Advanced Machine Learning
Lecture 18

Support Vector Machines
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RWTH
This Lecture: Advanced Machine Learning

e Regression Approaches f X - R
~ Linear Regression l o | |

. Regularization (Ridge, Lasso) /) \/
- Kernels (Kernel Ridge Regression) h ! /I) B ‘
- Gaussian Processes S
e Bayesian Estimation & Bayesian Non-Parametrics
> Prob. Distributions, Approx. Inference (= __ ) ;

e
S

Y
N

> Mixture Models & EM o\ Fgue
> Dirichlet Processes Xn M

~ Latent Factor Models W
> Beta Processes

e SVMs and Structured Output Learning
> SVMs, SVDD, SV Regression f : X — y

> Large-margin Learning
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Topics of This Lecture

e Application: Nonparametric Hidden Markov Models
» Graphical Model view
> HDP-HMM
> BP-HMM

e Recap: Support Vector Machines
> Motivation
> Primal form
> Dual form
> Slack variables
> Non-linear SVMs
~ Discussion & Analysis

e Other Kernel Methods
> Kernel PCA
> Kernel k-Means Clustering
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Hidden Markov Models (HMMs)

e Probabilistic model for sequential data

> Widely used in speech recognition, natural language modeling,
handwriting recognition, financial forecasting,...

e Traditional view:
> Finite state machine

> Elements:
- State transition matrix A,

- Production probabilities p(x | k).

e Graphical model view

Z, Z9 Zn
> Dynamic latent variable model @ ( )—— }—
- Elements:
- Observation at time n: x, X1 X2 Xn

- Hidden state at time n: z
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- Conditionals p(z,,_.,|z,), p(x,|z,)
B. Leibe
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Image source: C.M. Bishop, 2006




Hidden Markov Models (HMMs)

e Traditional HMM learning

> Each state has a distribution over
observable outputs p(x | k), An Ao A3

e.g., modeled as a Gaussian. m
» Learn the output distributions D A1 Aoz
k=1

together with the transition _ \_/ o
probabilities using an EM algorithm. A N
e Graphical Model view

> Treat the HMM as a mixture model

> Each state is a component (“mode”) o
in the mixture distribution.

> From time step to time step, the \—
responsible component switches
according to the transition model.

» Advantage: we can introduce priors!
B. Leibe

Dirichlet prior: Dir(a, H()\))

] [©

Observations
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HMM: Mixture Model View

Time

observations

“t  ~ Tz_:  Multinomial
y ~ F(0.) e.g., Gaussian

w N =
O O O*r

Mode

m
2

0 O Ow
.0 0O Ow
.0 0 O :
-0 0O O

TK

'I:ransition matri;( KO O O O O
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HMM: Mixture Model View
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HMM: Mixture Model View
: @ modes
Time

E observations 1 ) 3 “ e

: 10 0,0 O O

g T T2 T13 2 O O O O

§ Tl T1K 3 O O O O

qE’ 1 2 3 ... K Z. o . .

; KO O O O O

é 8

Slide credit: Erik Sudderth B. Leibe



HMM: Mixture Model View

Time
observations 1 2 3
10 O O

T3 My 20 O O
IHHL@ 30 O

KO O O

Important issue: How many modes?
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RWNTH
Hierarchical Dirichlet Process HMM

Infinite HMM: Beal, et.al., NIPS 2002
2 ”21ﬂ224‘ HDP-HMM: Teh, et al. JASA 2006
i1

1234 2y

Time

2

» Shared sparsity between states

S 3

g 1 O O O
S HDP HMM

- 2 O O O
=8 ¢ Dirichlet Process o

§ - Mode space of unbounded size = 3 O O O
Q ~ Model complexity adapts to

£ observations 4 O O O
© . . .
= Hierarchical DP

% » Ties mode transition distributions Infinite state space
>

©

<
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Beta Process HMM

e Goal: Transfer knowledge between related time series

Y K

> E.g., activity recognition in N — ~
: . 4. N | N
video collections N A ()

f N4 N i N/
~ Allow each system to switch e | /{\__ -

. . . i
between an arbitrarily large A -~(6.) | | (2" H---':gﬁ' -
set of dynamical modes RN ——
(“behaviors”).

~ Share behaviors across sequences.

e Beta Processes enforce sparsity

> HDPs would force all videos to have
non-zero probability of displaying all
behaviors.

» Beta Processes allow a video to
contain only a sparse subset of
relevant behaviors. y

[Hughes & Sudderth, 2012] B. Leibe Image source: Erik Sudderth

; + Features/Modes

Sequences
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RW}'L'I-!LZ_& !
Unsupervised Discovery of Activity Patter“ § '

L
2 ' i 0
S i
'g " . 1 | n 1l n !
g 1V [ | U RN 1
III T | h__- ‘ 1 II. |
M
3 ' L P L L NUR LR
i il Imm =m LN
I a " i . ] L LI | | LI
—
b II im 1 I*I = Cl m1s mm :l' lr
)
= g oo v s —— o
= s I, 1 v —— im e I
g e " H I I ' | ll .
[= < m 1 T
— 0.z 0.4 o . 0.6 [+X:]
(1)
(<))
|
‘1:’ Spread Peanut Butter Stir Bowl Light Switch
%
g Slice Pepperoni Reach Cupboard 198 Other Features
©
8 Grate Cheese Set Oven
c
S
j . Stir Bowl Uni Open Frid
< CMU Kitchen dataset tir Bowl Unique pen Fridge

' 12
Slide credit: Erik Sudderth B. Leibe Image source: Erik Sudderth
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RWTH
References and Further Reading

e Infinite HMMs

> HDP-HMM

- J. Paisley, F. Carin, Nonparametric Factor Analysis with Beta
Process Priors, ICML 2009.

- BP-HMMs for discovery of activity patterns

- M.C. Hughes, E.B. Sudderth, Nonparametric Discovery of Activity
Patterns from Video Collections. CVPR Workshop on Perceptual
Organization in Computer Vision, 2012.

B. Leibe
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http://www.cs.berkeley.edu/~jpaisley/Papers/Paisley_BP-FA_ICML.pdf
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Topics of This Lecture

e Recap: Support Vector Machines
> Motivation
> Primal form
> Dual form
> Slack variables
> Non-linear SVMs
~ Discussion & Analysis
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RWTH
Recap: Support Vector Machine (SVM)

e Basic idea

~ The SVM tries to find a classifier which
maximizes the margin between pos. and
neg. data points.

> Up to now: consider linear classifiers

wix+b=0

e Formulation as a convex optimization problem

» Find the hyperplane satisfying
1

arg min — ||w||”
w,b 2

under the constraints
th(W X, +0)>1 Vn

based on training data points x, and target values ¢,, € {—1, 1}.

15
B. Leibe



e Lagrangian formulation

> l.e., find w, b, and a such that

N

oL

=0 = Zantn:O
n=1
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B. Leibe

> Introduce positive Lagrange multipliers:

> Minimize Lagrangian (“primal form”)

N
1
L(w,b,a) = > wl® = " an {tn(w"x, +b) — 1}
n=1

OL
gw )T

Recap: SVM - Lagrangian Formulation

e Find hyperplane minimizingHwH2under the constraints

th(W X, +b)—1>0 Vn

a, >0 Vn

N
W = g AntnXn
n—=1

16



RWNTH
Recap: SVM - Primal Formulation

e Lagrangian primal form

N
1
L, = 5 [w]|* — Zan {t,(W'x, +b) — 1}
n=1

N
1
— 2_ ||WH2 o Zan {tny(xn) o 1}
n=1

e The solution of L, needs to fulfill the KKT conditions

» Necessary and sufficient conditions

KKT:
thy(x,) =1 = 0 f(x) >
A, {tny(xn)_l} = 0 AM(x) =
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Recap: SVM - Solution

e Solution for the hyperplane
~» Computed as a linear combination of the training examples

N
W = E antnXy,
n=1

- Sparse solution: a, # 0 only for some points, the support vectors
= Only the SVs actually influence the decision boundary!

» Compute b by averaging over all support vectors:

b= Nis Z t, — Z amtmxg;xn

nesS meS

18
B. Leibe



Recap: SVM - Support Vectors

e The training points for which a, > 0 are called
“support vectors”.

e Graphical interpretation:

~ The support vectors are the
points on the margin.

> They define the margin ¢
and thus the hyperplane. o W
®
= All other data points can -
be discarded! @ o

o I/I\4/Iargin

19

Image source: C. Burges, 1998
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RWNTH
Recap: SVM - Dual Formulation

 Improving the scaling behavior: rewrite L in a dual form

» Using the constraint Z a,t, = 0, we obtain R p—

n=1

| N N
L, = 5 [w]|? — Z antn W X, + Z ap,
n=1 n=1

20

Slide adapted from Bernt Schiele B. Leibe



Recap: SVM - Dual Formulation

| N N
L, = 5 [w]|* — Z antnW X, + Z anp,
n=1 n=1

N
OL
> Using the constraint w :Z antnX, , we obtain —_P_0

Oow

n=1

1 N N N
L, = 5 [w|? — Zantn Z amtmxglxn + Z an,
_ HWHZ Z Z U bt (X2 X, —I—Zan

n=1m=1
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Recap: SVM - Dual Formulation

L:%HWHZ ZZanamt ton (X- X, —I—Zan

n=1m=1

N
1 1
- Applying 5 [wr||?= inw and again using w :Z antnXnp
n=1

] NN
2—WTW =3 S: S: UnGmtntm (X X,)

n=1m=1

> Inserting this, we get the Wolfe dual

N 1 N N
= Z Ap — 5 Z Z anamtntm(xgzxn)
n=1

n=1m=1

Slide adapted from Bernt Schiele B. Leibe
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Recap: SVM - Dual Formulation

¢ Maximize

N | NN
Lgy(a) = Z an — 5 Sj Sj UnGmtntm (X X,,)
n=1

n=1m=1

under the conditions

IV
-

Vn

Qn,

N
E antn
n=1

|
-

e Comparison
> L, is equivalent to the primal form L , but only depends on a,,.
> L, scales with O(D?).
> L, scales with O(/\®) - in practice between O(N) and O(N?).

Slide adapted from Bernt Schiele B. Leibe
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RWTH
Recap: SVM for Non-Separable Data

e Slack variables
- One slack variable £, > o for each training data point.

e Interpretation
> &, = o for points that are on the correct side of the margin.
> &, = |t, — y(x,)| for all other points.

Point on decision
boundary: £, =1

&, > 1
® o
> We do not have to set the slack variables ourselves!
= They are jointly optimized together with w.

B. Leibe

Misclassified point:

24



RWTH
Recap: SVM - Non-Separable Data

e Separable data 1

5 Trade-off
> Minimize 5 HWH parameter!
 Non-separable data { N
~ Minimize 5 HWH2 an
o n=1
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RWNTH
Recap: SVM - New Primal Formulation

e New SVM Primal: Optimize

N

L o ||W||2 _|_CZ€TL Zan ny Xn T ]- +£n Z:u'ngn
E Const?amt Constraint
é tny(xn) >1-&, &, >0
g e KKT conditions
= KKT:
% An Z 0 Hn, Z 0 A 2 0
= an (tny(Xn) —1+ &) = 0 pnén = 0 (X) = 0
§
<

26
B. Leibe
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RWNTH
Recap: SVM - New Dual Formulation

e New SVM Dual: Maximize

N | NN
Lgy(a) = Z an — 5 Sj Sj UnGmtntm (X X,,)
n=1

n=1m=1

under the conditions
0 a, -

N
Zantn = 0
n=1

e This is again a quadratic programming problem
= Solve as before...

O This is all
that changed!

Slide adapted from Bernt Schiele B. Leibe
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Recap: Nonlinear SVMs

e General idea: The original input space can be mapped to
some higher-dimensional feature space where the
training set is separable:

"""
...
"""
"""
....
o
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Recap: The Kernel Trick

e Important observation
> ¢(x) only appears in the form of dot products ¢(x)"¢(y):

y(x) = wio(x)+b

N
— Z antnqb(xn)Tqb(X) - b
n=1

. Define a so-called kernel function k(x,y) = ¢(x)"o(y).

> Now, in place of the dot product, use the kernel instead:

N
y(x) = Z aptnk(Xn,X) + b
n=1

> The kernel function implicitly maps the data to the higher-
dimensional space (without having to compute ¢(x) explicitly)!
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Recap: SVMs with Kernels

e Using kernels
~ Applying the kernel trick is easy. Just replace every dot product
by a kernel function...
T
x'y — kxy)
> ..and we’re done.

» Instead of the raw input space, we’re now working in a higher-
dimensional (potentially infinite dimensional!) space, where the
data is more easily separable.

e Wait - does this always work?

> The kernel needs to define an implicit mapping
to a higher-dimensional feature space ¢(x).

> Kernel needs to fulfill Mercer’s condition
(— Lecture 4).
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Recap: Nonlinear SVM - Dual Formulation

¢ SVM Dual: Maximize

N
Ly(a) = Z Y Y U O tntmk (X, X5
n=1 n=1m=1

under the conditions

0- a,- C
N
Zantn = 0
n=1

e Classify new data points using
N

y(x) = Z aptnk(X,,x)+b

n=1

B. Leibe
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Summary: SVMs

e Properties
- Empirically, SVMs work very, very well.

- SVMs are currently among the best performers for a number of
classification tasks ranging from text to genomic data.

- SVMs can be applied to complex data types beyond feature
vectors (e.g. graphs, sequences, relational data) by designing
kernel functions for such data.

~» SVM techniques have been applied to a variety of other tasks

- e.g. SV Regression, One-class SVMs, ...

» The kernel trick has been used for a wide variety of

applications. It can be applied wherever dot products are in use
- e.g. Kernel PCA, kernel FLD, ...

- Good overview, software, and tutorials available on
http://www.kernel-machines.org/

34
B. Leibe


http://www.kernel-machines.org/
http://www.kernel-machines.org/
http://www.kernel-machines.org/
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You Can Try It At Home...

e Lots of SVM software available, e.g.

> svmlight (http://svmlight.joachims.org/)
- Command-line based interface
- Source code available (in C)
- Interfaces to Python, MATLAB, Perl, Java, DLL,...

> libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
- Library for inclusion with own code
- C++ and Java sources
- Interfaces to Python, R, MATLAB, Perl, Ruby, Weka, C+ .NET,...

> Both include fast training and evaluation algorithms, support for
multi-class SVMs, automated training and cross-validation, ...

= Easy to apply to your own problems!

_ 35
B. Leibe


http://svmlight.joachims.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Topics of This Lecture

e Recap: Support Vector Machines
> Motivation
> Primal form
> Dual form
> Slack variables
> Non-linear SVMs
~ Discussion & Analysis
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SVM - Analysis

e Traditional soft-margin formulation

N
. 1 2 “Maximize
m — (W C
. g WO

weRD | £, cR+ the margin”

subject to the constraints
) “Most points should

tay(xn) > 1-E&, be on the correct
side of the margin”

e Different way of looking at it
> We can reformulate the constraints into the objective function.

N
1 2
] —_— C ]._tn n
min, 3 NP+ O30 byt

L, regularizer “Hinge loss”
where [z], := max{0,z}.
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RWNTH
Error Functions (Loss Functions)

E(z) Ideal misclassification error

Not differentiable! S

=2 = % i "2 #n = tny(Xn)

> ldeal misclassification error function (black)
- This is what we want to approximate.
- Unfortunately, it is not differentiable.
- The gradient is zero for misclassified points.

= We cannot minimize it by gradient descent.
B. Leibe
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Image source: Bishop, 2006




Error Functions (Loss Functions)

Ideal misclassification error
Squared error

Sensitive to outliers!

Penalizes “too correct”
data points!

", #

. - 7
~32 1 0 = 2"

> Squared error used in Least-Squares Classification
- Very popular, leads to closed-form solutions.
- However, sensitive to outliers due to squared penalty.
- Penalizes “too correct” data points

= Generally does not lead to good classifiers.
B. Leibe
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RWNTH
Error Functions (Loss Functions)

E (2) Ideal misclassification error
Squared error
Hinge error

Robust to outliers!

Favors sparse
/ solutions!
' i
“Hinge error” used in SVMs

- Zero error for points outside the margin (z, > 1).
- Linearly increasing error for misclassified points (z, < 1).
= Leads to sparse solutions, not sensitive to outliers.

- Not differentiable around z, = 1 = Cannot be optimized directly. ,,
B. Leibe

Not differentiable! \ \

—2 -1 0
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SVM - Discussion

e SVM optimization function

N
1 2
] - O ]. tn n
IIEI%RS? 9 [w|* - ,,;_1:[ y(x )]_1-

N\ J N\ J
Y Y

L, regularizer Hinge loss

e Hinge loss enforces sparsity

> Only a subset of training data points actually influences the
decision boundary.

~ This is different from sparsity obtained through the regularizer!
There, only a subset of input dimensions are used.

> Unconstrained optimization, but non-differentiable function.
- Solve, e.g. by subgradient descent
» Currently most efficient: stochastic gradient descent
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RWTH
Outline of the Remaining Lectures

e We will generalize the SVM idea in several directions...

e Other Kernel methods
> Kernel PCA
> Kernel k-Means

e Other Large-Margin Learning formulations
> Support Vector Data Description (one-class SVMs)
> Support Vector Regression

e Structured Output Learning
> General loss functions
» General structured outputs
> Structured Output SVM
> Example: Multiclass SVM

B. Leibe
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Topics of This Lecture

e Other Kernel Methods
> Kernel PCA
> Kernel k-Means Clustering
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Recap: PCA

e PCA procedure
- Given samples x, € R, PCA finds the directions of maximal
covariance. Without loss of generality assume that 2., x, = O.

- The PCA directions e,,...,e  are 2

u;

the eigenvectors of the covariance = ’
matrix | ”
T
C = N Z Xn X,
n=1

sorted by their eigenvalue.

K
- We can express x,, in PCA space by F'(x,,) = Z<X”’ er)ex
k=1
( <Xn)e1> \
> Lower-dim. coordinate mapping: X, (Xn, €2) c RE
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Kernel-PCA

e Kernel-PCA procedure

- Given samples x, € &, kernel X' X X = R with an implicit
feature map ¢: X — H. Perform PCA in the Hilbert space .

> The kernel-PCA directions 2 "
e,,...,e, are the eigenvectors of the - ’
covariance operator ”
N
1
C'= 57 D $0xa)dxa)" .

sorted by their eigenvalue.

> Lower-dim. coordinate mapping: x,, —
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Kernel-PCA

e Kernel-PCA procedure

- Given samples x, € &, kernel X' X X = R with an implicit
feature map ¢: X — H. Perform PCA in the Hilbert space .

» Equivalently, we can use the 2

eigenvectors e', and eigenvalues - '
)\, of the kernel matrix ”
K = (<¢(Xm)7 (b(xn)))m,n:l,...,N

— (k(xma Xn))m,nzl,...,N

u;

Z1

» Coordinate mapping: X, — (\/Alell, veey \/ AKGIK)
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RWTH
Example: Image Superresolution

trnngpoceare o SN
~ Collect high-res face images '
> Use KPCA with RBF-kernel PCA r+4 Eﬂﬂﬂu
to learn non-linear subspaces ,
- B
e For new low-res image: -Hnu
~ Scale to target high resolution 230 N - :
- Project to closest point in — "4ﬂﬂnﬂﬂ
face subspace | |
o f oy
- A
Kim, Jung, Kim, Face Recognition using Original . “Q‘ .-
Kernel Principal Component Analysis, + 4

Signal Processing Letters, 2002. Reconstruction in » dimensions
47
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Kernel k-Means Clustering

e Kernel PCA is more than just non-linear versions of PCA
- PCA maps R? to R, e.g., to remove noise dimensions.

- Kernel-PCA maps X — R<, so it provides a vectorial
representation of non-vectorial data.

= We can apply algorithms that only work in vector spaces to data
that is not in a vector representation.

e Example: k-Means clustering
- Given x,,...,x, € X,
> Choose a kernel function & : X x X — R.
. Apply kernel-PCA to obtain vectorial v,,...,v, € R<.
. Cluster v ,...,v, € R using K-Means.

= X4,...,X, are clustered based on the similarity defined by k.
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Example: Unsupervised Object Categorization

e Automatically group images that show similar objects
> Represent images by bag-of-word histograms
» Perform Kernel k-Means Clustering

= Observation: Clusters get better if we use a good image kernel
(e.g., x?) instead of plain k-Means (linear kernel).

T. Tuytelaars, C. Lampert, M. Blaschko, W. Buntine, Unsupervised object discovery:

a comparison, IJCV, 2009.]

Slide credit: Christoph Lampert B. Leibe
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RO INVERSITY
References and Further Reading

* More information on SVMs can be found in Chapter 7.1
of Bishop’s book. You can also look at Scholkopf & Smola
(some chapters available online).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Learning with Kernels Springer, 2006

B. Scholkopf, A. Smola

Learning with Kernels

MIT Press, 2002
http://www.learning-with-kernels.org/
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