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Announcement

e Exercise sheet 3 will be made available tonight
> Dirichlet Process Mixture Models
~ Gibbs Sampling
> Finite Mixtures
- DPMM Sampling
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RWTH
This Lecture: Advanced Machine Learning

o Regression Approaches f X —- R
» Linear Regression 1 1 v | e
. Regularization (Ridge, Lasso) \
> Kernels (Kernel Ridge Regression)

> @Gaussian Processes

e Bayesian Estimation & Bayesian Non-Parametrics
> Prob. Distributions, Approx. Inference (= __ ) ;

e
S

Y
N

> Mixture Models & EM o\ Fgue
> Dirichlet Processes Xn M

~ Latent Factor Models W
> Beta Processes

e SVMs and Structured Output Learning
~ SV Regression, SVDD f : X — y

> Large-margin Learning
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Topics of This Lecture

e Latent Factor Models
> Recap

e Towards Infinite Latent Factor Models
> General formulation
~ Priors on binary matrices
> Finite latent feature model
» Left-ordered binary matrices
> Indian Buffet Process
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Recap: Latent Factor Models

e Mixture Models

> Assume that each observation was generated by exactly one of
K components.

~ The uncertainty is just about which component is responsible.

e Latent Factor Models

» Each observation is influenced by each of K components
(factors or features) in a different way.

~ Sparse factor models: only a small subset of factors is active for
each observation.
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RWNTH
Recap: Principal Component Analysis

e Find the projection that maximizes the variance
> Covariance matrix of the data

1 ) o
S = N;(Xn—x)(xn—x)

» Optimal linear projection into a K-dimensional space is given by
the first K eigenvectors u,,...,u, of S.

Yn = Ul..KXn

L2
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RO INVERSITY
Recap: PCA for Whitening

100 ¢
90 t
80t
70t
60 |
S50t

40 ¢

Original data Principal axes Whitened data

e Whitening procedure
- Define for each data point the transformed value as
L = diag{\;
VYn = L_l/zUT(Xn — }_() g{ z}
U = [111, ceey uD]
= The transformed set {y,} has zero mean and unit covariance.
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Recap: Probabilistic PCA

e Graphical Model

> Introduce an explicit latent variable z corresponding to the
principal component subspace. 2z, B

- Define a Gaussian prior distribution 2
p(z) — N(Z‘OvI) \
> Conditional distribution also Gaussian
p(x|z) = N(x|Wz + u, 0°1)

Hoo——ro

J 3 L3 N
» Because of this linear-Gaussian model, , J

the marginal distribution will also be Gaussian

p(x) = /p(x|z)p(z)dz = N(x|u, C), C=WW! +571

> Posterior distribution (again Gaussian)
p(z[x) = N (2M7 W' (x — p), M), M=W'W +0°1

8

Image source: C.M. Bishop
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RWTH
Recap: Interpretation of Probabilistic PCA

e Analysis
. Marginal distribution: p(x) = N (x|u, C),
> Covariance matrix: C=WW! ++21

= The columns of W define the principal subspace of PCA.

> Maximum Likelihood estimates
My, = X

W = Uk (Lg — 0?I)Y/2R

1 D
2
i=K+1
= The model correctly captures the variance of the data along the
principal axes and approximates the variance in all remaining

directions by o2, the average of the discarded eigenvalues.
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RWTH
Recap: Examples of Latent Factor Models

e Probabilistic PCA (pPCA)

~ Linear-Gaussian model with isotropic covariance

p(x|z) = N(x|Wz + p, 0°I)
e Factor Analysis (FA)

> Same linear-Gaussian model, but with diagonal covariance

p(x|z) = N(x|Wz+ u, ¥) ¥ = diag{¢; }

e Independent Component Analysis (ICA)

~ Observed variables are related linearly to the latent variables,
but the latent distribution is non-Gaussian.

- Assumption: latent variables z; are independent.
K

p(z) = [[ p(=)

j=1

B. Leibe
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Topics of This Lecture

e Towards Infinite Latent Factor Models
> General formulation
~ Priors on binary matrices
> Finite latent feature model
» Left-ordered binary matrices
> Indian Buffet Process

B. Leibe

11



RWTH
Recap: General Latent Factor Models

e General formulation

~ Assume that the data are generated by noisy weighted
combination of latent factors

x, = Fy, +€
~ Mixture Models: DPs enforce that the main part of the
probability mass is concentrated on few cluster components.

~ Latent Factor Models: enforce that each object is represented
by a sparse subset of an unbounded number of features.

e Incorporating sparsity
- Decompose F into the product of two components: F = Z&®W,
where & is the Hadamard product (element-wise product).

— 2,,; is a binary mask variable indicating whether factor £ is “on”.
— w,,,. is a continuous weight variable.

= Enforce sparsity by restricting the non-zero entries in Z. 2
B. Leibe
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Priors on Latent Factor Models

e Defining suitable priors

~ We will focus on defining a prior on Z, since the effective
dimensionality of the latent feature model is determined by Z.

» Assuming that Z is sparse, we can define a prior for infinite

latent feature models by defining a distribution over infinite
binary matrices.

e Desiderata for such a distribution
» Objects should be exchangeable.
> Inference should be tractable.

e Procedure

> Start with a model that assumes a finite number of features and
consider the limit as this number approaches infinity.

13
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A Finite Feature Model

e Modeling assumptions
- We have /N objects and K features.
- Binary variables z , indicates that object n possesses feature k.

- Each object possesses feature k£ with probability 7, and features
are generated independently.

= The probability of a matrix Z given m = {m,...,m.} is given by a
Binomial distribution
K

Z|7T H Hp an|7Tk H 1 _7Tk N_mk

where m; = Zgzl zZnk 1S the number of objects possessing
feature k.

(9|
-
.
Q
P
=
(@))
.E
C
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

14

B. Leibe



(9|
-
.
Q
P
=
(@))
IE
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

A Finite Feature Model

e Defining a prior
- Define a prior on 7 by assuming that each 7, follows a Beta
distribution (conjugate to the binomial):

7T£_1(1 — )1
B(r,s)

p(mr) = Beta(m; 7, 5) =

where B(r,s) is the beta function
1
['(r)T
B(r, s) = / A1 (1 )y, = SOLE)
0

I'(r+s)

- Wesetr = a/K and s = 1, so this equation becomes
Q I'(%) K

1) =
K’ ) 'l+%) «o

B. Leibe
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A Finite Feature Model

(D),

e Resulting probability model
» Finite Beta-Bernoulli model
«

Tl ~ Beta(E,l)
Znk|Tk ~ Bernoulli(my)

- Each z,, is independent of all other assignments conditioned on
7, and the 7, are generated independently.
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A Finite Feature Model

e We can now marginalize out =
~ Marginal probability of the matrix Z:

p(Z) = Hf(H p(znkﬂ:)) p(mr)dmy,

_ H B(my + 7, N —my + 1) conjugacy b/w

B B(%,1) binomial and beta
k=1

B ﬁ LD (my, + 2)T(N — my + 1)

B i I(N+1+ %)

= This distribution depends only on the counts m,, .
= It is therefore exchangeable.

17
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Important Property

e Bound on the number of entries
> Expectation of the number of non-zero entries in Z:

N K (columns of
£ [1Tzk1} = K Zznk = KE [1Tzk] Z are in-
n=1 k=1 dependent)

= K

ME

I
|

n

N 1
Elznk] = KZ/O TP (7 ) A7y
n=1

Expectation of a Beta(r,s)
random variable is 7/(r+s)

= _ Na
1+ & 1+a/K

= KN

= For any K, the expectation of this number is bounded by Na.

18
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Topics of This Lecture

e Towards Infinite Latent Factor Models
> General formulation
~ Priors on binary matrices
> Finite latent feature model
» Left-ordered binary matrices
> Indian Buffet Process

B. Leibe

19



RWTH
Equivalence Class of Binary Matrices

h

e Equivalence class of binary matrices

- Define a function lof(Z) that maps binary matrices into left-
ordered binary matrices by ordering the columns of Z by the
magnitude of the binary number expressed by that column.

~ There is a unique left-ordered form for every binary matrix.

- Two matrices Y and Z are equivalent iff lof(Y) = lof(Z).
- The lof-equivalence class of Z is denoted |Z].
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RWTH
Equivalence Class of Binary Matrices

e What is the cardinality of |Z|?

» Columns of a binary matrix are not guaranteed to be unique:

~ Since an object can possess multiple features, it is possible for
two features to be possessed by exactly the same set of objects.

- The cardinality of [Z] is therefore reduced if Z contains
identical columns

( K ) K
Ko, s Ky 2 TR

where K, is the number of columns with binary number 5.

21
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RWNTH
Towards Infinite Feature Models

e Taking the limit K — oo

~ Probability of a lof-equivalence class of binary matrices
L 2T (my, + 2)T(N —my, + 1)

Zp(z): N _1 HK N—I—l—l—%)

Z<[Z] h=0 Kl 2

- Reordering the columns such that m;, > 0 if £ < K, we can
derive (after several intermediate steps)

Ky

Y N — mk)'( k—l)'

(
lim p(|Z]) = — exp{—aHy}
e r o K lg N

- where H) is the N*" harmonic number Hy =>",_, 1/j.

B. Leibe
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Topics of This Lecture

e Towards Infinite Latent Factor Models
> General formulation
~ Priors on binary matrices
> Finite latent feature model
» Left-ordered binary matrices
> Indian Buffet Process

B. Leibe
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Dishes
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offer lunchtime buffets with an
apparently infinite number of dishes”
B. Leibe
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“Many Indian restaurants in London

The Indian Buffet Process
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The Indian Buffet Process

Dishes

"

=

E

;

o

. Customers
1

e Analogy to Chinese Restaurant Process

» Visualize feature assighment as a sequential process of
customers sampling dishes from an (infinitely long) buffet

» 15t customer starts at the left of the buffet, and takes a serving
from each dish, stopping after a Poisson() number of dishes as
her plate becomes overburdened.

» The nt customer moves along the buffet, sampling dishes in

proportion to their popularity, serving himself with probability
m,/n, and trying a Poisson(«a/n) number of new dishes.
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> The customer-dish matrix is our feature matrix, Z.
B. Leibe
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Dishes

[T T T T TT T T T TT M TTT]

[ [ [ DO [ [ W [ [[[TTTTTTITT]
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00000000000
11111111111111111111

SI9Wolsn)

which dishes are listed in the feature matrix.
- The number of features sampled at least once is O(«a log N).

feature model.
> The IBP is exchangeable, up to a permutation of the order with

> Generative process to create samples from an infinite latent

The Indian Buffet Process (IBP)

e Properties of the IBP

Z1 . 19JUIp Buluaea] aulyoey pasueApy
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é to be continued in 2013
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RWNTH
References and Further Reading

e Tutorial papers for infinite latent factor models

> A good introduction to the topic
- Z. Ghahramani, T.L. Griffiths, P. Sollich, “Bayesian Nonparametric

Latent Feature Models“, Bayesian Statistics, 2006.

B. Leibe
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