

Advanced Machine Learning Lecture 18

Support Vector Machines

14.01.2013

Bastian Leibe

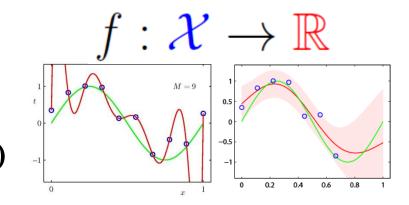
RWTH Aachen

http://www.vision.rwth-aachen.de/

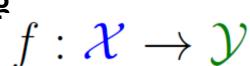
leibe@vision.rwth-aachen.de

This Lecture: Advanced Machine Learning

- Regression Approaches
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Kernels (Kernel Ridge Regression)
 - Gaussian Processes



- Bayesian Estimation & Bayesian Non-Parametrics
 - Prob. Distributions, Approx. Inference
 - Mixture Models & EM
 - Dirichlet Processes
 - Latent Factor Models
 - Beta Processes
- SVMs and Structured Output Learning
 - SVMs, SVDD, SV Regression
 - Large-margin Learning

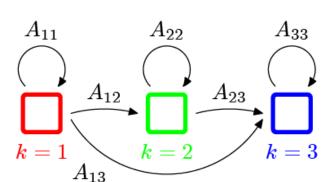


Topics of This Lecture

- Application: Nonparametric Hidden Markov Models
 - Graphical Model view
 - HDP-HMM
 - > BP-HMM
- Recap: Support Vector Machines
 - Motivation
 - Primal form
 - Dual form
 - Slack variables
 - Non-linear SVMs
 - Discussion & Analysis
- Other Kernel Methods
 - Kernel PCA
 - Kernel k-Means Clustering

Hidden Markov Models (HMMs)

- Probabilistic model for sequential data
 - Widely used in speech recognition, natural language modeling, handwriting recognition, financial forecasting,...
- Traditional view:
 - Finite state machine
 - Elements:
 - State transition matrix A,
 - Production probabilities $p(\mathbf{x} \mid k)$.
- Graphical model view
 - Dynamic latent variable model
 - Elements:
 - Observation at time n: \mathbf{x}_n
 - Hidden state at time n: \mathbf{z}_n
 - Conditionals $p(\mathbf{z}_{n+1}|\mathbf{z}_n)$, $p(\mathbf{x}_n|\mathbf{z}_n)$



Hidden Markov Models (HMMs)

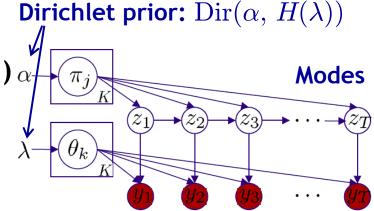
Traditional HMM learning

- Each state has a distribution over observable outputs $p(\mathbf{x} \mid k)$, e.g., modeled as a Gaussian.
- Learn the output distributions together with the transition probabilities using an EM algorithm.

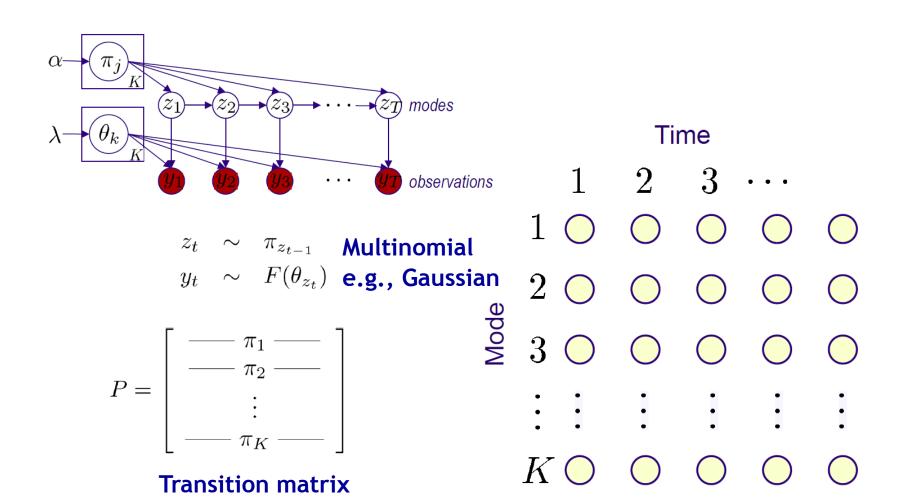
A_{11} A_{22} A_{33} A_{12} A_{23} A

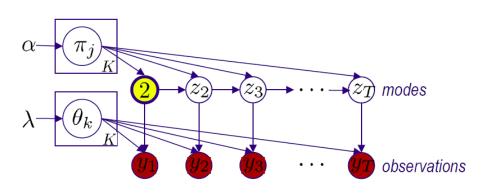
Graphical Model view

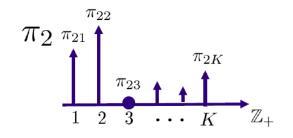
- Treat the HMM as a mixture model
- Fach state is a component ("mode") α in the mixture distribution.
- From time step to time step, the responsible component switches according to the transition model.
- Advantage: we can introduce priors!

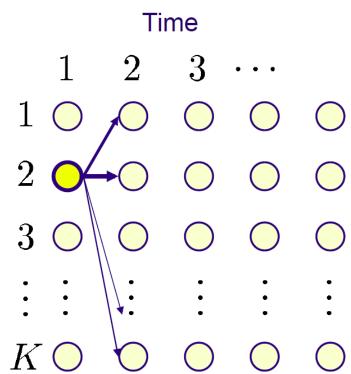


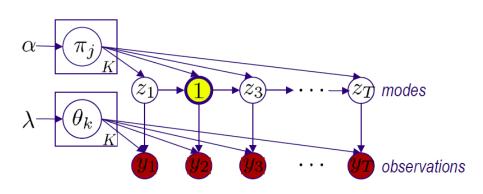
Observations

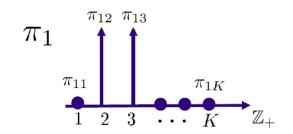


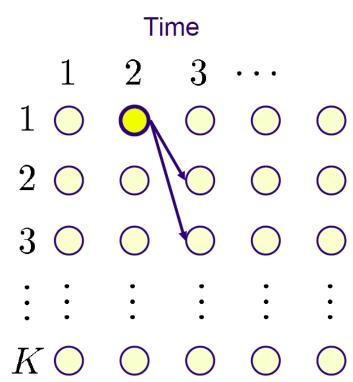


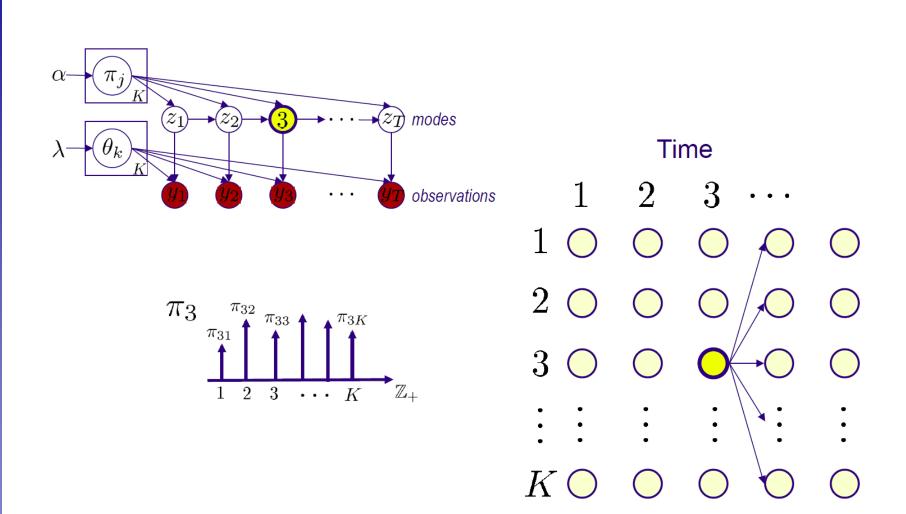












Important issue: How many modes?

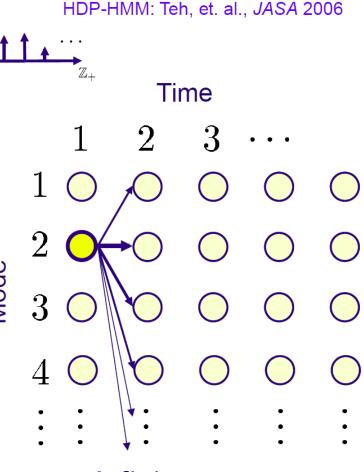
Hierarchical Dirichlet Process HMM



- Mode space of unbounded size
- Model complexity adapts to observations

Hierarchical DP

- Ties mode transition distributions
- Shared sparsity between states



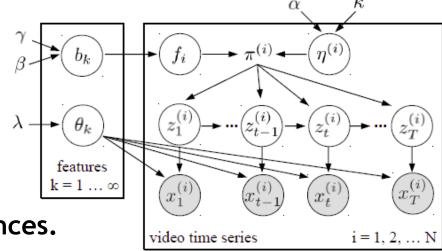
Infinite HMM: Beal, et.al., NIPS 2002

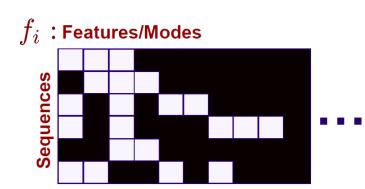
Infinite state space

Beta Process HMM

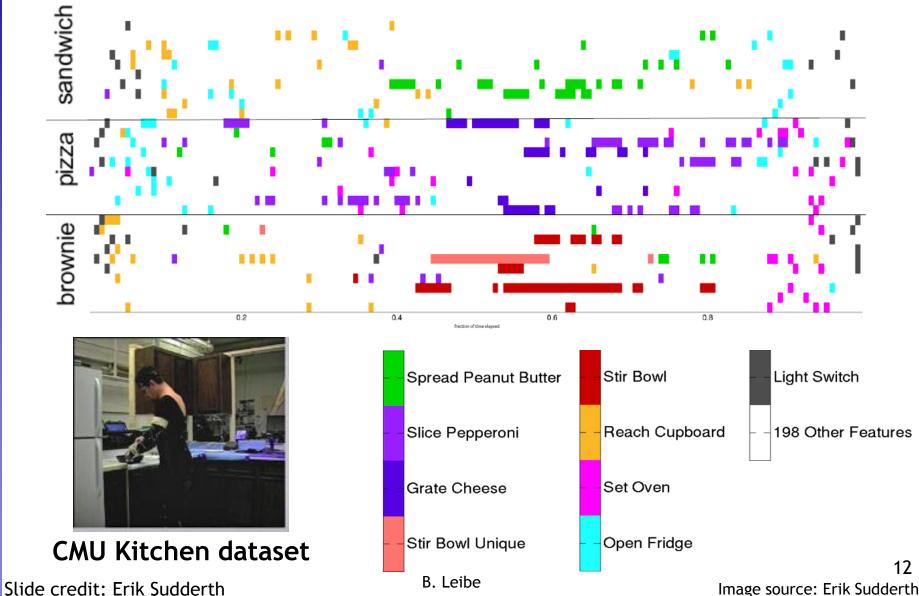
- Goal: Transfer knowledge between related time series
 - E.g., activity recognition in video collections
 - Allow each system to switch between an arbitrarily large set of dynamical modes ("behaviors").
 - Share behaviors across sequences.

- HDPs would force all videos to have non-zero probability of displaying all behaviors.
- Beta Processes allow a video to contain only a sparse subset of relevant behaviors.





Unsupervised Discovery of Activity Patterns



References and Further Reading

Infinite HMMs

- > HDP-HMM
 - J. Paisley, F. Carin, Nonparametric Factor Analysis with Beta Process Priors, ICML 2009.
- BP-HMMs for discovery of activity patterns
 - M.C. Hughes, E.B. Sudderth, <u>Nonparametric Discovery of Activity</u>
 <u>Patterns from Video Collections</u>. CVPR Workshop on Perceptual
 Organization in Computer Vision, 2012.

Topics of This Lecture

- Application: Nonparametric Hidden Markov Models
 - Graphical Model view
 - > HDP-HMM
 - > BP-HMM
- Recap: Support Vector Machines
 - Motivation
 - Primal form
 - Dual form
 - Slack variables
 - Non-linear SVMs
 - Discussion & Analysis
- Other Kernel Methods
 - Kernel PCA
 - Kernel k-Means Clustering

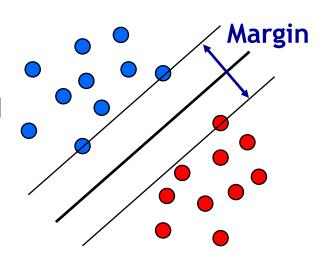
RWTHAACHEN UNIVERSITY

Recap: Support Vector Machine (SVM)

Basic idea

- The SVM tries to find a classifier which maximizes the margin between pos. and neg. data points.
- Up to now: consider linear classifiers

$$\mathbf{w}^{\mathrm{T}}\mathbf{x} + b = 0$$



- Formulation as a convex optimization problem
 - > Find the hyperplane satisfying

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{w}\|^2$$

under the constraints

$$t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b) \ge 1 \quad \forall n$$

based on training data points \mathbf{x}_n and target values $t_n \in \{-1,1\}$.

Recap: SVM - Lagrangian Formulation

• Find hyperplane minimizing $\|\mathbf{w}\|^2$ under the constraints

$$t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b) - 1 \ge 0 \quad \forall n$$

- Lagrangian formulation
 - > Introduce positive Lagrange multipliers: $a_n \ge 0 \quad \forall n$
 - Minimize Lagrangian ("primal form")

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \{t_n(\mathbf{w}^T \mathbf{x}_n + b) - 1\}$$

 \triangleright I.e., find w, b, and a such that

$$\frac{\partial L}{\partial b} = 0 \implies \sum_{n=1}^{N} a_n t_n = 0 \qquad \frac{\partial L}{\partial \mathbf{w}} = 0 \implies \mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n$$

Recap: SVM - Primal Formulation

Lagrangian primal form

$$L_{p} = \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{n=1}^{N} a_{n} \{t_{n}(\mathbf{w}^{T}\mathbf{x}_{n} + b) - 1\}$$

$$= \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{n=1}^{N} a_{n} \{t_{n}y(\mathbf{x}_{n}) - 1\}$$

- The solution of L_n needs to fulfill the KKT conditions
 - Necessary and sufficient conditions

$$a_n \ge 0$$

$$t_n y(\mathbf{x}_n) - 1 \ge 0$$

$$a_n \{t_n y(\mathbf{x}_n) - 1\} = 0$$

$$\lambda \geq 0$$

$$egin{array}{cccc} \mathbf{KKT:} & & & & & \\ \lambda & \geq & 0 & & & \\ f(\mathbf{x}) & \geq & 0 & & \\ \lambda f(\mathbf{x}) & = & 0 & & \\ \end{array}$$

Recap: SVM - Solution

- Solution for the hyperplane
 - Computed as a linear combination of the training examples

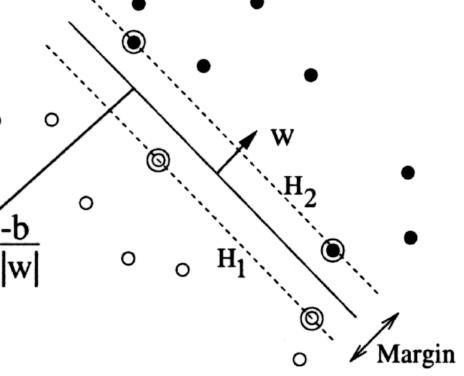
$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n$$

- > Sparse solution: $a_n \neq 0$ only for some points, the support vectors
- ⇒ Only the SVs actually influence the decision boundary!
- lacksquare Compute b by averaging over all support vectors:

$$b = \frac{1}{N_{\mathcal{S}}} \sum_{n \in \mathcal{S}} \left(t_n - \sum_{m \in \mathcal{S}} a_m t_m \mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n \right)$$

Recap: SVM - Support Vectors

- The training points for which $a_n > 0$ are called "support vectors".
- Graphical interpretation:
 - The support vectors are the points on the margin.
 - They define the margin and thus the hyperplane.
 - ⇒ All other data points can be discarded!



• Improving the scaling behavior: rewrite L_p in a dual form

> Using the constraint $\sum_{n=0}^{\infty}a_{n}t_{n}=0$, we obtain

$$\frac{\partial L_p}{\partial b} = 0$$

$$L_p = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n t_n \mathbf{w}^{\mathrm{T}} \mathbf{x}_n + \sum_{n=1}^{N} a_n$$

$$L_p = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n t_n \mathbf{w}^{\mathrm{T}} \mathbf{x}_n + \sum_{n=1}^{N} a_n$$

> Using the constraint $\mathbf{w=}\sum_{\mathbf{l}}a_{n}t_{n}\mathbf{x}_{n}$, we obtain

$$\frac{\partial L_p}{\partial \mathbf{w}} = 0$$

$$L_p = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n t_n \sum_{m=1}^{N} a_m t_m \mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n + \sum_{n=1}^{N} a_n$$

$$= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (\mathbf{x}_m^T \mathbf{x}_n) + \sum_{n=1}^{N} a_n$$

$$L = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (\mathbf{x}_m^T \mathbf{x}_n) + \sum_{n=1}^{N} a_n$$

> Applying $\frac{1}{2} \|\mathbf{w}\|^2 = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$ and again using $\mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n$

$$\frac{1}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w} = \frac{1}{2}\sum_{n=1}^{N}\sum_{m=1}^{N}a_{n}a_{m}t_{n}t_{m}(\mathbf{x}_{m}^{\mathrm{T}}\mathbf{x}_{n})$$

Inserting this, we get the Wolfe dual

$$L_d(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m(\mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n)$$

Maximize

$$L_d(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m(\mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n)$$

under the conditions

$$\sum_{n=1}^{N} a_n t_n = 0$$

Comparison

- $ightarrow L_d$ is equivalent to the primal form L_p , but only depends on a_n .
- > L_p scales with $\mathcal{O}(D^3)$.
- > L_d scales with $\mathcal{O}(N^3)$ in practice between $\mathcal{O}(N)$ and $\mathcal{O}(N^2)$.

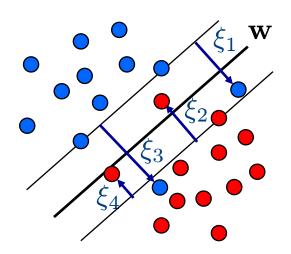
Recap: SVM for Non-Separable Data

Slack variables

> One slack variable $\xi_n \geq 0$ for each training data point.

Interpretation

- $\xi_n = 0$ for points that are on the correct side of the margin.
- > $\xi_n = |t_n y(\mathbf{x}_n)|$ for all other points.



Point on decision boundary: $\xi_n = 1$

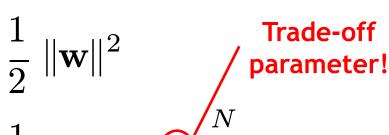
Misclassified point:

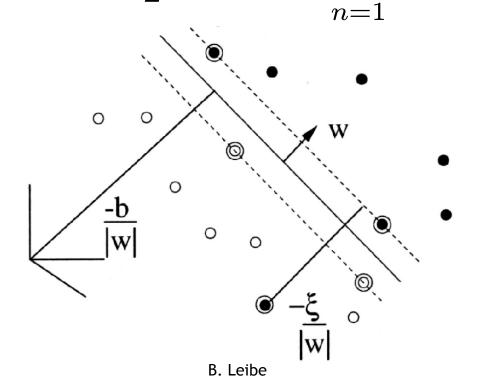
$$\xi_n > 1$$

- We do not have to set the slack variables ourselves!
- \Rightarrow They are jointly optimized together with w.

Recap: SVM - Non-Separable Data

- Separable data
 - Minimize
- Non-separable data
 - Minimize





Recap: SVM - New Primal Formulation

New SVM Primal: Optimize

$$L_p = rac{1}{2} \| \mathbf{w} \|^2 + C \sum_{n=1}^N \xi_n - \sum_{n=1}^N a_n \left(t_n y(\mathbf{x}_n) - 1 + \xi_n \right) - \sum_{n=1}^N \mu_n \xi_n$$

Constraint

Constraint

 $t_n y(\mathbf{x}_n) \ge 1 - \xi_n$

 $\xi_n > 0$

KKT conditions

$$a_n \geq 0$$
 $\mu_n \geq 0$ $\lambda \geq 0$ $\lambda \geq 0$ $t_n y(\mathbf{x}_n) - 1 + \xi_n \geq 0$ $\xi_n \geq 0$ $f(\mathbf{x}) \geq 0$ $a_n (t_n y(\mathbf{x}_n) - 1 + \xi_n) = 0$ $\mu_n \xi_n = 0$ $\lambda f(\mathbf{x}) = 0$

$$\lambda \geq 0$$

$$f(\mathbf{x}) \geq 0$$

$$\lambda f(\mathbf{x}) = 0$$

New SVM Dual: Maximize

$$L_d(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m(\mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n)$$

under the conditions

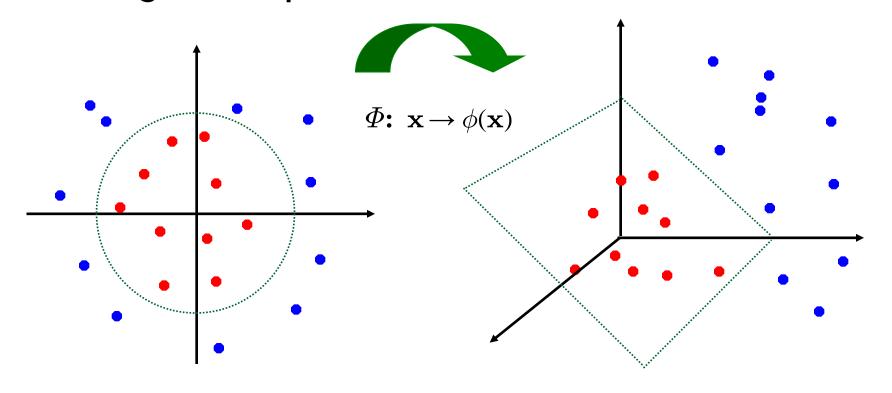
$$\sum_{n=1}^{N} a_n t_n = 0$$

This is all that changed!

- This is again a quadratic programming problem
 - ⇒ Solve as before...

Recap: Nonlinear SVMs

 General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:



Recap: The Kernel Trick

- Important observation
 - $\phi(\mathbf{x})$ only appears in the form of dot products $\phi(\mathbf{x})^{\mathsf{T}}\phi(\mathbf{y})$:

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) + b$$
$$= \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)^{\mathrm{T}} \phi(\mathbf{x}) + b$$

- ▶ Define a so-called kernel function $k(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x})^\mathsf{T} \phi(\mathbf{y})$.
- Now, in place of the dot product, use the kernel instead:

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}_n, \mathbf{x}) + b$$

The kernel function *implicitly* maps the data to the higher-dimensional space (without having to compute $\phi(\mathbf{x})$ explicitly)!

Recap: SVMs with Kernels

Using kernels

Applying the kernel trick is easy. Just replace every dot product by a kernel function...

$$\mathbf{x}^{\mathrm{T}}\mathbf{y} \quad o \quad k(\mathbf{x},\mathbf{y})$$

- ...and we're done.
- Instead of the raw input space, we're now working in a higherdimensional (potentially infinite dimensional!) space, where the data is more easily separable.

"Sounds like magic..."

- Wait does this always work?
 - > The kernel needs to define an implicit mapping to a higher-dimensional feature space $\phi(\mathbf{x})$.
 - Kernel needs to fulfill Mercer's condition
 (→ Lecture 4).

Recap: Nonlinear SVM - Dual Formulation

SVM Dual: Maximize

$$L_d(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m \mathbf{k}(\mathbf{x}_m, \mathbf{x}_n)$$

under the conditions

$$\sum_{n=1}^{N} a_n t_n = 0$$

Classify new data points using

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n \mathbf{k}(\mathbf{x}_n, \mathbf{x}) + b$$

Summary: SVMs

Properties

- Empirically, SVMs work very, very well.
- > SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
- SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
- SVM techniques have been applied to a variety of other tasks
 - e.g. SV Regression, One-class SVMs, ...
- > The kernel trick has been used for a wide variety of applications. It can be applied wherever dot products are in use
 - e.g. Kernel PCA, kernel FLD, ...
 - Good overview, software, and tutorials available on http://www.kernel-machines.org/

You Can Try It At Home...

- Lots of SVM software available, e.g.
 - svmlight (<u>http://svmlight.joachims.org/</u>)
 - Command-line based interface
 - Source code available (in C)
 - Interfaces to Python, MATLAB, Perl, Java, DLL,...
 - libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
 - Library for inclusion with own code
 - C++ and Java sources
 - Interfaces to Python, R, MATLAB, Perl, Ruby, Weka, C+.NET,...
 - Both include fast training and evaluation algorithms, support for multi-class SVMs, automated training and cross-validation, ...
 - \Rightarrow Easy to apply to your own problems!

Topics of This Lecture

- Application: Nonparametric Hidden Markov Models
 - Graphical Model view
 - > HDP-HMM
 - **BP-HMM**
- Recap: Support Vector Machines
 - Motivation
 - Primal form
 - Dual form
 - Slack variables
 - Non-linear SVMs
 - Discussion & Analysis
- Other Kernel Methods
 - Kernel PCA
 - Kernel k-Means Clustering

SVM - Analysis

Traditional soft-margin formulation

$$\min_{\mathbf{w} \in \mathbb{R}^D, \, \boldsymbol{\xi}_n \in \mathbb{R}^+} \, \frac{1}{2} \, \|\mathbf{w}\|^2 + C \sum_{n=1}^N \boldsymbol{\xi}_n$$

"Maximize the margin"

subject to the constraints

$$t_n y(\mathbf{x}_n) \geq 1 - \xi_n$$

"Most points should be on the correct side of the margin"

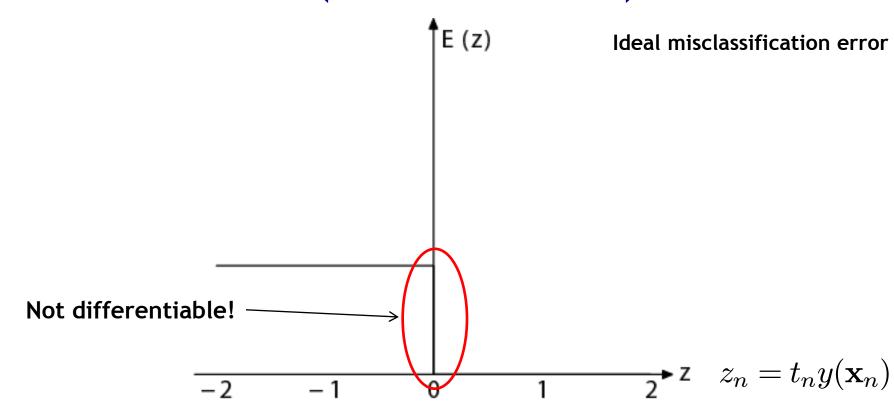
- Different way of looking at it
 - > We can reformulate the constraints into the objective function.

$$\min_{\mathbf{w} \in \mathbb{R}^D} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^N [1 - t_n y(\mathbf{x}_n)]_+$$

L₂ regularizer "Hinge loss"

where $[x]_{+} := \max\{0,x\}$.

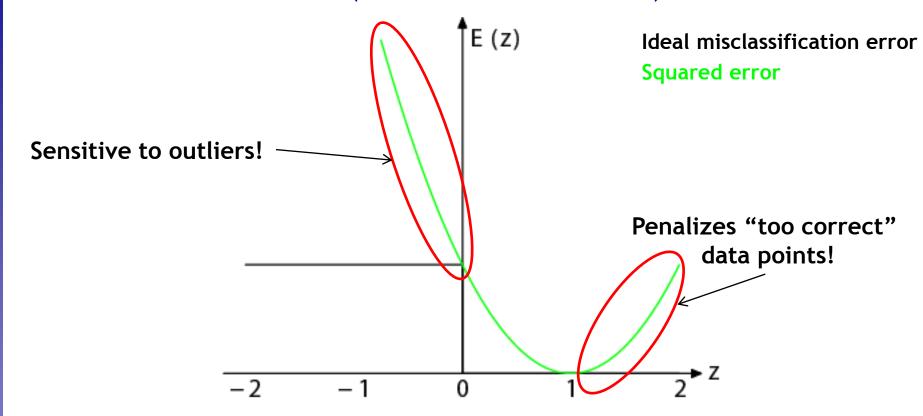
Error Functions (Loss Functions)



- Ideal misclassification error function (black)
 - This is what we want to approximate.
 - Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - ⇒ We cannot minimize it by gradient descent.

38

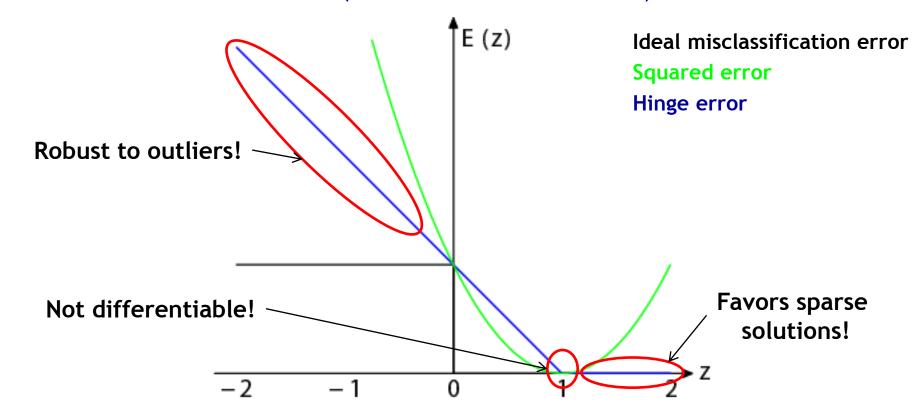
Error Functions (Loss Functions)



- Squared error used in Least-Squares Classification
 - Very popular, leads to closed-form solutions.
 - However, sensitive to outliers due to squared penalty.
 - Penalizes "too correct" data points
 - ⇒ Generally does not lead to good classifiers.

39

Error Functions (Loss Functions)



- "Hinge error" used in SVMs
 - Zero error for points outside the margin ($z_n > 1$).
 - Linearly increasing error for misclassified points ($z_n < 1$).
 - ⇒ Leads to sparse solutions, not sensitive to outliers.
 - Not differentiable around $z_n = 1 \Rightarrow$ Cannot be optimized directly.

B. Leibe

Image source: Bishop, 2006

SVM - Discussion

SVM optimization function

$$\min_{\mathbf{w} \in \mathbb{R}^D} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^N \left[1 - t_n y(\mathbf{x}_n)\right]_+$$
 $\mathsf{L_2}$ regularizer Hinge loss

- Hinge loss enforces sparsity
 - Only a subset of training data points actually influences the decision boundary.
 - This is different from sparsity obtained through the regularizer!
 There, only a subset of input dimensions are used.
 - Unconstrained optimization, but non-differentiable function.
 - Solve, e.g. by subgradient descent
 - Currently most efficient: stochastic gradient descent

Outline of the Remaining Lectures

- We will generalize the SVM idea in several directions...
- Other Kernel methods
 - Kernel PCA
 - Kernel k-Means
- Other Large-Margin Learning formulations
 - Support Vector Data Description (one-class SVMs)
 - Support Vector Regression
- Structured Output Learning
 - General loss functions
 - General structured outputs
 - Structured Output SVM
 - Example: Multiclass SVM

Topics of This Lecture

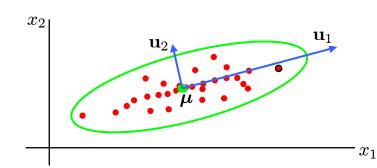
- Application: Nonparametric Hidden Markov Models
 - Graphical Model view
 - > HDP-HMM
 - > BP-HMM
- Recap: Support Vector Machines
 - Motivation
 - Primal form
 - Dual form
 - Slack variables
 - Non-linear SVMs
 - Discussion & Analysis
- Other Kernel Methods
 - Kernel PCA
 - Kernel k-Means Clustering

Recap: PCA

PCA procedure

- $oldsymbol{ iny}$ Given samples $\mathbf{x}_n \in \mathbb{R}^d$, PCA finds the directions of maximal covariance. Without loss of generality assume that $\sum_n \mathbf{x}_n = \mathbf{0}$.
- ightharpoonup The PCA directions $\mathbf{e}_1,...,\mathbf{e}_d$ are the eigenvectors of the covariance matrix

$$C = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^T$$



sorted by their eigenvalue.

> We can express
$$\mathbf{x}_n$$
 in PCA space by $F(\mathbf{x}_n) = \sum_{k=1}^{K} \langle \mathbf{x}_n, \mathbf{e}_k \rangle \mathbf{e}_k$

Lower-dim. coordinate mapping:

$$\mathbf{x}_n \mapsto egin{pmatrix} \langle \mathbf{x}_n, \mathbf{e}_1
angle \ \langle \mathbf{x}_n, \mathbf{e}_2
angle \ \cdots \ \langle \mathbf{x}_n, \mathbf{e}_K
angle \end{pmatrix} \in \mathbb{R}^K$$

B. Leibe

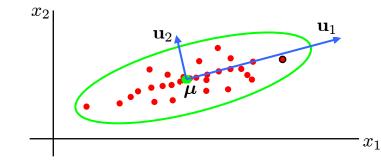
RWTHAACHEN UNIVERSITY

Kernel-PCA

Kernel-PCA procedure

- Given samples $\mathbf{x}_n \in \mathcal{X}$, kernel $\mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with an implicit feature map $\phi \colon \mathcal{X} \to \mathcal{H}$. Perform PCA in the Hilbert space \mathcal{H} .
- > The kernel-PCA directions $\mathbf{e}_1, ..., \mathbf{e}_d$ are the eigenvectors of the covariance operator

$$C = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{\phi}(\mathbf{x}_n) \boldsymbol{\phi}(\mathbf{x}_n)^T$$



sorted by their eigenvalue.

> Lower-dim. coordinate mapping: $\mathbf{x}_n \mapsto \left[egin{array}{c} \langle oldsymbol{arphi}(\mathbf{x}_n) \\ & \ddots \end{array} \right]$

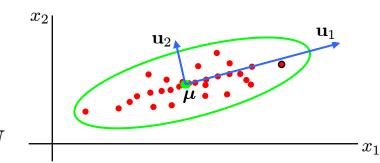
$$\mathbf{x}_n \mapsto egin{pmatrix} \langle oldsymbol{\phi}(\mathbf{x}_n), \mathbf{e}_1
angle \ \langle oldsymbol{\phi}(\mathbf{x}_n), \mathbf{e}_2
angle \ \dots \ \langle oldsymbol{\phi}(\mathbf{x}_n), \mathbf{e}_K
angle \end{pmatrix} \in \mathbb{R}^K$$

Kernel-PCA

Kernel-PCA procedure

- Given samples $\mathbf{x}_n \in \mathcal{X}$, kernel $\mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with an implicit feature map $\phi \colon \mathcal{X} \to \mathcal{H}$. Perform PCA in the Hilbert space \mathcal{H} .
- Fquivalently, we can use the eigenvectors $\mathbf{e'}_k$ and eigenvalues λ_k of the kernel matrix

$$K = (\langle \boldsymbol{\phi}(\mathbf{x}_m), \boldsymbol{\phi}(\mathbf{x}_n) \rangle)_{m,n=1,...,N}$$
$$= (k(\mathbf{x}_m, \mathbf{x}_n))_{m,n=1,...,N}$$



Coordinate mapping:

$$\mathbf{x}_n \mapsto (\sqrt{\lambda_1} \mathbf{e}_1', ..., \sqrt{\lambda_K} \mathbf{e}_K')$$

Example: Image Superresolution

- Training procedure
 - Collect high-res face images
 - Use KPCA with RBF-kernel to learn non-linear subspaces
- For new low-res image:
 - Scale to target high resolution
 - Project to closest point in face subspace

Reduced PCA r=464 256 KPCA r=4 256 Original

Kim, Jung, Kim, <u>Face Recognition using</u> <u>Kernel Principal Component Analysis</u>, Signal Processing Letters, 2002.

B. Leibe

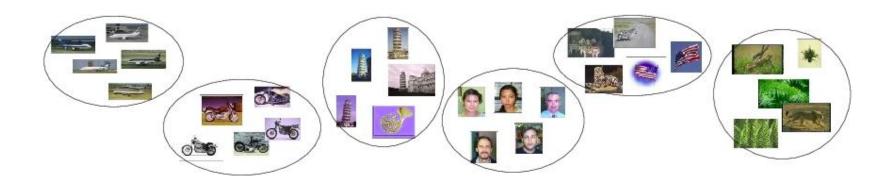
Reconstruction in r dimensions

Kernel k-Means Clustering

- Kernel PCA is more than just non-linear versions of PCA
 - ightharpoonup PCA maps \mathbb{R}^d to $\mathbb{R}^{d'}$, e.g., to remove noise dimensions.
 - ightharpoonup Kernel-PCA maps $\mathcal{X} o \mathbb{R}^{d}$, so it provides a vectorial representation of non-vectorial data.
 - ⇒ We can apply algorithms that only work in vector spaces to data that is not in a vector representation.
- Example: k-Means clustering
 - ightharpoonup Given $\mathbf{x}_1,...,\mathbf{x}_n \in \mathcal{X}$.
 - ightharpoonup Choose a kernel function $k:\mathcal{X} imes\mathcal{X}
 ightharpoonup\mathbb{R}$.
 - Apply kernel-PCA to obtain vectorial $\mathbf{v}_1, ..., \mathbf{v}_n \in \mathbb{R}^{d'}$.
 - > Cluster $\mathbf{v}_1, ..., \mathbf{v}_n \in \mathbb{R}^{d'}$ using K-Means.
 - $\Rightarrow \mathbf{x}_1, \dots, \mathbf{x}_n$ are clustered based on the similarity defined by k.

RWTHAACHEN UNIVERSITY

Example: Unsupervised Object Categorization

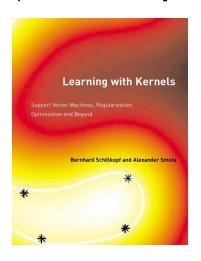


- Automatically group images that show similar objects
 - Represent images by bag-of-word histograms
 - Perform Kernel k-Means Clustering
 - \Rightarrow Observation: Clusters get better if we use a good image kernel (e.g., χ^2) instead of plain k-Means (linear kernel).

T. Tuytelaars, C. Lampert, M. Blaschko, W. Buntine, <u>Unsupervised object discovery:</u> <u>a comparison</u>, IJCV, 2009.]

References and Further Reading

More information on SVMs can be found in Chapter 7.1
 of Bishop's book. You can also look at Schölkopf & Smola
 (some chapters available online).



Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

