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RWTH
This Lecture: Advanced Machine Learning

e Regression Approaches f X - R
» Linear Regression l o | |

. Regularization (Ridge, Lasso) /) \/
- Kernels (Kernel Ridge Regression) h ! /I) B ‘
- Gaussian Processes S
e Bayesian Estimation & Bayesian Non-Parametrics
> Prob. Distributions, Approx. Inference (= __ ) ;

e
S

Y
N

> Mixture Models & EM o\ Fgue
> Dirichlet Processes Xn M

~ Latent Factor Models W
> Beta Processes

e SVMs and Structured Output Learning
> SVMs, SVDD, SV Regression f : X — y

> Large-margin Learning

(9|
-
.
Q
P
=
(@))
.E
C
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

B. Leibe



Topics of This Lecture

e Recap: Support Vector Machines
~ Discussion & Analysis

e Other Kernel Methods
> Kernel PCA
» Kernel k-Means Clustering

e Support Vector Data Description (1-class SVMs)
> Motivation
> Definition
> Applications

e Support Vector Regression
> Error function
> Primal form
> Dual form
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Recap: SVM - Analysis

e Traditional soft-margin formulation

N
. 1 2 “Maximize
m — W C
. g WO

weRD £, €R+ the margin”

subject to the constraints
J “Most points should

tny(xn) > 1-¢, be on the correct
side of the margin”

e Different way of looking at it
» We can reformulate the constraints into the objective function.

N
1 2
] - C ]. tn n
IIEI%R{% 5 [w|* - ,,;:1:[ y(x )]+

L, regularizer “Hinge loss”
where [z], := max{0,z}.
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Recap: SVM - Discussion

e SVM optimization function

N
1 2
] - O ]. tn n
IIEI%RS? 5 [wi|” ,,;_1:[ y(x )]_1-

- J - J
Y Y

L, regularizer Hinge loss

e Hinge loss enforces sparsity

> Only a subset of training data points actually influences the
decision boundary.

~ This is different from sparsity obtained through a regularizer!
There, only a subset of input dimensions are used.

> Unconstrained optimization, but non-differentiable function.
- Solve, e.g. by subgradient descent
» Currently most efficient: stochastic gradient descent
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RWTH
Outline of the Remaining Lectures

e Other Kernel methods
> Kernel PCA
> Kernel k-Means

e Other Large-Margin Learning formulations
> Support Vector Data Description (one-class SVMs)
> Support Vector Regression

e Structured Output Learning
> General loss functions
» General structured outputs
> Structured Output SVM
> Example: Multiclass SVM
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e We will generalize the SVM idea in several directions...
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Topics of This Lecture

e Other Kernel Methods
> Kernel PCA
> Kernel k-Means Clustering

B. Leibe



Recap: PCA

e PCA procedure
- Given samples x, € R9, PCA finds the directions of maximal
covariance. Without loss of generality assume that 2., x, = O.

- The PCA directions e,,...,e  are 2

u;

the eigenvectors of the covariance = ’
matrix | N ”
T
C = N Z XnX,,
n=1

sorted by their eigenvalue.

K
- We can express x,, in PCA space by F(x,) = Z<X”’ er)er
k=1
( <Xn)e1> \
> Lower-dim. coordinate mapping: X, > (Xn, €2) c RE
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Kernel-PCA

e Kernel-PCA procedure

- Given samples x, € A&, kernel X' X X — R with an implicit
feature map ¢: X — H. Perform PCA in the Hilbert space .

> The kernel-PCA directions 2 "
e,,...,e, are the eigenvectors of the - ’
covariance operator ”
N
1
C'= 57 D $0xa)dxa)" .

sorted by their eigenvalue.

> Lower-dim. coordinate mapping: x,, —
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Kernel-PCA

e Kernel-PCA procedure

- Given samples x, € A&, kernel X' X X — R with an implicit
feature map ¢: X — H. Perform PCA in the Hilbert space .

» Equivalently, we can use the 2

eigenvectors e', and eigenvalues - '
)\, of the kernel matrix ”
K = (<¢(Xm)7 (b(xn)))m,n:l,...,N

— (k(xma Xn))m,nzl,...,N

u;

x1

» Coordinate mapping: X, — (\/Alell, veey \/ AKGIK)
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RWTH
Example: Image Superresolution

trnngproceswe o SRR
» Collect high-res face images '
> Use KPCA with RBF-kernel PCA r=4 Eﬂﬂﬂu
to learn non-linear subspaces ,
- AN
e For new low-res image: -ﬂﬂﬂu
~ Scale to target high resolution 230 | :
- Project to closest point in —— ’4EEHHH
face subspace | |
e f oy
- HAADY
Kim, Franz, Scholkopf, Iterative Kernel Original . . .-
Principal Component Analysis for Image : . e

Modelling, IEEE Trans. PAMI, Vol. 27(9), 2005. Reconstruction in  dimensions
11
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http://dx.doi.org/10.1109/TPAMI.2005.181
http://dx.doi.org/10.1109/TPAMI.2005.181
http://dx.doi.org/10.1109/TPAMI.2005.181
http://dx.doi.org/10.1109/TPAMI.2005.181
http://dx.doi.org/10.1109/TPAMI.2005.181
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Kernel k-Means Clustering

e Kernel PCA is more than just non-linear versions of PCA
- PCA maps R? to R, e.g., to remove noise dimensions.

- Kernel-PCA maps X — R<, so it provides a vectorial
representation of non-vectorial data.

= We can apply algorithms that only work in vector spaces to data
that is not in a vector representation.

e Example: k-Means clustering
- Given x,,...,x, € &X.
> Choose a kernel function k : X x X — R.
. Apply kernel-PCA to obtain vectorial v,,...,v, € R<,
. Cluster v ,...,v, € R using K-Means.

= X4,...,X, are clustered based on the similarity defined by k.

12
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Example: Unsupervised Object Categorization

e Automatically group images that show similar objects
> Represent images by bag-of-word histograms
~ Perform Kernel k-Means Clustering

= Observation: Clusters get better if we use a good image kernel
(e.g., x?) instead of plain k-Means (linear kernel).

T. Tuytelaars, C. Lampert, M. Blaschko, W. Buntine, Unsupervised object discovery:

a comparison, IJCV, 2009.]

Slide credit: Christoph Lampert B. Leibe
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http://dx.doi.org/10.1007/s11263-009-0271-8
http://dx.doi.org/10.1007/s11263-009-0271-8
http://dx.doi.org/10.1007/s11263-009-0271-8

Topics of This Lecture

e Support Vector Data Description (1-class SVMs)
> Motivation
> Definition
- Applications
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One-Class SVMs

¢

¢
Tt

e Motivation

» For unlabeled data, we are interested in detecting outliers,
i.e. samples that lie far away from most of the other samples.

e Problem statement

- For samples x,,...,x,, find the smallest ball (center c, radius R)
that contains “most” of the samples.

“Most” again means that we allow some points to have slack.
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One-Class SVMs

e Formalization
> Solve

1 N
min _
RER, ceRD, §n€R+ vIN Z::
subject to

Ix, —c||’< R* +&, for n=1,...N

where v € (0,1) upper bounds the number of outliers.

(9|
-
.
Q
i
=
(@))
IE
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
(1
%
<

16

Slide credit: Christoph Lampert B. Leibe



One-Class SVMs

e Again apply the kernel trick
- Use a kernel k: X x X = R with an implicit feature map
o: X — H.
- Do outlier detection for ¢(x,),...,0(xy):

> Find the smallest ball (center c € H, radius R) that contains
“most” of the samples.

> Solve

min R+ —an

RER, ceH, £, ERT
subject to

l(xn) —c|°< R* + &, for n=1,...,.N
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One-Class SVM

e Solution

» The representer theorem states that we can write the solution
only in terms of the kernel k(x,,x, ) as

N

c=) and(xy)

n=1

> where again we know from the KKT conditions that for each
point x_, either the constraint is active (i.e., the point is on the
circle R) or the Lagrange multiplier a, = 0.

= Sparse solution, depends only on few data points, the support
vectors.

- Because of this, the formulation is called Support Vector Data
Description (SVDD) or one-class SVM.

= Often used for outlier/anomaly detection.

18
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CHEN
. UNIVERSITY
Example: Steganalysis

Original With 23’300 hidden bits
e Steganography
> Hide data in other data (e.g. in images)
> E.g., flip some least significant bits
e Steganalysis

» Given any data, find out if some data is hidden
B. Leibe
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CHEN
. UNIVERSITY
Example: Steganalysis

Original With 23’300 hidden bits
e Possible procedure
> Compute image statistics (color wavelet coefficients)
> Train SVDD with RBF-kernel
» ldentified outlier images are suspicious candidates

S. Lyu, H. Farid. Steganalysis using color wavelet statistics and one-class support
vector machines, SPIE EI, 2004

Slide adapted from Christoph Lampert

N
-
.
Q
P’
=
(@))
IE
c
-
(4]
Q
-
Q
£
N e
(&)
1+
=
©
Q
(&)
c
(1
>
©
<

20

B. Leibe


http://www.cs.dartmouth.edu/farid/downloads/publications/spie04.pdf
http://www.cs.dartmouth.edu/farid/downloads/publications/spie04.pdf
http://www.cs.dartmouth.edu/farid/downloads/publications/spie04.pdf
http://www.cs.dartmouth.edu/farid/downloads/publications/spie04.pdf
http://www.cs.dartmouth.edu/farid/downloads/publications/spie04.pdf
http://www.cs.dartmouth.edu/farid/downloads/publications/spie04.pdf
http://www.cs.dartmouth.edu/farid/downloads/publications/spie04.pdf
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Topics of This Lecture
=
£
g
% e Support Vector Regression
E > Error function
§ > Primal form
g > Dual form
= 21
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SVMs for Regression

e Linear regression \

> Minimize a regularized quadratic
error function

1 A\
§ Z{yn — tn}z + §HW||2
n=1

o

S

£

=

e

= ¢ Problem o
§ ~ Sensitive to outliers, because

o the quadratic error function ol
g penalizes large residues.

= > This is the case even for 1}
@ (Kernel) Ridge Regression,

§ although regularization helps. 0f ¢
<

<

22

Image source: C.M. Bishop, C. Lampert
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SVMs for Regression

E(z)}

e Obtaining sparse solutions
> Define an e-insensitive error function

_ /0 if [y(x) —t[ <e
Eely(x) —t) = { ly(x — t| — e, otherwise
> and minimize the following regularized function

N
1
C Y Belyn —ta) + 5wl
n=1
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Dealing with Noise and Outliers

'
y(z) y+e

e Introduce slack variables
- We now need two slack variables ¢, > 0 and En > 0.
- A target point lies in the e-tube ify -e < t <y + e
> The corresponding conditions are

tn § y(xn)‘|‘€‘|‘£n
tn Z y(xn)_e_gn

B. Leibe
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Dealing with Noise and Outliers

e Optimization with slack variables
> The error function can then be rewritten as

N
1
CY ly(xn) = ta| — € + §|IWI|2
n=1

> Using the conditions for the slack variables, we obtain
tn S y(Xn) T €T é-n — gn 2 _(y(xn) o tn) — €

tn Z y(Xn)_e_gn gn 2 (y(xn)_tn)_e
> And thus
N
~ 1 &n > 0
C;(§n+£n)+§|\wll £ > 0

(9|
—
.
Q
P
=
(@))
IE
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

B. Leibe



. Lagrangian primal form
N

B. Leibe

n=1
5 —Zan(e+£n+yn—tn)—
E n=1 n=1
| « Solving for the variables
3 Y ) = _ oL
-_GE, - = |w = 1(an — Qn)O(Xn) I,
S i
=
oL , i\’: 6 —3.)= 0 oL
A o =4 Ay — Ay ) = —
é 0b — O,

=0 =

— =0 =

Support Vector Regression - Primal Form

L, _ozgnm HWH2 > (kb + Finkn)

N ~
> a, (e+£n —yn+tn)

ap + Uy = C

ap + iy, =C

26



RWNTH
Support Vector Regression - Dual Form

e From this, we can derive the dual form
> Maximize

Li(a,a) = —— Z Z m — O ) k(X Xom)

nlml

E N N

3 (on+ )+ 3 (e

i n=1 n=1

E > under the conditions

g 0 <a,< C

m A~

= 0 <@, < C

(8)

= » Predictions for new inputs are then made using
f: N

g AN

S y(x) = > (an — Bn)k(x,x,) + b
2 "n,:]_

27
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KKT Conditions

e KKT conditions
an(€+&n +y(xn) — tn)
an (€ + & — Y(x,) +t,) =

(C—an)én =
(C o an)gn - i
e Observations ’

- A coefficient g, can only be non-zero if the first constraint is
active, i.e., if a point lies either on or above the e-tube.

o O O O

- Similarly, a non-zero coefficient i,, must be on/below the e-tube
> The first two constraints cannot both be active at the same time
= Either a, or @, or both must be zero.

. The support vectors are those points for which a,, # 0 or a,, # ()

i.e., the points on the boundary of or outside the e-tube. )8
B. Leibe
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Discussion

3t 3l

2t 2 o

Iy 11

U ‘ . . __® ] 0t € | | ‘ e
o 1 2 3 4 5 6 0 1 2 3 4 5 6
Least-squares regression Support vector regression

e Slightly different interpretation
» For SVMs, classification function depends only on SVs.

~ For SVR, support vectors mark outlier points. SVR tries to limit
the effect of those outliers on the regression function.

- Nevertheless, the prediction y(x) only depends on the support
vectors.
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Image source: Christoph Lampert
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(a) Sample frames of a test sequence
Pose Estimation: Yaw

Pose Estimation: Tilt
180 180
160+ 160
140} A 140
o, 120
) .
100 2100’;\%‘ . K4 s
I T N Pl S ~ i
/\AN/\J\AA/ S A t j\/}\/
a0l 60 e
ok 10
20F 20
0 % 6 = % 4 = & 7 @ 0 10
0 10 20 30 40 50 60 70 a0 90 100 Faris
frame 2
(b) Yaw estimation (c) Tilt estimation

e Procedure
> Detect faces in image
> Compute gradient representation of face region
» Train support vector regression for yaw, tilt (separately)

Y. Li, S. Gong, J. Sherra, H. Liddell, Support vector machine based multi-view face

detection and recognition, Image & Vision Computing, 2004.
B. Leibe
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http://people.brunel.ac.uk/~csstyyl/papers/ivc2004.pdf
http://people.brunel.ac.uk/~csstyyl/papers/ivc2004.pdf
http://people.brunel.ac.uk/~csstyyl/papers/ivc2004.pdf
http://people.brunel.ac.uk/~csstyyl/papers/ivc2004.pdf
http://people.brunel.ac.uk/~csstyyl/papers/ivc2004.pdf

References and Further Reading

e More information on Kernel PCA can be found in Chapter
12.3 of Bishop’s book. Support Vector Regression is
described in Chapter 7.1. You can also look at Scholkopf
& Smola (some chapters available online).

Christopher M. Bishop
Pattern Recognition and Machine Learning Zp
Learning with Kernels Springer, 2006

B. Scholkopf, A. Smola

Learning with Kernels

MIT Press, 2002
http://www.learning-with-kernels.org/
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http://www.learning-with-kernels.org/
http://www.learning-with-kernels.org/
http://www.learning-with-kernels.org/
http://www.learning-with-kernels.org/
http://www.learning-with-kernels.org/

