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RWTH
This Lecture: Advanced Machine Learning

o Regression Approaches f X —- R
» Linear Regression 1 1 v | e
. Regularization (Ridge, Lasso) \
> Kernels (Kernel Ridge Regression)

> @Gaussian Processes

e Bayesian Estimation & Bayesian Non-Parametrics
> Prob. Distributions, Approx. Inference (= __ ) ;

e
S

Y
N

> Mixture Models & EM o\ Fgue
> Dirichlet Processes Xn M

~ Latent Factor Models W
> Beta Processes

e SVMs and Structured Output Learning
~ SV Regression, SVDD f : X — y

> Large-margin Learning
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Topics of This Lecture

e Dirichlet Processes
> Recap: Definition
> Dirichlet Process Mixture Models
> Pélya Urn scheme
> Chinese Restaurant Process
~ Stick-Breaking construction

e Applying DPMMs
» Efficient sampling
~ Applications

(9|
—
.
Q
P
=
(@))
IE
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
(1
3
<

B. Leibe



Recap: Dirichlet Processes

e Gaussian Processes
~ Gaussian Processes (GP) define a distribution over functions

f ~ GP(‘M) C)

where i is the mean function and c is the covariance function.
= We can think of GPs as “infinite-dimensional” Gaussians.

e Dirichlet Processes

> Dirichlet Processes (DP) define a distribution over distributions
(a measure on measures)

G ~ DP(:|Gy, a)

- Where a>0 is a scaling parameter and G|, is the base measure.

= We can think of DPs as “infinite-dimensional” Dirichlet
distributions.
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Slide credit: Zoubin Gharamani B. Leibe
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RWTH
Sidenote: Bayesian Nonparametric Methods

e Bayesian Nonparametric Methods (BNPs)

~ Both Gaussian Processes and Dirichlet Processes are examples of
BNPs.

e What does that mean?

> Nonparametric: does NOT mean there are no parameters!

> It means (very roughly) that the nhumber of parameters grows
with the number of data points.

e Parametric methods:
> Get data — build model — predict using model

e Nonparametric methods
» Get data — predict directly based on data

B. Leibe



Recap: Dirichlet Processes

e Definition [Ferguson, 1973]

- Let © be a measurable space, G, be a probability measure on O,
and « a positive real number.

- Forall (4;,...,A) finite partitions of O,

G ~ DP(-|Gy, @)

means that

(G(Al), C ey G(AK)) ~ DiI‘(O{Go(Al), c ey O{Go(AK))

e Translation

~ A random probability distribution GG on ©® is drawn from a
Dirichlet Process if its measure on every finite partition follows
a Dirichlet distribution.
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Recap: Dirichlet Processes

e Important property [Blackwell]

- Draws from a DP will always place all their mass on a countable
set of points, the so-called atoms §,,.

G () = im(sgk (9) im —1

where §,, is a Dirac delta at 6., and 0, ~ G,(-).

= Samples from DP are discrete with probability one.
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Recap: Dirichlet Processes

G ~ DP(G(), Oé)

e Consider a DP with a Gaussian as base measure G,
> G, is continuous, so the probability that any two samples are
equal is precisely zero.

- However, (G is a discrete distribution, made up of a countably
infinite number of point masses.

= There is always a non-zero probability of two samples colliding.
=> This is what allows us to use DPs for clustering!
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Slide adapted from Khalid El-Arini B. Leibe Image source: Khalid El-Arini
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RWTH
Recap: Dirichlet Process Properties

e Sampling
> Since (G is a probability measure, we can draw samples from it
G ~ DP(G(), Oé)
B1,....08|G ~ G

e Posterior of G given observations 6,,...,0,?

> The usual Dirichlet-multinomial conjugacy carries over to the
nonparametric DP as well.

= Posterior is again a DP.

N
G|91, cery HN ~ DP (a + N’ OfG() + anl 59n)

a+ N

Slide adapted from Yee Whye Teh B. Leibe
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Existence of Dirichlet Processes

e Summary so far
» A probability measure is a function from subsets of a space ®
to [0, 1] satisfying certain properties.
- A DP is a distribution over probability measures such that
marginals on finite partitions are Dirichlet distributed.

e How do we know that such an object exists?

» Kolmogorov Consistency Theorem: If we can prescribe consistent
finite dimensional distributions, then a distribution over
functions exists.

~ De Finetti’s Theorem: If we have an infinite exchangeable
sequence of random variables, then a distribution over measures
exists making them independent.

= Pélya’s urn, Chinese Restaurant Process
~ Stick-breaking Construction: just construct it.
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Topics of This Lecture

e Dirichlet Processes
> Recap: Definition
> Dirichlet Process Mixture Models
> Pélya Urn scheme
> Chinese Restaurant Process
~ Stick-Breaking construction
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RWNTH
Dirichlet Process Mixture Models

e During this lecture, we will use
the following two forms for DPMMs...

Go
| 0 (@
| l |
.

: @ g

£

3 v *

1 @& e

S

S N N

k5

2 “Indicator variable “Distributional form”
g representation”

<

16

B. Leibe Image sources: Yee Whye The, Kurt Miller



RWNTH
Dirichlet Process Mixture Models

) @
|
)

|
+

/ o0

@/

N

e Indicator variable representation
> Form of an infinite mixture model
> The DP is implicit through the choice of priors

» We will use this form whenever we want to make the assignment
of points to clusters explicit (= use for clustering).
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RWNTH
Dirichlet Process Mixture Models

Go _/L Base distribution G|

l Infinite discrete
o — | h ‘ distribution on O,
© defines the clusters

l
Parameters of the
cluster that gene-
rates x,
@ " N\_ Likelihood of x,
N given the cluster

e Distributional form
» Explicit representation of the DP through the node G.

> Useful when we want to use the DPMM’s predictive distribution.
18

Image sources: Yee Whye The
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Topics of This Lecture

e Dirichlet Processes
> Recap: Definition
> Dirichlet Process Mixture Models
> Pélya Urn scheme
> Chinese Restaurant Process
~ Stick-Breaking construction
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RWNTH
Recap: Polya’s Urns [Blackwell & MacQueen, 1973]

e Can we sample observations without constructing G?
G ~/ DP(GO, Oé) 9_n ~ G

e Yes, by a variation of the classical balls-in-urns analogy

- Assume that G5, is a distribution over colors, and that each 0,
represents the color of a single ball placed in the urn.

-~ Start with an empty urn. Repeat for [V steps:

1. With probability proportional to a, draw 0, ~ G|,
and add a ball of that color to the urn.

2. With probability proportional to n — 1 (i.e., the
number of balls currently in the urn), pick a ball
at random from the urn. Record its color as 0,

and return the ball into the urn, along with a
new one of the same color.
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Polya’s Urns: Discussion

e Pdélya Urn scheme
~ Simple generative process for the predictive distribution of a DP

. Consider a set of N observationsd, ~ G taking K
distinct values {6, }2* .. The predictive distribution
of the next observation is then a (G)

aH () + 37, N,6(6,6;)

N—-1+4+a« @
(%)

N

p(Q_N — 9|9_1:N—17 x, H) —

e Remarks

> This procedure can be used to sample observations from a DP
without explicitly constructing the underlying mixture.

= DPs lead to simple predictive distributions that can be evaluated
by caching the nhumber of previous observations taking each
distinct value.
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RWNTH
De Finetti’s Theorem [De Finetti, 1935]

e Theorem

» For any infinitely exchangeable sequence of random variables
{x}>, x, € X, there exists some space ® of probability
measures and corresponding distribution P(6) such that the
joint probability of any N observations has a mixture
representation

p(xl,XQ,...,XN):/@Hp(xn\H)dP(Q)

e Interpretation

» |If you assert exchangeability, it is reasonable to act as if there is
an underlying parameter, there is a prior on this parameter, and
the data are i.i.d. given that parameter.

> In order for this to work, we need to allow 6 to range over
measures, in which case P(0) is a distribution over measures.

- As we know, the Dirichlet Process is a distribution on measures!
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Polya Urn Scheme

e Existence proof for DP
~ Starting with a DP, we constructed Pélya’s urn scheme.
~ The reverse is possible using De Finetti’s theorem:

- Since the 0, are i.i.d. ~ G, their joint distribution is invariant
to permutations, thus 0,, 0,,... are exchangeable.

» Thus a distribution over measures must exist making them i.i.d.

> This is the DP.

e We have just (informally) proven that DPs exist
> Hooray!
> Now, let’s move on to see how we can use them...

Slide adapted from Yee Whye Teh B. Leibe
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Poélya urns describe the
distribution of 6 when G——>
is marginalized out
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Topics of This Lecture

e Dirichlet Processes
> Recap: Definition
> Dirichlet Process Mixture Models
> Pélya Urn scheme
> Chinese Restaurant Process
~ Stick-Breaking construction
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Sidenote on Partitions

e Problem with partitions

N g e gt P
- If our goal is clustering, the output groupingis - / - \.
defined by an assignment of indicator variables “~ 1l: =\~
2 o Mult (7 N s PehAwA
A " () w ~ Dir(—,...,—)
:§ Zn ~ Cat(ﬂ') K K .‘. .’. .’. .‘. ...
| A e S
= » The number of ways of assigning /V data points _.. ... . TS
m ° ° . . =
£ to K mixtures is K%, .
§ . If K > N, this is much larger than the number
@ of ways of partitioning the data! O
= o ! \ '
8 -.. T a.-
= . Example: N = 5: 52 partitions vs. 55 = 3125 RPN ®
@
§ = Need representation that is invariant to relabeling!

' 26
Slide credit: Erik Sudderth B. Leibe Image source: Wikipedia




RWNTH
Chinese Restaurant Process (CRP)

e How can DPs support clustering?

e Chinese Restaurant Process

» Visualize clustering as a sequential process of customers sitting
at tables in an (infinitely large) restaurant.

Customers = observed data to be clustered
Tables = distinct blocks of partition, or clusters

> This will help us see the clustering effect of DPs explicitly

e Relation to the clustering problem

> We typically don’t know the number of clusters and want to
learn it from data

~ CRPs address this problem by assuming that there is an infinite
number of latent clusters, but that only a finite number of them
is used to generate the observed data.
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RWNTH
Chinese Restaurant Process (CRP)

e Procedure

> Imagine a Chinese restaurant with an infinite number of tables,
each of which can seat an infinite number of customers.

> The 15t customer enters and sits at the first table.
> The N customer enters and sits at table

N
k  with prob N _ 1k+a fork=1,....K
) «
| K41 with prob N_1+a (new table)

where N, is the number of customers already sitting at table k.

e Remark

» Metaphor was motivated by the seemingly infinite seating
capability of Chinese restaurants in San Francisco...
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RWTH
Chinese Restaurant Process (CRP)

e Visualization
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R\WNTH
Chinese Restaurant Process (CRP)

O~P O~ &

g o o-
G~> GO~ ©

o o-
O~ G~ © &
o v o-

e Resulting conditional distribution

K
1 _
p(zy = 2|21, ... ZN 1, ) = N_1:a E Nio(z, k) + aé(z,k))
k=1 30

Slide adapted from Erik Sudderth B. Leibe Image source: Erik Sudderth
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RWTH
Relationship between CRPs and DPs

e Discussion
> DPis a distribution over distributions.

~ DP results in discrete distributions, so if you draw NV points, you
are likely to get repeated values.

- A DP therefore induces a partitioning of the [NV points.
> The CRP is the corresponding distribution over partitions.

- We can easily get back from the CRP to the Pélya urn scheme by
the following extension:

- When the first customer sits down at an empty table, he
independently chooses a dish 6, for the entire table from a prior

distribution G,,.

G~> O~ @
joRCCE

- Dish = parameters of the cluster
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R\WNTH
Chinese Restaurant Process (CRP)

a=30,d=0
200 | |
150-
o "i I
g100
s
ki
," Mr& —w.-w At B ”ﬁq s ;’{
0.._._ -mﬂﬁ | :ﬂ? i
0

4000 6000 8000 1 0000
customer

e The CRP exhibits the clustering property of the DP.

» Rich-gets-richer effect implies small number of large clusters.

- Expected number of clusters is K = O(a log N).

Slide credit: Yee Whye Teh B. Leibe
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CRPs & Exchangeable Partitions

K
1 _
plzy = 2|21, ...,2Nv_1, ) = N ( E Nid(z, k) + ozé(z,k))

e Closer analysis
~ Consider the probability of a certain seating arrangement:

p(Zl,...,ZN‘Od) — p(ZﬂO&)p(ZQ‘Zl,Q)--.p(ZN‘ZN_l,.-.,Zl,Of)
_ 1) aKﬁF(Nk)
(N+a) -

> Derivation of the terms .
First customer to

a sit at each table
1-2--- (N —1)! = I'(Ny) Other customers
' joining each table
1 1 o 1 F(a) Normalization

l+a 24a N-1+a ['(N + «) constants
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CRPs & Exchangeable Partitions

e Probability of a seating arrangement

p(Zl,---,ZN‘Oé) = F(]I;[(i)a)aKlgF(Nk)

e Exchangeability property

» The probability of a seating arrangement of /V customers is
independent of the order they enter the restaurant!
> The CRP is thus a prior on infinitely exchangeable partitions.

~ (Definition exchangeability: The joint probability underlying the
data is invariant to permutation.)

e Why is this of importance?
> Two reasons...

- 34
Slide adapted from Erik Sudderth B. Leibe



Reason 1: De Finetti’s Theorem

e Putting all of this together...

~ De Finetti’s theorem tells us that the CRP has an underlying
mixture distribution with a prior distribution over measures.

> The Dirichlet Process is the De Finetti mixing distribution for the

CRP.
e Graphical model visualization Go /L
> This means, when we integrate out
GG, we get the CRP: .
: N “ @) | ,
p61,...05) = [T 6,/G)AP(G)
n=1

= If the DP is the prior on (G, then the

CRP defines how points are assigned @ DaN
to clusters when we integrate out G. N
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Reason 2: Efficient Inference

e Taking advantage of exchangeability...

> In clustering applications, we are ultimately interested in the
cluster assignments z,,...,zy.

» Equivalent question in the CRP: Where should customer n sit,
conditioned on the seating choices of all the other customers?

- This is easy when customer 7 is the last customer to arrive:

K
1 _
p(zny = 2|21, .., ZN 1, Q) = ( E Nyo(z, k) + a5(z,k))

N -1+« —

- (Seemingly) hard otherwise...

= Because of exchangeability, we can always swap customer n
with the final customer and use the above formula!

= We’ll use this for efficient Gibbs sampling later on...
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The CRP describes the
partitions of 6 when G — @

is marginalized out
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Topics of This Lecture

e Dirichlet Processes
> Recap: Definition
> Dirichlet Process Mixture Models
> Pélya Urn scheme
> Chinese Restaurant Process
~ Stick-Breaking construction
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RWNTH
Stick-Breaking Construction [Sethuraman, 1994]

e Explicit construction for the weights in DP realizations
~ Define an infinite sequence of random variables

Br, ~ Beta(1, a) k=12, ...
~ Then define an infinite sequence of mixing proportions as
T = b1
k—1
T = 5kH(1—ﬁI) k=23,...
1=1

~ This can be viewed as breaking off portions of a stick

2 By 1=5)
I I | [
I I | 1

- When the 7, are drawn this way, we can write 7 ~ GEM(«).
(where GEM stands for Griffiths, Engen, McCloskey)

Slide adapted from Kurt Miller, Mike Jordan B. Leibe
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Stick-Breaking Example

| B; I 13, ,
o, 1B,
TE2 3 1— 3
TU
g IB4| 1_B4|
T,

I Ejl |

755 L

°

[ ]

e Interpretation

0.4

15

20

0.4

0.3

0.2

01

05

0.4

0.3

0.2
01

> Mixture weights 7, partition a unit-length “stick” of probability
mass among an infinite set of random parameters.

> Note: The weights do not decrease monotonically!

Slide adapted from Erik Sudderth B. Leibe

40
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Stick-Breaking Construction

e We now have an explicit formula for each 7.
k—1
me = G [[(1-8)
=1
e We can also easily see that )~ m, = 1:

1= m = 1=B1—B(1—-61) — Bs(1—B)(1—B2) — ...
= — (1—51)(1—52—53(1—52)—---)

(1—Br)
k=1
— 0 as K — oo

> This shows that Dirichlet measures are discrete with probability
one (as we already noted before).

= G =) ., 04, has a clean definition as a random measure.
k=1 Pk 41
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Big Picture: Stick-Breaking and the DP

e Graphical Model representation

/;’ N
{ - 0
/N : .
S Ok ) Stick-Breaking allows
g us to sample directly
= - 1 from the weights
= 7
.g “ __-Il\,___k__..fll l' (_;_.--"JII | h
= S - &
©
3 '
J__,_--' -
g (6n)
< S
)
©
= '
©
]
:
g N
<

' 4?2
Slide adapted from Kurt Miller, Mike Jordan B. Leibe Image source: Kurt Miller




Dirichlet Stick-Breaking

e Sidenote

~ The Stick-Breaking representation provides another
interpretation of the concentration parameter «.

» Since (3, ~ Beta(l, a), we can apply standard moment formulas
and find

1

E[ﬁk] — H——a

Probability Density
. N w IS
Probability Density

= For small ¢, the first few mixture
Components are typically aSSigned Sti(Jézl(—Bre%‘ll(ing Pofi)portic:ﬂan 1 ° Stiﬁ(—Bre%?(ing I%i)porti?n
the majority of the probability a=1 a =10
mass.

= For a — oo, samples G ~ DP(«,G,) approach the base measure
G, by assigning small, roughly uniform weights to a densely
sampled set of discrete parameters.
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RWNTH
Summary: Pélya Urns, CRPs, and Stick-Breaking

G~DP(Gy) S S\

\x l The Stick-Breaking
a —- | h ‘ «” Process describes
The Pélya urn describes o the partition
the predictive distribu- : weights
tion of f when G is mar-
ginalized out %

The CRP describes the / @ -/\

partitions of § when G N
is marginalized out
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RWTH
References and Further Reading

e Unfortunately, there are currently no good introductory
textbooks on the Dirichlet Process. We will therefore
post a number of tutorial papers on their different
aspects.

» One of the best available general introductions

- E.B. Sudderth, “Graphical Models for Visual Object Recognition and
Tracking“, PhD thesis, Chapter 2, Section 2.5, 2006.

> A gentle introductory tutorial (recommended 1t read)

- S.J. Gershman, D.M. Blei, ,,A Tutorial on Bayesian Nonparametric
Methods”, In Journal of Mathematical Psychology, Vol. 56, 2012.

> Good overview of MCMC methods for DPMMs

- R. Neal, Markov Chain Sampling Methods for Dirichlet Process
Mixture Models. Journal of Computational and Graphical Statistics,
Vol. 9(2), p. 249-265, 2000.

B. Leibe
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http://www.cs.brown.edu/~sudderth/papers/sudderthPhD.pdf
http://www.cs.brown.edu/~sudderth/papers/sudderthPhD.pdf
http://www.princeton.edu/~sjgershm/GershmanBlei12.pdf
http://www.princeton.edu/~sjgershm/GershmanBlei12.pdf
http://www.stat.purdue.edu/~rdutta/24.PDF
http://www.stat.purdue.edu/~rdutta/24.PDF

