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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Kernels (Kernel Ridge Regression) 

 Gaussian Processes 
 

• Bayesian Estimation & Bayesian Non-Parametrics  

 Prob. Distributions, Approx. Inference 

 Mixture Models & EM 

 Dirichlet Processes 

 Latent Factor Models  

 Beta Processes 
 

• SVMs and Structured Output Learning 

 SV Regression, SVDD 

 Large-margin Learning 
B. Leibe 
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Topics of This Lecture 

• Dirichlet Processes 
 Recap: Definition 

 Dirichlet Process Mixture Models 

 Pólya Urn scheme 

 Chinese Restaurant Process 

 Stick-Breaking construction 
 

• Applying DPMMs 
 Efficient sampling 

 Applications 

6 
B. Leibe 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Recap: Dirichlet Processes 

• Gaussian Processes 

 Gaussian Processes (GP) define a distribution over functions 

 
 

where ¹ is the mean function and c is the covariance function. 

 We can think of GPs as “infinite-dimensional” Gaussians. 
 

• Dirichlet Processes 

 Dirichlet Processes (DP) define a distribution over distributions  

(a measure on measures) 

 
 

 Where ®>0 is a scaling parameter and G0 is the base measure. 

 We can think of DPs as “infinite-dimensional” Dirichlet 

distributions. 

7 
B. Leibe Slide credit: Zoubin Gharamani 
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Sidenote: Bayesian Nonparametric Methods 

• Bayesian Nonparametric Methods (BNPs) 

 Both Gaussian Processes and Dirichlet Processes are examples of 

BNPs. 

 

• What does that mean? 

 Nonparametric: does NOT mean there are no parameters! 

 It means (very roughly) that the number of parameters grows 

with the number of data points. 

 

• Parametric methods:  

 Get data  build model  predict using model 
 

• Nonparametric methods 

 Get data  predict directly based on data 

8 
B. Leibe 
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• Definition      [Ferguson, 1973] 

 Let  be a measurable space, G0 be a probability measure on , 

and ® a positive real number.  

 For all (A1,…,AK) finite partitions of , 

 

 

means that  

 

 
 

• Translation 

 A random probability distribution G on  is drawn from a 

Dirichlet Process if its measure on every finite partition follows 

a Dirichlet distribution. 

Recap: Dirichlet Processes 

9 
B. Leibe Slide credit: Zoubin Gharamani Image source: Zoubin Gharamani 
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Recap: Dirichlet Processes 

• Important property           [Blackwell] 

 Draws from a DP will always place all their mass on a countable 

set of points, the so-called atoms ±µk. 

 

 
 

where ±µk is a Dirac delta at µk, and µk » G0(¢). 
 

 Samples from DP are discrete with probability one. 

 

 
 

 

10 
B. Leibe Slide adapted from Zoubin Gharamani Image source: Zoubin Gharamani 
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• Consider a DP with a Gaussian as base measure G0  

 G0 is continuous, so the probability that any two samples are 

equal is precisely zero. 

 However, G is a discrete distribution, made up of a countably 

infinite number of point masses. 

 There is always a non-zero probability of two samples colliding. 

 This is what allows us to use DPs for clustering! 

Recap: Dirichlet Processes 

11 
B. Leibe Slide adapted from Khalid El-Arini Image source: Khalid El-Arini 
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Recap: Dirichlet Process Properties 

• Sampling 

 Since G is a probability measure, we can draw samples from it 

 

 

 

• Posterior of G given observations µ1,…,µN ? 

 The usual Dirichlet-multinomial conjugacy carries over to the 

nonparametric DP as well.  

 Posterior is again a DP. 

12 
B. Leibe Slide adapted from Yee Whye Teh 
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Existence of Dirichlet Processes 

• Summary so far 

 A probability measure is a function from subsets of a space   

to [0,1] satisfying certain properties. 

 A DP is a distribution over probability measures such that 

marginals on finite partitions are Dirichlet distributed. 
 

• How do we know that such an object exists? 

 Kolmogorov Consistency Theorem: If we can prescribe consistent 

finite dimensional distributions, then a distribution over 

functions exists. 

 De Finetti’s Theorem: If we have an infinite exchangeable 

sequence of random variables, then a distribution over measures 

exists making them independent. 

 Pólya’s urn, Chinese Restaurant Process 

 Stick-breaking Construction: just construct it. 

 13 
B. Leibe Slide adapted from Yee Whye Teh 
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Topics of This Lecture 

• Dirichlet Processes 
 Recap: Definition 

 Dirichlet Process Mixture Models 

 Pólya Urn scheme 

 Chinese Restaurant Process 

 Stick-Breaking construction 
 

• Applying DPMMs 
 Efficient sampling 

 Applications 

15 
B. Leibe 
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Dirichlet Process Mixture Models 

• During this lecture, we will use 

the following two forms for DPMMs… 

16 
B. Leibe 

“Indicator variable 

representation” 

“Distributional form” 

Image sources: Yee Whye The, Kurt Miller 
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Dirichlet Process Mixture Models 

 

 

 

 

 

 

 
 

• Indicator variable representation 

 Form of an infinite mixture model 

 The DP is implicit through the choice of priors 

 We will use this form whenever we want to make the assignment 

of points to clusters explicit ( use for clustering). 

17 
B. Leibe Image sources: Yee Whye The 
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Dirichlet Process Mixture Models 

 

 

 

 

 

 

 

 

 
 

• Distributional form 

 Explicit representation of the DP through the node G. 

 Useful when we want to use the DPMM’s predictive distribution. 
18 

B. Leibe Image sources: Yee Whye The 

Base distribution G0 

Infinite discrete 

distribution on £,  

defines the clusters 

Parameters of the 

cluster that gene- 

rates xn  

Likelihood of xn  

given the cluster 
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Topics of This Lecture 

• Dirichlet Processes 
 Recap: Definition 

 Dirichlet Process Mixture Models 

 Pólya Urn scheme 

 Chinese Restaurant Process 

 Stick-Breaking construction 
 

• Applying DPMMs 
 Efficient sampling 

 Applications 

19 
B. Leibe 
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Recap: Pólya’s Urns   [Blackwell & MacQueen, 1973] 

• Can we sample observations without constructing G? 

 
 

• Yes, by a variation of the classical balls-in-urns analogy 

 Assume that G0 is a distribution over colors, and that each µn 

represents the color of a single ball placed in the urn. 

 Start with an empty urn. Repeat for N steps: 

1. With probability proportional to α, draw µn » G0  

and add a ball of that color to the urn. 

2. With probability proportional to n – 1 (i.e., the  

number of balls currently in the urn), pick a ball  

at random from the urn. Record its color as µn  

and return the ball into the urn, along with a  

new one of the same color. 

 
20 

B. Leibe Slide adapted from Khalid El-Arini Image source: Yee Whye Teh 
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Pólya’s Urns: Discussion 

• Pólya Urn scheme  

 Simple generative process for the predictive distribution of a DP 

 Consider a set of N observations             taking K  

distinct values             . The predictive distribution  

of the next observation is then   

 

 

 
 

• Remarks 

 This procedure can be used to sample observations from a DP 

without explicitly constructing the underlying mixture. 

 DPs lead to simple predictive distributions that can be evaluated 

by caching the number of previous observations taking each 

distinct value. 

 

 

 

21 
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De Finetti’s Theorem           [De Finetti, 1935] 

• Theorem 

 For any infinitely exchangeable sequence of random variables 

{xi}
1:1, xi 2 X, there exists some space  of probability 

measures and corresponding distribution P(µ) such that the 

joint probability of any N observations has a mixture 

representation  

 

 

• Interpretation 

 If you assert exchangeability, it is reasonable to act as if there is 

an underlying parameter, there is a prior on this parameter, and 

the data are i.i.d. given that parameter. 

 In order for this to work, we need to allow µ to range over 

measures, in which case P(µ) is a distribution over measures. 

– As we know, the Dirichlet Process is a distribution on measures! 
22 

B. Leibe Slide adapted from Erik Sudderth, Mike Jordan 
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Pólya Urn Scheme 

• Existence proof for DP 

 Starting with a DP, we constructed Pólya’s urn scheme. 

 The reverse is possible using De Finetti’s theorem: 

 Since the µn are i.i.d. » G, their joint distribution is invariant  

to permutations, thus µ1, µ2,… are exchangeable. 

 Thus a distribution over measures must exist making them i.i.d. 

 This is the DP. 

 

• We have just (informally) proven that DPs exist 

 Hooray! 

 Now, let’s move on to see how we can use them… 

23 
B. Leibe Slide adapted from Yee Whye Teh 
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Big Picture: Pólya Urns and the DP 

24 
B. Leibe 

Pólya urns describe the  

distribution of µ when G 
is marginalized out 

Slide adapted from Kurt Miller, Mike Jordan Image source: Kurt Miller 
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Topics of This Lecture 

• Dirichlet Processes 
 Recap: Definition 

 Dirichlet Process Mixture Models 

 Pólya Urn scheme 

 Chinese Restaurant Process 

 Stick-Breaking construction 
 

• Applying DPMMs 
 Efficient sampling 

 Applications 

25 
B. Leibe 
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Sidenote on Partitions 

• Problem with partitions 

 If our goal is clustering, the output grouping is 

defined by an assignment of indicator variables 

 

 

 

 The number of ways of assigning N data points 

to K mixtures is KN. 

 If K ¸ N, this is much larger than the number 

of ways of partitioning the data! 

 

 Example: N = 5: 52 partitions vs. 55 = 3125 

 

 Need representation that is invariant to relabeling! 
26 

B. Leibe Slide credit: Erik Sudderth Image source: Wikipedia 
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Chinese Restaurant Process (CRP) 

• How can DPs support clustering? 
 

• Chinese Restaurant Process 

 Visualize clustering as a sequential process of customers sitting 

at tables in an (infinitely large) restaurant. 

Customers  observed data to be clustered 

Tables   distinct blocks of partition, or clusters 
 

 This will help us see the clustering effect of DPs explicitly 
 

• Relation to the clustering problem 

 We typically don’t know the number of clusters and want to 

learn it from data 

 CRPs address this problem by assuming that there is an infinite 

number of latent clusters, but that only a finite number of them 

is used to generate the observed data. 

27 
B. Leibe Slide adapted from Erik Sudderth Image source: Erik Sudderth 
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Chinese Restaurant Process (CRP) 

• Procedure 

 Imagine a Chinese restaurant with an infinite number of tables, 

each of which can seat an infinite number of customers. 

 The 1st customer enters and sits at the first table. 

 The Nth customer enters and sits at table 

 

 

 

 

 where Nk is the number of customers already sitting at table k. 

 

• Remark 

 Metaphor was motivated by the seemingly infinite seating 

capability of Chinese restaurants in San Francisco… 

 

 

 

28 
B. Leibe 

   k    with prob                   for k = 1,…,K  

K+1  with prob                      (new table) 
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Chinese Restaurant Process (CRP) 

• Visualization 

29 
B. Leibe Slide credit: Teg Grenager 
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Chinese Restaurant Process (CRP) 

 

 

 

 

 

 

 

 

 
 

• Resulting conditional distribution 

30 
B. Leibe Slide adapted from Erik Sudderth Image source: Erik Sudderth 
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Relationship between CRPs and DPs 

• Discussion 

 DP is a distribution over distributions. 

 DP results in discrete distributions, so if you draw N points, you 

are likely to get repeated values. 

 A DP therefore induces a partitioning of the N points. 

 The CRP is the corresponding distribution over partitions. 

 We can easily get back from the CRP to the Pólya urn scheme by 

the following extension: 

– When the first customer sits down at an empty table, he 

independently chooses a dish µk for the entire table from a prior 

distribution G0. 

 

 

 

– Dish     parameters of the cluster 

 

 

31 
Image source: Erik Sudderth Slide inspired by: Zoubin Gharamani, Yee Whye Teh 
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Chinese Restaurant Process (CRP) 

 

 

 

 

 

 

 

 

 

• The CRP exhibits the clustering property of the DP. 

 Rich-gets-richer effect implies small number of large clusters. 

 Expected number of clusters is K = O(® log N). 

32 
B. Leibe Slide credit: Yee Whye Teh 
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CRPs & Exchangeable Partitions 

 

 

• Closer analysis 

 Consider the probability of a certain seating arrangement: 

 

 

 

 

 Derivation of the terms 

33 
B. Leibe Slide adapted from Erik Sudderth 

First customer to 

sit at each table 

Other customers 

joining each table 

Normalization  

constants 
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CRPs & Exchangeable Partitions 

• Probability of a seating arrangement 

 

 
 

• Exchangeability property 

 The probability of a seating arrangement of N customers is 

independent of the order they enter the restaurant! 

 The CRP is thus a prior on infinitely exchangeable partitions. 

 (Definition exchangeability: The joint probability underlying the 

data is invariant to permutation.) 

 

• Why is this of importance? 

 Two reasons… 
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Reason 1: De Finetti’s Theorem 

• Putting all of this together… 

 De Finetti’s theorem tells us that the CRP has an underlying 

mixture distribution with a prior distribution over measures. 

 The Dirichlet Process is the De Finetti mixing distribution for the 

CRP. 
 

• Graphical model visualization 

 This means, when we integrate out 

G, we get the CRP: 

 

 

 

 If the DP is the prior on G, then the 

CRP defines how points are assigned 

to clusters when we integrate out G. 
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Reason 2: Efficient Inference 

• Taking advantage of exchangeability… 

 In clustering applications, we are ultimately interested in the 

cluster assignments z1,…,zN.  

 Equivalent question in the CRP: Where should customer n sit, 

conditioned on the seating choices of all the other customers? 

– This is easy when customer n is the last customer to arrive: 

 

 

 

– (Seemingly) hard otherwise… 

 

 Because of exchangeability, we can always swap customer n 

with the final customer and use the above formula! 

 We’ll use this for efficient Gibbs sampling later on… 
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Big Picture: CRPs and the DP 
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The CRP describes the  

partitions of µ when G 
is marginalized out 
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Topics of This Lecture 

• Dirichlet Processes 
 Recap: Definition 

 Dirichlet Process Mixture Models 

 Pólya Urn scheme 

 Chinese Restaurant Process 

 Stick-Breaking construction 
 

• Applying DPMMs 
 Efficient sampling 

 Applications 
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Stick-Breaking Construction  [Sethuraman, 1994] 

• Explicit construction for the weights in DP realizations 

 Define an infinite sequence of random variables 

 
 

 Then define an infinite sequence of mixing proportions as 

 

 

 

 

 This can be viewed as breaking off portions of a stick 

 

 

 

 When the ¼k are drawn this way, we can write ¼ » GEM(®). 

(where GEM stands for Griffiths, Engen, McCloskey) 
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Stick-Breaking Example 

 

 

 

 

 

 

 

• Interpretation 

 Mixture weights ¼k partition a unit-length “stick” of probability 

mass among an infinite set of random parameters. 

 Note: The weights do not decrease monotonically! 
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Stick-Breaking Construction 

• We now have an explicit formula for each ¼k: 

 

 

• We can also easily see that                   : 

 

 

 

 

 

 
 

 This shows that Dirichlet measures are discrete with probability 

one (as we already noted before). 

                             has a clean definition as a random measure. 
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Big Picture: Stick-Breaking and the DP 

• Graphical Model representation 
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Stick-Breaking allows 

us to sample directly 

from the weights 
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Dirichlet Stick-Breaking 

• Sidenote 

 The Stick-Breaking representation provides another 

interpretation of the concentration parameter ®. 

 Since                           , we can apply standard moment formulas 

and find  

 

 

 

 For small ®, the first few mixture  

components are typically assigned 

the majority of the probability 

mass. 

 For ® ! 1, samples G » DP(®,G0) approach the base measure 

G0 by assigning small, roughly uniform weights to a densely 

sampled set of discrete parameters. 
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1 + ®
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Summary: Pólya Urns, CRPs, and Stick-Breaking 
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The CRP describes the  

partitions of µ when G 
is marginalized out 

Slide adapted from Kurt Miller, Mike Jordan Image source: Kurt Miller 

The Stick-Breaking  

Process describes 

the partition  

weights 
The Pólya urn describes  

the predictive distribu- 

tion of µ when G is mar- 

ginalized out 
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References and Further Reading 

• Unfortunately, there are currently no good introductory 

textbooks on the Dirichlet Process. We will therefore 

post a number of tutorial papers on their different 

aspects.  
 

 One of the best available general introductions 

– E.B. Sudderth, “Graphical Models for Visual Object Recognition and 

Tracking“, PhD thesis, Chapter 2, Section 2.5, 2006. 
 

 A gentle introductory tutorial (recommended 1st read) 

– S.J. Gershman, D.M. Blei, „A Tutorial on Bayesian Nonparametric 

Methods”, In Journal of Mathematical Psychology, Vol. 56, 2012. 
 

 Good overview of MCMC methods for DPMMs 

– R. Neal, Markov Chain Sampling Methods for Dirichlet Process 

Mixture Models. Journal of Computational and Graphical Statistics, 

Vol. 9(2), p. 249-265, 2000.  
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