Computer Vision - Lecture 5

Structure Extraction
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Course Outline

e Image Processing Basics
> Image Formation
> Binary Image Processing
» Linear Filters
» Edge & Structure Extraction

e Segmentation

e Local Features & Matching

e Object Recognition and Categorization
e 3D Reconstruction

e Motion and Tracking
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Topics of This Lecture

e Recap: Edge detection
> Image gradients
» Canny edge detector

e Fitting as template matching
> Distance transform
> Chamfer matching
~ Application: traffic sign detection

e Fitting as parametric search
» Line detection

Hough transform

~ Extension to circles

» Generalized Hough transform
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RO ONVERSITY
Recap: The Gaussian Pyramid

Low resolution m . G4 = (G;™ gaussian) 12
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High resolution
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Source: lrani & Basri
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Recap: Derivatives and Edges...

1st derivative
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RWTH
Recap: 2D Edge Detection Filters — sengse
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Designing an Edge Detector

e Criteria for an “optimal” edge detector:

» Good detection: the optimal detector should minimize the
probability of false positives (detecting spurious edges caused by
noise), as well as that of false negatives (missing real edges).

» Good localization: the edges detected should be as close as
possible to the true edges.

~ Single response: the detector should return one point only for
each true edge point; that is, minimize the number of local

g maxima around the true edge.
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Gradients — Edges

Primary edge detection steps
1. Smoothing: suppress noise
2. Edge enhancement: filter for contrast

3. Edge localization

» Determine which local maxima from filter output are actually
edges vs. noise

> Thresholding, thinning

e Two issues
> At what scale do we want to extract structures?
- How sensitive should the edge extractor be?
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Scale: Effect of o on Derivatives

o = 3 pixels

e The apparent structures differ depending on Gaussian’s
scale parameter.

= Larger values: larger-scale edges detected
= Smaller values: finer features detected
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Sensitivity: Recall Thresholding

e Choose a threshold t

e Set any pixels less than t
to zero (off).

e Set any pixels greater than
or equal t to one (on).

1, ifF[i,j]Zt
0, otherwise

il

B. Leibe
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Original Image

Slide credit: Kristen Grauman



Gradient Magnitude Image
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Thresholding with a Lower Threshold
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Thresholding with a
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Canny Edge Detector

e Probably the most widely used edge detector in
computer vision

e Theoretical model: step-edges corrupted by additive
Gaussian noise

e Canny has shown that the first derivative of the
Gaussian closely approximates the operator that
optimizes the product of signal-to-noise ratio and
localization.

J. Canny, A Computational Approach To Edge Detection, IEEE Trans.
Pattern Analysis and Machine Intelligence, 8:679-714, 1986.
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http://www.graphics.pku.edu.cn/members/chenyisong/lectures/readings/Canny86pami.pdf

Canny Edge Detector

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
> Thin multi-pixel wide “ridges” down to single pixel width

4. Linking and thresholding (hysteresis):
» Define two thresholds: low and high

> Use the high threshold to start edge curves and the low
threshold to continue them

e MATLAB:

>> edge (image, ‘canny’);
>> help edge
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UNIVERSITY
The Canny Edge Detector

Original image (Lena)
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The Canny Edge Detector

Gradient magnitude

Slide credit: Kristen Grauman B. Leibe
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RWTH
The Canny Edge Detector

How to turn
these thick
regions of
the gradient
Into curves?
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Non-Maximum Suppression

e Check if pixel is local maximum along gradient direction,
select single max across width of the edge
> Requires checking interpolated pixels p and r
= Linear interpolation based on gradient direction
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RWTH
The Canny Edge Detector

Problem: pixels
along this edge
didn’t survive
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(non-maximum suppression) s
B. Leibe
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RWTH
Solution: Hysteresis Thresholding

e Hysteresis: A lag or momentum factor
* Idea: Maintain two thresholds k,, , and k,,,

- Use k;, ;, to find strong edges to start edge chain

- Use k;,,, to find weak edges which continue edge chain
e Typical ratio of thresholds is roughly

khz’gh / klo'w =2
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B. Leibe Source: D. Lowe, S. Seitz
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Hysteresis Thresholding
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S (strong edges) (weak edges)
B. Leibe 26
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Edges vs. Boundaries

PP »

Edges are useful signals
to indicate occluding
boundaries, shape.
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Here the raw edge ..but qu often boundaries of interest
output is not so bad... are fragmented, and we have extra
“clutter” edge points. 27

Slide credit: Kristen Grauman
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Background

Slide credit: Kristen Grauman

Texture
B. Leibe

Shadows
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Edge Detection is Just the Beginning...

Image Human segmentation Gradient magnitude
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http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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Fitting

e Want to associate a model with observed features

[Figure from Marszalek & Schmid, 2007]

For example, the model could be a line, a circle, or an arbitrary
shape.

Slide credit: Kristen Grauman B. Leibe
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Topics of This Lecture

e Fitting as template matching
> Distance transform
> Chamfer matching
» Application: traffic sign detection
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RWTHAACHEN
o ) UNIVERSITY
Fitting as Template Matching

e We’ve already seen that correlation flltermg can be
used for template matching in an image. &

e Let’s try this idea with “edge templates”.
> Example: traffic sign detection in (grayvalue) video.

A A

Templates
B. Leibe
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RWTHAACHEN
UNIVERSITY
Edge Templates

e Correlation filtering
~ Correlation between edge pixels in template and image

Dcorrxy ZTU’U —I—’U,,y—|—”U]

> Unfortunately, this doesn’t work at all... Why?
= Zero correlation score if the edge template is 1 pixel off...

33
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Edge Templates

e Better: Chamfer Distance
~ Average distance to nearest edge pixel

Z di(z + u,y + v)

DChamfer(aj y ‘ ‘
w,v: T [u,v]=1

= More robust to small shifts and size variations.

e How can we compute this efficiently?

B. Leibe

RWTHAACHEN
UNIVERSITY
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How Can This Be Made Efficient?

e Fast edge-based template matching
~ Distance transform of the edge image

Original Gradient Distance|transform

Value at (X,Y) tells how
far that position is from
the nearest edge point
(or other binary image
structure)

>> help bwdist
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Edges

Slide credit: Kristen Grauman B. Leibe
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RWTH
Distance Transform Algorithm (1D)

e Two-pass O(n) algorithm for 1D L, norm

1. Initialize: For all j

- D[j] « 1p[j] // O if j is in P, infinity otherwise

2. Forward: For j from 1 up to n-1
- D[j] «~ min( D[j], D[j-1]+1) +1[ 0

3. Backward: For j from n-2 down to 0
> D[j] < min( D[j], D[j+1]+1) 0|+1

0| 0|l 0 |oo|o| o o0
ol0[1(0[1(2(3 1
1(10(1(0(1|2]|1 1

Adapted from D. Huttenlocher B. Leibe
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Distance Transform Algorithm (2D)

e 2D case analogous to 1D
> Initialization

» Forward and backward pass
- Fwd pass finds closest above and to the left
- Bwd pass finds closest below and to the right

(]

0

(

-1 1

110 w| w| w| «w ooI | oof | o] | o
ol 0] o] «© 0] 1] of 0 1] 2

011 | 0] o] «© | 0] ] ol 0 1] 2
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Adapted from D. Huttenlocher B. Leibe
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Chamfer Matching

e Chamfer Distance
~ Average distance to nearest feature

1
Dr:h..m,-mfH'(T: I) = m Z df(ﬂ
teT

» This can be computed efficiently by correlating the edge
template with the distance-transformed image

Edge image Distance transform image
B. Leibe [D. Gavrila, DAGM’99]



Chamfer Matching

e Efficient implementation
» Instead of correlation, sample fixed number

of points on template contour. £
= Chamfer score boils down to series of DT lookups. &
Dr_'h.. arm jH(T I) = m Z df (?t) .'. ..°. .', .‘.

e Secesccssee °
° °
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Edge image Distance transform image40
B. Leibe [D. Gavrila, DAGM’99]




Chamfer Matching Results

O
—
S~~~
#
—
)
=
c
©
D
>
2
S
Q
£
(@]
@)

Edge image Distance transform image41
B. Leibe [D. Gavrila, DAGM’99]




\CHEN
UNIVERSITY
Chamfer Matching for Pedestrian Detect%on

e Organize templates in tree structure for fast matching
I_|

A ﬂ g

~ T /"l‘\;\
A0 B R§
~ ~

oA RLk

42
B. Leibe [D. Gavrila, V. Philomin, ICCV’99, PAMI’07]
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RWTHAACHEN
UNIVERSITY

Chamfer Matching for Pedestrian Detection
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B. Leibe [D. Gavrila, V. Philomin, ICCV’99, PAMI’07]
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Summary Chamfer Matching

e Pros
~ Fast and simple method for matching edge-based templates.

» Works well for matching upright shapes with little intra-class
variation.

» Good method for finding candidate matches in a longer
recognition pipeline.

e Cons

~» Chamfer score averages over entire contour, not very
discriminative in practice.
= Further verification needed.

» Low matching cost in cluttered regions with many edges.
= Many false positive detections.

> In order to detect rotated & rescaled shapes, need to match

with rotated & rescaled templates = can get very expensive.

B. Leibe

44



Topics of This Lecture

e Fitting as parametric search
» Line detection

Hough transform

~ Extension to circles

» Generalized Hough transform
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RWTH
Fitting as Search in Parametric Space

e Choose a parametric model to represent a set of
features

e Membership criterion is not local

» Can’t tell whether a point belongs to a given model just by
looking at that point.

e Three main questions:
> What model represents this set of features best?
> Which of several model instances gets which feature?
> How many model instances are there?

e Computational complexity is important

» It is infeasible to examine every possible set of parameters and
every possible combination of features
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. o UNIVERSITY
Example: Line Fitting

e Why fit lines?

> Many objects are characterized by presence of straight lines

e Wait, why aren’t we done just by running edge detection?
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Slide credit: Kristen Grauman B. Leibe
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Extra edge points (clutter),
multiple models:

» Which points go with
which line, if any?

e Only some parts of each
line detected, and some
parts are missing:

> How to find a line that
bridges missing evidence?

 Noise in measured edge
points, orientations:

> How to detect true underlying
parameters?

B. Leibe
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Voting

e |t’s not feasible to check all combinations of features by
fitting a model to each possible subset.

e Voting is a general technique where we let the features
vote for all models that are compatible with it.
» Cycle through features, cast votes for model parameters.

~ Look for model parameters that receive a lot of votes.

 Noise & clutter features will cast votes too, but typically
their votes should be inconsistent with the majority of
“good” features.

e Ok if some features not observed, as model can span
multiple fragments.
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Slide credit: Kristen Grauman B. Leibe
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Fitting Lines

e Given points that belong to a line,
what is the line?

e How many lines are there?
e Which points belong to which lines?

e The Hough Transform is a voting
technique that can be used to answer
all of these

e Main idea:

1. Vote for all possible lines on which each
edge point could lie.

2. Look for lines that get many votes.

Slide credit: Kristen Grauman B. Leibe

50



RWTH
Finding Lines in an Image: Hough Space

y A b A
y = mox =+ bo
ﬁ
Dol e
X m, m
Image space Hough (parameter) space

e Connection between image (X,y) and Hough (m,b) spaces

» A line in the image corresponds to a point in Hough space.
~ To go from image space to Hough space:

- Given a set of points (X,Y), find all (m,b) such thaty =mx + b
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Slide credit: Steve Seitz B. Leibe



RWTH
Finding Lines in an Image: Hough Space

y A b A
Yo| e b= —xzom + yo
ﬁ
X, X m
Image space Hough (parameter) space

e Connection between image (X,y) and Hough (m,b) spaces
» A line in the image corresponds to a point in Hough space.
~ To go from image space to Hough space:
- Given a set of points (X,Y), find all (m,b) such thaty =mx + b
- What does a point (X;, Y,) in the image space map to?

- Answer: the solutions of b = -x,m + y,
- This is a line in Hough space.
Slide credit: Steve Seitz B. Leibe
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RWNTH
Finding Lines in an Image: Hough Space

y A b A
=] X :
Yo . (X1, Y1) b= —azom + yo
(Xo: Yo) —p
b=-—xm+y,
Xo X m
Image space Hough (parameter) space

e What are the line parameters for the line that contains
both (X, Yo) and (X4, ¥4)?

> It is the intersection of the lines
b=-x,m+Yy, and
b=-—xm+y,
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Slide credit: Steve Seitz B. Leibe



RWTH
Finding Lines in an Image: Hough Space

y1l b
® ()
® ° ~_ —
ﬁ T —
] [
// N~
X m
Image space Hough (parameter) space

e How can we use this to find the most likely parameters
(m,b) for the most prominent line in the image space?

» Let each edge point in image space vote for a set of possible
parameters in Hough space.

> Accumulate votes in discrete set of bins; parameters with the
most votes indicate line in image space.
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Slide credit: Steve Seitz B. Leibe



Polar Representation for Lines

e Issues with usual (m,b) parameter space: can take on
infinite values, undefined for vertical lines.

[0,0] . X . d : perpendicular distance

q from line to origin

@ : angle the perpendicular
makes with the x-axis

Xcosfd—ysind=d

v

e Point in image space
= Sinusoid segment in
Hough space
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Slide adapted from Steve Seitz



RWTH
Hough Transform Algorithm

H: accumulator array (votes)

Using the polar parameterization:
Xcosfd—ysind=d

Basic Hough transform algorithm 0
1. Initialize H[d,d] = 0.

2. For each edge point (X,y) in the image

for 8=0to 180 // some quantization d
d =xcos@—-ysind
H[d, 0] += 1
3. Find the value(s) of (d,6) where H[d, ] is maximal.
4. The detected line in the image is given byd = XCc0s & — ySin @

Hough line demo
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e Time complexity (in terms of number of votes)?

. 56
Slide credit: Steve Seitz B. Leibe


http://www.dis.uniroma1.it/~iocchi/slides/icra2001/java/hough.html
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RWTH
Example: HT for Straight Lines

X 0

Image space Votes
edge coordinates

Bright value = high vote count
Black = no votes

Slide credit: David Lowe B. Leibe
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Real-World Examples

BlimEmuan =
IEERED IEES =3
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Slide credit: Kristen Grauman
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Slide credit: Kristen Grauman B. Leibe



RWTH
Impact of Noise on Hough Transform

ym.

3

3 .

U) il 4] 1

= X 2
S

2 Image space Votes
5

edge coordinates

What difficulty does this present for an implementation?

62

Slide credit: David Lowe B. Leibe



RWTH
Impact of Noise on Hough Transform

Image space Votes
edge coordinates
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Here, everything appears to be “noise”, or random edge
points, but we still see peaks in the vote space.

. 63
Slide credit: David Lowe B. Leibe
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Extensions

Extension 1: Use the image gradient
1. Same
2. for each edge point I[X,y] in the image
@ = gradient at (X,y)
d =xcos@—-ysing

H[d,d +=1
3. same
4. same

(Reduces degrees of freedom)

Slide credit: Kristen Grauman B. Leibe
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Extensions

Extension 1: Use the image gradient
1. same
2. for each edge point I[X,y] in the image
compute unique (d, ) based on image gradient at (X,y)
H[d,d] +=1
3. same
4. same
(Reduces degrees of freedom)

Extension 2

> Give more votes for stronger edges (use magnitude of gradient)
Extension 3

» Change the sampling of (d, &) to give more/less resolution

Extension 4

- The same procedure can be used with circles, squares, or any other

shape... 65
Slide credit: Kristen Grauman B. Leibe
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Hough Transform for Circles

e Circle: center (a,b) and radius r
(x,—a)” +(y, ~b)? =’

e For a fixed radius I, unknown gradient direction

A b1
B
0 - >
Image space Hough space a

Slide credit: Kristen Grauman B. Leibe

66



Hough Transform for Circles

e Circle: center (a,b) and radius r
(x,—a)” +(y, ~b)? =’

e For a fixed radius I, unknown gradient direction

A

b T,
5 |
3 : Intersection:
—i i i
% : most votes for
= : center occur
S  here.
o : '
3
5 O i h—- i h__
g- X <l
5 Image space Hough space

. 67
Slide credit: Kristen Grauman B. Leibe



Hough Transform for Circles

e Circle: center (a,b) and radius r
(x,—a)” +(y, ~b)? =’

e For an unknown radius I, unknown gradient direction

A I

¥l
LO
—i
< .
S, >
n
=
S O b
Z
E 0 XF a
o
= Image space Hough space
5
O

68

Slide credit: Kristen Grauman B. Leibe



Hough Transform for Circles

e Circle: center (a,b) and radius r
(x,—a)” +(y, ~b)? =’

e For an unknown radius I, unknown gradient direction

A T
¥l
“"O"~,. /

LO "“ N
—i .
s -: X
H n
E “'nn.o.“"‘ \ \/ = b
w . (x,y}
E 0 XF a
o
= Image space ? Hough space
5
O

. 69
Slide credit: Kristen Grauman B. Leibe
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Hough Transform for Circles

e Circle: center (a,b) and radius r
(x,—a)” +(y, ~b)? =’

e For an unknown radius I, known gradient direction

Image space Hough space

LO
o
q
—
%2
=
c
=
0
>
[z
S
o
S
@)
O

. 70
Slide credit: Kristen Grauman B. Leibe
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Hough Transform for Circles

For every edge pixel (X,y) :

For each possible radius value r:

For each possible gradient direction 6:

/] or use estimated gradient
a=X-—rcos(6)

b=y+rsin(6)
Hl[a,b,r] +=1
end

end

Slide credit: Kristen Grauman B. Leibe
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Example: Detecting Circles with Houg

Crosshair indicates results of Hough transform,
bounding box found via motion differencing.

LO
o
q
—
n
=
c
=
0
>
[z
S
o
S
@)
O

. 72
Slide credit: Kristen Grauman B. Leibe



Computer Vision WS 14/15

RWTH
Example: Detecting Circles with Hough

Original Edges Votes: Penny

Note: a different Hough transform (with separate accumu-
lators) was used for each circle radius (quarters vs. penny).

_ 73
Slide credit: Kristen Grauman B. Leibe Coin finding sample images from: Vivek Kwatra



Computer Vision WS 14/15

RWTH
Example: Detecting Circles with Hough

CombOregimketections Edges Votes: Quarter

- 74
Slide credit: Kristen Grauman B. Leibe Coin finding sample images from: Vivek Kwatra



Voting: Practical Tips

e Minimize irrelevant tokens first (take edge points with
significant gradient magnitude)

e Choose a good grid / discretization

» Too coarse: large votes obtained when too many different lines
correspond to a single bucket

> Too fine: miss lines because some points that are not exactly
collinear cast votes for different buckets

e Vote for neighbors, also (smoothing in accumulator
array)

e Utilize direction of edge to reduce free parameters by 1

e To read back which points voted for “winning” peaks,
keep tags on the votes.
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Slide credit: Kristen Grauman B. Leibe
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RWTH
Hough Transform: Pros and Cons

Pros

e All points are processed independently, so can cope with
occlusion

e Some robustness to noise: noise points unlikely to
contribute consistently to any single bin

e Can detect multiple instances of a model in a single pass

Cons

e Complexity of search time increases exponentially with
the number of model parameters

 Non-target shapes can produce spurious peaks in
parameter space

e Quantization: hard to pick a good grid size

. 76
Slide credit: Kristen Grauman B. Leibe



RO INVERSITY
Generalized Hough Transform

e What if want to detect arbitrary shapes defined by
boundary points and a reference point?

At each boundary point,
compute displacement

vector: I =a — ;.

For a given model shape:
store these vectors in a
table indexed by gradient

orientation 6.

Image space

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]
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Slide credit: Kristen Grauman B. Leibe
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Generalized Hough Transform

To detect the model shape in a hew image:
e For each edge point
- Index into table with its gradient orientation &
» Use retrieved I vectors to vote for position of reference point

e Peak in this Hough space is reference point with most
supporting edges

Assuming translation is the only transformation here,
i.e., orientation and scale are fixed.

Slide credit: Kristen Grauman B. Leibe
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Example: Generalized Hough Transform

/< v

Slide credit: Svetlana Lazebnik

—>

f

+ Say we’ve already
stored a table of

< displacement vectors

as a function of edge

orientation for this

>\model shape.

AN

.‘_

¢t

:Madel shape
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Example: Generalized Hough Transform

/< + * Now we want to look
at some edge points

< detected in a new

image, and vote on

the position of that

R L
N ~

—p> <

t ¢ 4

Slide credit: Svetlana Lazebnilesplacemen';- MﬁgtOl’S for model points

O
—
S~~~
#
—
%2
=
c
©
D
>
2
S
Q
£
(@]
@)




Example: Generalized Hough Transform

e v

<

—p> <

t t

E{ange of voting locations for test point 81
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Slide credit: Svetlana Lazebni



Example: Generalized Hough Transform

e v
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E{ange of voting locations for test point 82

Slide credit: Svetlana Lazebni
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Example: Generalized Hough Transform

/< v

v

<

Slide credit: Svetlana Lazebnik

—>

t _t 4

Votes for points with 6 =1
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Example: Generalized Hough Transform

e v

<4

—>
- [N
3 \<
%2
=
c
kS
%)
2
z —> <
o
s t_t 4
S

Displacement vectors for model points 84

Slide credit: Svetlana Lazebnik
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RWTHAACHEN

INIVERS
Example: Generalized Hough Transfon'n

e v

<

N
N
N
S
RS
\
' \

t _t 4

E{ange of voting locations for test point

Slide credit: Svetlana Lazebni
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Example: Generalized Hough Transform

e v

<

N
N
N
S
RS
\
' \

t _t 4

Votes for points with 0 =/ 86
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Slide credit: Svetlana Lazebnik



Application in Recognition

e Instead of indexing displacements by gradient
orientation, index by “visual codeword”.

-

Visual codeword with
displacement vectors
Training image

B. Leibe, A. Leonardis, and B. Schiele, Robust Object Detection with Interleaved
Categorization and Segmentation, International Journal of Computer Vision, Vol. 77(1-
3), 2008.
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B. Leibe


http://www.vision.ee.ethz.ch/bleibe/papers/leibe-interleaved-ijcv07final.pdf
http://www.vision.ee.ethz.ch/bleibe/papers/leibe-interleaved-ijcv07final.pdf

il r s E 3
Application in Recognition S

e Instead of indexing displacements by gradient

Test image

e We’ll hear more about this method in lecture 14...
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RWTH
References and Further Reading

e Background information on edge detection can be found
in Chapter 8 of

~ D. Forsyth, J. Ponce,
Computer Vision - A Modern Approach.
Prentice Hall, 2003

Computer
Vision
e Read Ballard & Brown’s description of
the Generalized Hough Transform in

Chapter 4.3 of

> D.H. Ballard & C.M. Brown,
Computer Vision, Prentice Hall, 1982
(available from the class homepage)

e Try the Hough Transform demo at

http://www.dis.uniroma1.it/~iocchi/slides/icra2001/java/hough.html

, 89
B. Leibe


http://www.dis.uniroma1.it/~iocchi/slides/icra2001/java/hough.html

