Computer Vision - Lecture 8

Recognition with Global Representations

18.11.2014

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de
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Reminder

e Exercise sheet 3 is due this week
> Hough Transform
> Mean-shift clustering
» Mean-shift segmentation [last Tuesday’s topic]
- Image segmentation with Graph Cuts [last Thursdays’s topic]
~ The exercise will be on Thursday, 20.11.
= Submit your results by Wednesday night.
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Course Outline

e Image Processing Basics

e Segmentation
> Segmentation and Grouping
~ Graph-Theoretic Segmentation

e Recognition
~ Global Representations
~ Subspace representations

e Local Features & Matching
e Object Categorization

e 3D Reconstruction

e Motion and Tracking



RWNTH
Recap: MRFs for Image Segmentation

e MRF formulation

= Minimize the energy

Unary ? B(x _ _—
potentials ) X3 ( :.V) ;ﬁb( zayz)
¢(xzvyz) = X,

i,J

¢(xi7 lej)

A TEEes 2 S8 »
Data (D) Unary likelihood Pair-wise Terms MAP Solution
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Slide adapted from Phil Torr



Recap: Energy Formulation

o Energy function

Z¢ xzayz +Z¢ ZCZ,iCJ

a.j -
Unary Pal rwise
potentials potentials

e Unary potentials ¢

~ Encode local information about the given pixel/patch

> How likely is a pixel/patch to belong to a certain class
(e.g. foreground/background)?

e Pairwise potentials e

> Encode neighborhood information

- How different is a pixel/patch’s label from that of its neighbor?

(e.g. based on intensity/color/texture difference, edges)
B. Leibe
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Recap: How to Set the Potentials?

e Unary potentials
» E.g. color model, modeled with a Mixture of Gaussians

D(Ti, i3 0p) logZHqs iy k)p(K|2)N (Y35 Uk, L)

= Learn color distributions for each label
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RWTH
Recap: How to Set the Potentials?

e Pairwise potentials
~ Potts Model
(@i, 53 0y) = Oyd(z; # x;)

- Simplest discontinuity preserving model.
- Discontinuities between any pair of labels are penalized equally.
- Useful when labels are unordered or number of labels is small.

> Extension: “Contrast sensitive Potts model”
V(2,55 9ij (¥); 0p) = —0pgis(¥)0 (i # 15)
where
gis(y) = Pl = = (avg (s — y]1%))

= Discourages label changes except in places where there is also a
large change in the observations.
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Recap: Graph-Cuts Energy Minimization

e Solve an equivalent graph cut problem
. Introduce extra nodes: source and sink
. Weight connections to source/sink (t-links)

. Weight connections between nodes (n-links)

. Find the minimum cost cut that separates

by ¢(x, = s) and ¢(z; = t), respectively.

by (z;, 373‘)-

source from sink.

= Solution is equivalent to minimum of the energy.

e s-t Mincut can be solved efficiently

>

>

Dual to the well-known max flow problem

Very efficient algorithms available for regular
grid graphs (1-2 MPixels/s)

Globally optimal result for 2-class problems
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RWTH
Recap: When Can s-t Graph Cuts Be Applied?

Unary potentials Pairwise potentials

E(L) Z E (L) + > E(L,,L,)
t-links Pt n-links Lp E{S,t}

e s-t graph cuts can only globally minimize binary energies
that are SmeOdUlar. [Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

E(L) can be minimized | &= |E(S,S)+E(t,t) <E(S,t)+E(t,S)
by s-t graph cuts

Submodularity (“convexity”)

e Submodularity is the discrete equivalent to convexity.
~ Implies that every local energy minimum is a global minimum.
= Solution will be globally optimal.

10
B. Leibe
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GraphCut Applications: “GrabCut”

e Interactive Image Segmentation [Boykov & Jolly, ICCV’01]
> Rough region cues sufficient
~ Segmentation boundary can be extracted from edges

e Procedure
> User marks foreground and background regions with a brush.

> This is used to create an initial segmentation
which can then be corrected by additional brush strokes.

User segmentation cues
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Slide credit: Matthieu Bray



UNIVEF({:SI:II%I
GrabCut: Data Model

Foreground Background

Global optimum of
the energy
e Obtained from interactive user input

> User marks foreground and background regions with a brush

> Alternatively, user can specify a bounding box
B. Leibe
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Slide credit: Carsten Rother



VRS
GrabCut: Coherence Model

e An object is a coherent set of pixels:

w(X,y) =y Z 5[)(” ” Xm]e—ﬂHym—ynH? -1

(m,n)eC

How to choose y?
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Slide credit: Carsten Rother
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Iterated Graph Cuts

Result

Slide credit: Carsten Rother

B. Leibe
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RWTHAACHEN
UNIVERSITY
GrabCut: Example Results

e This is included in the newest version of MS Office!
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B. Leibe Image source: Carsten Rother




RWTH
Applications: Interactive 3D Segmentation
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Slide credit: Yuri Boykov B. Leibe [Y. Boykov, V. Kolmogorov, ICCV’03]
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Topics of This Lecture

e Object Recognition
- Appearance-based recognition
~ Global representations
~ Color histograms

e Recognition using histograms
> Histogram comparison measures
» Histogram backprojection
> Multidimensional histograms
> Extension: colored derivatives

B. Leibe

17



Computer Vision WS 14/15

Object Recognition

B. Leibe
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Challenges

e Viewpoint changes
> Translation
> Image-plane rotation
~ Scale changes
> Out-of-plane rotation

e |llumination
e Noise

e Clutter

e Occlusion

B. Leibe

2D image

19



O
—
S~~~
#
—
%2
=
c
©
D
>
2
S
Q
S
@)
@)

Appearance-Based Recognition

e Basic assumption

- Objects can be represented
by a set of images
(“appearances”).

> For recognition, it is
sufficient to just compare
the 2D appearances.

> No 3D model is needed.

3D object

= Fundamental paradigm shift in the 90’s

20
B. Leibe
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Global Representation

e |dea
» Represent each object (view) by a global descriptor.

» For recognizing objects, just match the descriptors.
> Some modes of variation are built into the descriptor, the others
have to be incorporated in the training data.
- e.g. a descriptor can be made invariant to image-plane rotations.
- Other variations:

Viewpoint changes [llumination
— Translation Noise
— Scale changes Clutter

— Out-of-plane rotation  Occlusion

21
B. Leibe



Color: Use for Recognition

e Color:

~ Color stays constant under geometric transformations

> Local feature
- Color is defined for each pixel
- Robust to partial occlusion

e Idea

~ Directly use object colors for recognition
~ Better: use statistics of object colors
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Color Histograms

o Color statistics
» Here: RGB as an example
> Given: tristimulus R,G,B for each pixel

> Compute 3D histogram
- H(R,G,B) = #(pixels with color (R,G,B))

Capye RUNCH ©
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. 23
B. Leibe [Swain & Ballard, 1991]
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Color Normalization

e One component of the 3D color space is intensity

~ If a color vector is multiplied by a scalar, the intensity changes,
but not the color itself.

> This means colors can be normalized by the intensity.
- Intensity isgivenby | =R + G + B:
> ,,Chromatic representation*

R G

F = g:
R+G+ B R+G+ B

B B
R+G+ B

b

B. Leibe
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Color Normalization

e Observation:
> Sincer+g+b=1, only 2 parameters are necessary
- E.g. one can use r and g
> and obtainsb=1-r-g
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Color Histograms

e Robust representation
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. 26
B. Leibe [Swain & Ballard, 1991]




Color Histograms

e Use for recognition
> Works surprisingly well

> In the first paper (1991), 66 objects could be recognized almost
without errors
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[Swain & Ballard, 1991]

B. Leibe
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Topics of This Lecture

e Recognition using histograms
> Histogram comparison measures
» Histogram backprojection
> Multidimensional histograms
> Extension: colored derivatives

B. Leibe
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Recognition Using Histograms

e Histogram comparison

Test image
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Known objects
29

B. Leibe
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Recognition Using Histograms

e With multiple training views

Test image \

B. Leibe

FFFFFFFRE
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What Is a Good Comparison Measure?

e How to define matching cost?

I] l[ > || Bad!
I ﬁ':.

Slide credit: Pete Barnum
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RWNTH
Comparison Measures: Euclidean Distance

e Definition A
> Euclidean Distance (=L, norm)

d(Q.,V)="> (g — i)

1

e Motivation
» Focuses on the differences between the histograms.
> Interpretation: distance in feature space. /
> Range: [0,x]

» All cells are weighted equally.
> Not very robust to outliers!

7z
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RWNTH
Comparison Measures: Mahalanobis Distance

e Definition A
> Mahalanobis distance(Quadratic Form)

dQ,V) = Q-V)'27'@Q-V)
=Yy @ — vi (izg —v)

e Motivation

> Interpretation:
- Weighted distance in feature space. A
- Compensate for correlated data. V
> Range: [0,x] '
» More robust to certain outliers.

B. Leibe



RWNTH
Comparison Measures: Chi-Square

e Definition A
> Chi-square

Q. V) =) (gi — v;)?

q; + U;

(

e Motivation

~ Statistical background:
- Test if two distributions are different
- Possible to compute a significance score

> Range: [0,x]
~ Cells are not weighted equally!

~ More robust to outliers than Euclidean distance.
- If the histograms contain enough observations...
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B. Leibe



RWTH
Comp. Measures: Bhattacharyya Distance

e Definition A
» Bhattacharyya coefficient

BCQV) =2 Jav,

> Common distance measure:
dec (QV) =41-BC(Q,V)

e Motivation
» Statistical background
— BC measures the statistical separability between two distributions.
~ Range: [0,x]

- (Reason for dg: triangle inequality)
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RWTH
Comparison Measures: Kullback-Leibler

e Definition A
» KL-divergence

KL@QV) =g log

e Motivation

> Information-theoretic background:

- Measures the expected difference (#bits) required to code samples
from distribution Q when using a code based on Q vs. based on V.

- Also called: information gain, relative entropy
> Not symmetric!

> Symmetric version: Jeffreys divergence

JD(Q,V)=KL(Q,V)+KL(V,Q)
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RWNTH
Comp. Measures: Histogram Intersection

e Definition A
> Intersection

NQ,V) = Z min(q;, v;)

1

e Motivation

e ~ Measures the common part of both histograms

i . Range: [0,1]

= > For unnormalized histograms, use the following formula
j% 1 />, min(g;,v;) >, min(g;, v;)
- NQ,V)=5| = + =

= - 2. i 2 Vi

o

=

(@]

O
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RWNTH
Comp. Measures: Earth Movers Distance

|
£
il

e Motivation: Moving Earth

. 38
Slide adapted from Pete Barnum B. Leibe
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RWNTH
Comp. Measures: Earth Movers Distance

|
£
il

e Motivation: Moving Earth

. 39
Slide adapted from Pete Barnum B. Leibe
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RWNTH
Comp. Measures: Earth Movers Distance

s
il
4

(distance moved) * (amount moved)

e Motivation: Moving Earth

. 40
Slide adapted from Pete Barnum B. Leibe
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RWTH
Comp. Measures: Earth Movers Distance

e Motivation: Moving Earth
> Linear Programming Problem

il |!| : |||

%(_/

m clusters
(distance moved) * (amount moved)

V IIIII All movements
-

n clusters

. 41
Slide adapted from Pete Barnum B. Leibe
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RWTH
Comp. Measures: Earth Movers Distance

e Motivation: Moving Earth
> Linear Programming Problem

: III III

%(_/

"
m clusters
E E (f,; * (amount moved)

bl -~
V
ii

All movements
n clusters

Slide adapted from Pete Barnum B. Leibe

42



RWTH
Comp. Measures: Earth Movers Distance

e Motivation: Moving Earth
> Linear Programming Problem

: III III

%{_} m
m clusters Z Z diifij =W onh

bl -~
V
ii

All movements
n clusters
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= What is the minimum amount of work to convert Q into V?
Slide adapted from Pete Barnum B. Leibe

43
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EMD Computation

e Constraints

1. Move “earth” only from Q to V
Q |.|I||L|I
J
m clusters Q |d|IILII

an )
: Al
n\gl.;jters V, I.

Slide credit: Pete Barnum B. Leibe

v
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EMD Computation

e Constraints

2. Cannot send more “earth” than there is

J
m clusters Q | IIIlI |I "

V J
IIIII I II
n\a{l;jters V, I I

Slide credit: Pete Barnum B. Leibe

Q

fij < W,

45
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EMD Computation

e Constraints

3. V cannot receive more than it can hold

Q
)
m clusters Q .
2 fi<w,
\Y i1
|
-
n clusters

Slide credit: Pete Barnum B. Leibe

46



EMD Computation

e Constraints

4. As much “earth” as possible must be

moved.
Q > Either Q must be completely spent
or V must be completely filled.
- P y
m clusters
m
Lo
L >3, =min| >w, Sw,
—i i
oV i=1 j=1
= |
O
> n clusters
9
=
=
(@]
O

47

Slide credit: Pete Barnum B. Leibe
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RWTH
Comp. Measures: Earth Movers Distance

e Motivation: Moving Earth
> Linear Programming Problem

> Distance measure
>d, f, =
I |

'l T

e Advantages D2 dijfii = WORK

i=1 3=1
> Nearness measure without quantization

~ Partial matching
> A true metric

e Disadvantage: expensive computation

~ Efficient algorithms available for 1D

~ Approximations for higher dimensions... 48
B. Leibe



Summary: Comparison Measures

e Vector space interpretation
> Euclidean distance
> Mahalanobis distance

e Statistical motivation
> Chi-square
- Bhattacharyya

e Information-theoretic motivation
~ Kullback-Leibler divergence, Jeffreys divergence

e Histogram motivation
> Histogram intersection

S8e
e Ground distance % II
» Earth Movers Distance (EMD) II I
49
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L2 distance

3)0.61

157090 oz 9045 jos 1005} 160053.;p2

Jeffrey divergence

8)0.77
) 0.7

20020502 20077 joe 20017 ipe 20003 .5p2 97037.jp2 17047 joz 197097 joz 20003.pe

v? statistics

Earth Movers Distance

. 50
Slide credit: Pete Barnum B. Leibe
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Histogram Comparison

e Which measure is best?
- Depends on the application...
> Euclidean distance is often not robust enough.

» Both Intersection and y? give good performance for histograms.

- Intersection is a bit more robust.
- 2 is a bit more discriminative.

» KL/Jeffrey works sometimes very well, but is expensive.
- EMD is most powerful, but also quite expensive

» There exist many other measures not mentioned here

- e.g. statistical tests: Kolmogorov-Smirnov
Cramer/Von-Mises

B. Leibe

51



RWTH
Summary: Recognition Using Histograms

e Simple algorithm
1. Build a set of histograms H={h.} for each known object
> More exactly, for each view of each object

2. Build a histogram h, for the test image.

3. Compare h, to each h;eH
» Using a suitable comparison measure

4. Select the object with the best matching score
> Orreject the test image if no object is similar enough.

“Nearest-Neighbor” strategy
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B. Leibe
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Topics of This Lecture

e Recognition using histograms
> Histogram comparison measures
» Histogram backprojection
> Multidimensional histograms

B. Leibe

53
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RWTH
Localization by Histogram Backprojection

e ,Where in the image are the colors we‘re looking for?“
~ ldea: Normalized histogram represents probability distribution

t p(x|oby)

e Histogram backprojection

~ For each pixel x, compute the likelihood that this pixel color
was caused by the object: p(x|0bj).

-~ This value is projected back into the image (i.e. the image
values are replaced by the corresponding histogram values).

B. Leibe
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Color-Based Skin Detection

e Used 18,696 images
to build a general
color model.

e Histogram represen-
tation

Skin Color Model, Gray Axis Marginal

skin

Mon-Skin Color Model, Gray Axis Marginal

Elug,
ol

Fed,

non-skin

M. Jones and J. Rehg, Statistical Color Models with Application to Skin
Detection, 1JCV 2002. 33



http://www.cc.gatech.edu/~rehg/Papers/SkinDetect-IJCV.pdf
http://www.cc.gatech.edu/~rehg/Papers/SkinDetect-IJCV.pdf
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Discussion: Color Histograms

e Pros
> Invariant to object translation & rotation
~ Slowly changing for out-of-plane rotation
> No perfect segmentation necessary
~ Histograms change gradually when part of the object is occluded

~ Possible to recognize deformable objects
- E.g., a pullover

e Cons
~ Pixel colors change with the illumination
(,,color constancy problem*)
- Intensity
- Spectral composition (illumination color)

> Not all objects can be identified by their color distribution.

58
B. Leibe
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Topics of This Lecture

e Recognition using histograms
Histogram comparison measures
Histogram backprojection

> Multidimensional histograms

> Extension: colored derivatives

Y

Y

B. Leibe

1.22

-0.39

5
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o UNIVERSITY
Generalization of the Ildea

e Histograms of derivatives
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RWNTH
General Filter Response Histograms

e Any local descriptor (e.g. filter, filter combination) can
be used to build a histogram.

e Examples:
> Gradient magnitude jl.fjag - \/D% + D2

Yy

D.
> Gradient direction Dir = arctan —2
D;I‘-
- Laplacian Lap = D, + D,,

B. Leibe
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RWNTH
Multidimensional Representations

e Combination of several descriptors

~ Each descriptor is
applied to the whole image. D

X =
~ Corresponding pixel values
are combined into one Dy b
feature vector. )
. Feature vectors are collected Lap =
in multidimensional histogram. °
\ a
1.22) ey |
0.39| > | |
2.78 e

62
B. Leibe
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Multidimensional Histograms

e Examples

Biere
'.il( 1\:.1."
L{L_' PL'I [AI 1M
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. 63
B. Leibe [Schiele & Crowley, 2000]




Multidimensional Representations

e Useful simple combinations

> DD, Rotation-variant
— Descriptor changes when
image is rotated.
— Useful for recognizing
oriented structures
(e.g. vertical lines)

> Mag-Lap Rotation-invariant

— Descriptor does not change
when image is rotated.

— Can be used to recognize
rotated objects.

— Less discriminant than
rotation-variant descriptor.
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RWTH
Special Case: Multiscale Representations

e Combination of several scales

~ Descriptors are computed at
different scales.

. D, = / 5=2.0
> Each scale captures different ) ;
information about the object.
D, / o=4.0
~ Size of the support region : : ;
grows with increasing o. D, 5=8.0
8 ~ Feature vectors capture both j
S local details and larger-scale
%) R
2 structures. ANV | iﬁ }
S 1.22] (|
S 0.39| —> | EE |
) 2.78 Lt
5 Vo bl
o
£
(@]
O

B. Leibe
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Generalization: Filter Banks
Orien/aations
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e What filters to put in the bank?

~ Typically we want a combination of scales and orientations,
different types of patterns.

Matlab code available for these examples:
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
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Slide credit: Kristen Grauman B. Leibe


http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
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Example Application of a Filter Bank

NI

Filtr ban of 8 flters

Input image

8 response images: magnitude
of filtered outputs, per filter

Slide credit: Kristen Grauman B. Leibe
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Extension: Colored Derivatives

e YC,C, color space

/ gr Yq gb \ Y
Y 3 g q 3 qr, 0 R C,
Ch | = 2 2 v
Cy gv9r  _9bYq B o

GoGr _Gv9g 4
\9r +97 - +9. )

e Color-opponent space
> Inspired by models of the human visual system
> Y =intensity
> C,=red-green
> C, =blue-yellow
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Extension: Colored Derivatives

e Generalization: derivatives along
> Y axis — intensity differences
- C, axis — red-green differences
- C, axis — blue-yellow differences

e Feature vector is rotated such that D,=0
» Rotation-invariant descriptor
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RWTH
Summary: Multidimensional Representations

e Pros
> Work very well for recognition.
> Usually, simple combinations are sufficient
(e.g. D,-D,, Mag-Lap)
~ But multiple scales are very important!
~ Generalization: filter banks

e Cons
~ High-dimensional histograms = lots of storage space
» Global representation = not robust to occlusion
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Application: Brand Identification in Vlclz}I

Helix 4
Foster 0
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Application: Brand Identification in Vlclz}I
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Application: Brand Identification in Vi
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false detection
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References and Further Reading

e Background information on histogram-based object
recognition can be found in the following paper

> B. Schiele, J. Crowley,
Recognition without Correspondence using Multidimensional
Receptive Field Histograms.
International Journal of Computer Vision, Vol. 36(1), 2000.

e Matlab filterbank code available at
> http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
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