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Announcement 

• Exercise sheet 3 will be made available tonight 

 Dirichlet Process Mixture Models 

 Gibbs Sampling 

 Finite Mixtures 

 DPMM Sampling 

2 
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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Kernels (Kernel Ridge Regression) 

 Gaussian Processes 
 

• Bayesian Estimation & Bayesian Non-Parametrics  

 Prob. Distributions, Approx. Inference 

 Mixture Models & EM 

 Dirichlet Processes 

 Latent Factor Models  

 Beta Processes 
 

• SVMs and Structured Output Learning 

 SV Regression, SVDD 

 Large-margin Learning 
B. Leibe 
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Topics of This Lecture 

• Latent Factor Models 
 Recap 

 

• Towards Infinite Latent Factor Models 
 General formulation 

 Priors on binary matrices 

 Finite latent feature model 

 Left-ordered binary matrices 

 Indian Buffet Process 
 

• Beta Processes 
 Properties 

 Stick-Breaking construction 

 Efficient Inference 

 Applications 

4 
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Recap: Latent Factor Models 

• Mixture Models 

 Assume that each observation was generated by exactly one of 

K components. 

 The uncertainty is just about which component is responsible. 

 

• Latent Factor Models 

 Each observation is influenced by each of K components  

(factors or features) in a different way. 

 Sparse factor models: only a small subset of factors is active for 

each observation. 
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Recap: Principal Component Analysis 

• Find the projection that maximizes the variance  

 Covariance matrix of the data 

 

 
 

 Optimal linear projection into a K-dimensional space is given by 

the first K eigenvectors u1,...,uK of S. 
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Recap: PCA for Whitening 

 

 

 

 

 

 

 
 

• Whitening procedure 

 Define for each data point the transformed value as 

 

 

 The transformed set {yn} has zero mean and unit covariance. 
7 

B. Leibe Image source: C.M. Bishop 

Original data Principal axes Whitened data 
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Recap: Probabilistic PCA 

• Graphical Model 

 Introduce an explicit latent variable z corresponding to the 

principal component subspace. 

 Define a Gaussian prior distribution 

 
 

 Conditional distribution also Gaussian 

 
 

 Because of this linear-Gaussian model,  

the marginal distribution will also be Gaussian 

 

 

 Posterior distribution (again Gaussian) 

 

8 
B. Leibe Image source: C.M. Bishop 
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Recap: Interpretation of Probabilistic PCA 

• Analysis 

 Marginal distribution: 
 

 Covariance matrix: 
 

 The columns of W define the principal subspace of PCA. 
 

 Maximum Likelihood estimates 

 

 

 

 

 
 

 The model correctly captures the variance of the data along the 

principal axes and approximates the variance in all remaining 

directions by ¾2, the average of the discarded eigenvalues.  
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Recap: Examples of Latent Factor Models 

• Probabilistic PCA (pPCA) 

 Linear-Gaussian model with isotropic covariance 

 
 

• Factor Analysis (FA) 

 Same linear-Gaussian model, but with diagonal covariance 

 
 

• Independent Component Analysis (ICA) 

 Observed variables are related linearly to the latent variables, 

but the latent distribution is non-Gaussian. 

 Assumption: latent variables zj are independent. 
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Topics of This Lecture 

• Latent Factor Models 
 Recap 

 

• Towards Infinite Latent Factor Models 
 General formulation 

 Priors on binary matrices 

 Finite latent feature model 

 Left-ordered binary matrices 

 Indian Buffet Process 
 

• Beta Processes 
 Properties 

 Stick-Breaking construction 

 Efficient Inference 

 Applications 
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Recap: General Latent Factor Models 

• General formulation 

 Assume that the data are generated by noisy weighted 

combination of latent factors 

 
 

 Mixture Models: DPs enforce that the main part of the 

probability mass is concentrated on few cluster components. 

 Latent Factor Models: enforce that each object is represented 

by a sparse subset of an unbounded number of features. 
 

• Incorporating sparsity 

 Decompose F into the product of two components: F = ZW, 

where  is the Hadamard product (element-wise product). 

– zmk is a binary mask variable indicating whether factor k is “on”. 

– wmk is a continuous weight variable. 

 Enforce sparsity by restricting the non-zero entries in Z. 
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Priors on Latent Factor Models 

• Defining suitable priors 

 We will focus on defining a prior on Z, since the effective 

dimensionality of the latent feature model is determined by Z. 

 Assuming that Z is sparse, we can define a prior for infinite 

latent feature models by defining a distribution over infinite 

binary matrices. 
 

• Desiderata for such a distribution 

 Objects should be exchangeable. 

 Inference should be tractable. 
 

• Procedure 

 Start with a model that assumes a finite number of features and 

consider the limit as this number approaches infinity. 

13 
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A Finite Feature Model 

• Modeling assumptions 

 We have N objects and K features. 

 Binary variables znk indicates that object n possesses feature k. 

 Each object possesses feature k with probability ¼k and features 

are generated independently. 
 

 The probability of a matrix Z given ¼ = {¼1,...,¼k} is given by a 

Binomial distribution 

 

 

 

where                             is the number of objects possessing 

feature k. 
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A Finite Feature Model 

• Defining a prior 

 Define a prior on ¼ by assuming that each ¼k follows a Beta 

distribution (conjugate to the binomial): 

 

 

 

 where B(r,s) is the beta function 

 

 

 

 We set r = ®/K and s = 1, so this equation becomes 

15 
B. Leibe 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

A Finite Feature Model 

 

 

 

 
 

• Resulting probability model 

 Finite Beta-Bernoulli model 

 

 

 

 

 Each znk is independent of all other assignments conditioned on 

¼k and the ¼k are generated independently. 
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A Finite Feature Model 

• We can now marginalize out ¼  

 Marginal probability of the matrix Z: 

 

 

 

 

 

 

 

 
 

 This distribution depends only on the counts mk . 

 It is therefore exchangeable. 
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Important Property 

• Bound on the number of entries 

 Expectation of the number of non-zero entries in Z: 

 

 

 

 

 

 

 

 

 

 
 

 For any K, the expectation of this number is bounded by N®. 
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Topics of This Lecture 

• Latent Factor Models 
 Recap 

 

• Towards Infinite Latent Factor Models 
 General formulation 

 Priors on binary matrices 

 Finite latent feature model 

 Left-ordered binary matrices 

 Indian Buffet Process 
 

• Beta Processes 
 Properties 

 Stick-Breaking construction 

 Efficient Inference 

 Applications 
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Equivalence Class of Binary Matrices 

 

 

 

 

 
 

• Equivalence class of binary matrices 

 Define a function lof(Z) that maps binary matrices into left-

ordered binary matrices by ordering the columns of Z by the 

magnitude of the binary number expressed by that column. 

 There is a unique left-ordered form for every binary matrix. 
 

 Two matrices Y and Z are equivalent iff lof(Y) = lof(Z). 

 The lof-equivalence class of Z is denoted [Z]. 

20 
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Equivalence Class of Binary Matrices 

• What is the cardinality of [Z]? 

 Columns of a binary matrix are not guaranteed to be unique: 

 Since an object can possess multiple features, it is possible for 

two features to be possessed by exactly the same set of objects. 

 The cardinality of [Z] is therefore reduced if Z contains 

identical columns 

 

 

 
 

where Kh is the number of columns with binary number h. 
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Towards Infinite Feature Models 

• Taking the limit K ! 1  

 Probability of a lof-equivalence class of binary matrices 

 

 

 

 Reordering the columns such that mk > 0 if k · K+, we can 

derive (after several intermediate steps) 

 

 

 
 

 where HN is the Nth harmonic number HN = N
j=1 1/j. 
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Topics of This Lecture 

• Latent Factor Models 
 Recap 

 

• Towards Infinite Latent Factor Models 
 General formulation 

 Priors on binary matrices 

 Finite latent feature model 

 Left-ordered binary matrices 

 Indian Buffet Process 
 

• Beta Processes 
 Properties 

 Stick-Breaking construction 

 Efficient Inference 

 Applications 
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The Indian Buffet Process 

 

 

 

 

 

 

 
 

 

“Many Indian restaurants in London  

offer lunchtime buffets with an 

apparently infinite number of dishes” 

                                   [Zoubin Ghahramani] 
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The Indian Buffet Process 

 

 

 

 

• Analogy to Chinese Restaurant Process 

 Visualize feature assignment as a sequential process of 

customers sampling dishes from an (infinitely long) buffet 

 1st customer starts at the left of the buffet, and takes a serving 

from each dish, stopping after a Poisson() number of dishes as 

her plate becomes overburdened. 

 The nth customer moves along the buffet, sampling dishes in 

proportion to their popularity, serving himself with probability 

mk/n, and trying a Poisson(®/n) number of new dishes. 

 The customer-dish matrix is our feature matrix, Z. 
25 
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The Indian Buffet Process (IBP) 

 

 

 

 

 

 

 

• Properties of the IBP 

 Generative process to create samples from an infinite latent 

feature model. 

 The IBP is exchangeable, up to a permutation of the order with 

which dishes are listed in the feature matrix. 

 The number of features sampled at least once is O(® log N). 
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to be continued in 2013 
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References and Further Reading 

• Tutorial papers for infinite latent factor models  

 A good introduction to the topic 

– Z. Ghahramani, T.L. Griffiths, P. Sollich, “Bayesian Nonparametric 

Latent Feature Models“, Bayesian Statistics, 2006. 
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