-based recognition
 - Global representations
 - Color histograms
- Recognition using histograms
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms
 - Extension: colored derivatives

Generalization of the Idea

Histograms of derivatives

> Dyy

General Filter Response Histograms

 Any local descriptor (e.g. filter, filter combination) can be used to build a histogram.

- Examples:
 - Gradient magnitude

$$Mag = \sqrt{D_x^2 + D_y^2}$$

Gradient direction

$$Dir = \arctan \frac{D_y}{D_x}$$

Laplacian

$$Lap = D_{xx} + D_{yy}$$

Multidimensional Representations

- Combination of several descriptors
 - Each descriptor is applied to the whole image.
 - Corresponding pixel values are combined into one feature vector.
 - Feature vectors are collected in multidimensional histogram.

Multidimensional Histograms

Examples

Multidimensional Representations

Useful simple combinations

 D_x - D_y

Rotation-variant

- Descriptor changes when image is rotated.
- Useful for recognizing oriented structures
 (e.g. vertical lines)

Mag-Lap

Rotation-invariant

- Descriptor does not change when image is rotated.
- Can be used to recognize rotated objects.
- Less discriminant than rotation-variant descriptor.

Special Case: Multiscale Representations

- Combination of several scales
 - Descriptors are computed at different scales.
 - Each scale captures different information about the object.
 - > Size of the support region grows with increasing σ .
 - Feature vectors capture both local details and larger-scale structures.

Generalization: Filter Banks

- What filters to put in the bank?
 - Typically we want a combination of scales and orientations, different types of patterns.

Matlab code available for these examples: http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

RWTHAACHEN UNIVERSITY

Example Application of a Filter Bank

8 response images: magnitude of filtered outputs, per filter

67

Extension: Colored Derivatives

YC₁C₂ color space

$$\begin{pmatrix} Y \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} g_r & g_g & g_b \\ \frac{3g_g}{2} & -\frac{3g_r}{2} & 0 \\ \frac{g_b g_r}{g_r^2 + g_g^2} & \frac{g_b g_g}{g_r^2 + g_g^2} & -1 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

- Color-opponent space
 - Inspired by models of the human visual system
 - \rightarrow Y = intensity
 - $C_1 ≡ red-green$
 - $C_2 \equiv blue-yellow$

Extension: Colored Derivatives

- Generalization: derivatives along
 - Y axis → intensity differences
 - $ightharpoonup C_1$ axis \rightarrow red-green differences
 - $ightharpoonup C_2$ axis \rightarrow blue-yellow differences
- Feature vector is rotated such that $D_v = 0$
 - Rotation-invariant descriptor

Summary: Multidimensional Representations

Pros

- Work very well for recognition.
- > Usually, simple combinations are sufficient (e.g. D_x - D_y , Mag-Lap)
- But multiple scales are very important!
- Generalization: filter banks

Cons

- High-dimensional histograms
 - \Rightarrow lots of storage space

Global representation

⇒ not robust to occlusion

Application: Brand Identification in Video

Application: Brand Identification in Video

Application: Brand Identification in Video

References and Further Reading

- Background information on histogram-based object recognition can be found in the following paper
 - B. Schiele, J. Crowley,
 <u>Recognition without Correspondence using Multidimensional</u>
 <u>Receptive Field Histograms</u>.
 International Journal of Computer Vision, Vol. 36(1), 2000.

- Matlab filterbank code available at
 - http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html