

Canny Edge Detector

- Probably the most widely used edge detector in computer vision
- Theoretical model: step-edges corrupted by additive Gaussian noise
- Canny has shown that the first derivative of the Gaussian closely approximates the operator that optimizes the product of signal-to-noise ratio and localization.

J. Canny, <u>A Computational Approach To Edge Detection</u>, *IEEE Trans.*Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

. Leibe Source: Li Fei-F

Canny Edge Detector

- 1. Filter image with derivative of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" down to single pixel width
- 4. Linking and thresholding (hysteresis):
 - > Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
- MATLAB:
 - >> edge(image, 'canny');
 - >> help edge

1. Leibe Source: D. Lowe, L. Fei-Fe

The Canny Edge Detector Original image (Lena)

B. Leibe

Generalized Hough Transform To detect the model shape in a new image: • For each edge point • Index into table with its gradient orientation θ • Use retrieved r vectors to vote for position of reference point • Peak in this Hough space is reference point with most supporting edges Assuming translation is the only transformation here, i.e., orientation and scale are fixed.

