Advanced Machine Learning
Lecture 10

Mixture Models I

26.11.2012

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de/
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Announcement

e Exercise sheet 2 online
> Sampling
» Rejection Sampling
~ Importance Sampling
~ Metropolis-Hastings
> EM
» Mixtures of Bernoulli distributions [today’s topic]
~ Exercise will be on Monday, 03.12.
= Please submit your results until 02.12. midnight.
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RWTH
This Lecture: Advanced Machine Learning

o Regression Approaches f X —- R
» Linear Regression 1 1 v | e
. Regularization (Ridge, Lasso) \
> Kernels (Kernel Ridge Regression)

> @Gaussian Processes

e Bayesian Estimation & Bayesian Non-Parametrics
> Prob. Distributions, Approx. Inference (= __ ) ;

e
S

Y
N

> Mixture Models & EM o\ Fgue
> Dirichlet Processes Xn M

~ Latent Factor Models W
> Beta Processes

e SVMs and Structured Output Learning
~ SV Regression, SVDD f : X — y

> Large-margin Learning
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Topics of This Lecture

e The EM algorithm in general
> Recap: General EM

> Example: Mixtures of Bernoulli distributions
~ Monte Carlo EM

e Bayesian Mixture Models
~ Towards a full Bayesian treatment
~ Dirichlet priors
> Finite mixtures
> Infinite mixtures
> Approximate inference

e Outlook: Dirichlet Processes
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RWTHAACHEN
. . UNIVERSITY
Recap: Mixture of Gaussians

K
» “Generative model” p(x) =Y meN (Xn|py, Si)
k=1
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RWTH
Recap: GMMs as Latent Variable Models

e Write GMMs in terms of latent variables z
> Marginal distribution of x

K
— Zp(x y/ Zp p(x|z) = Z TN (x|, k)
Z k=1

X

Z

e Advantage of this formulation

> We have represented the marginal distribution in terms of
latent variables z.

- Since p(x) = 2., p(x, z), there is a corresponding latent
variable z , for each data point x,..

- We are now able to work with the joint distribution p(x, z)
instead of the marginal distribution p(x).

= This will lead to significant simplifications...
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RWNTH
Recap: Sampling from a Gaussian Mixture

e MoG Sampling
> We can use ancestral sampling to generate random samples from

a Gaussian mixture model. z

1. Generate a value z from the marginal distribution p(z).
2. Generate a value X from the conditional distribution p(x|z).

X

Samples from the Samples from the Evaluating the
joint p(x, z) marginal p(x) responsibilities y(z,,,)

1 L

0.5 0.5¢
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Image source: C.M. Bishop, 2006



RWTH
Recap: Gaussian Mixtures Revisited

e Applying the latent variable view of EM
> Goal is to maximize the log-likelihood using the observed data X

log p(X|0) = log {ZP(X, ZH)} o

~ Corresponding graphical model: H

> Suppose we are additionally given the values 7))
of the latent variables Z.

~ The corresponding graphical model for the
complete data now looks like this:

= Straightforward to marginalize...
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Recap: Alternative View of EM

e In practice, however,...

>

We are not given the complete data set {X,Z}, but only the
incomplete data X. All we can compute about Z is the posterior
distributionp(Z|X, 0).

Since we cannot use the complete-data log-likelihood, we
consider instead its expected value under the posterior
distribution of the latent variable:

Q(6,6°%) = > "p(Z|X,0°) logp(X, Z|6)
Z

This corresponds to the E-step of the EM algorithm.

In the subsequent M-step, we then maximize the expectation to
obtain the revised parameter set 6%V,

0" = arg mgx Q(0, 901(1)

B. Leibe
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Recap: General EM Algorithm

e Algorithm
1. Choose an initial setting for the parameters

2. E-step: Evaluate p(Z|X,901d)

Gold

Bl'leW

3. M-step: Evaluate
0"V = arg mgx Q(0, 9°1d)

given by

where
Q(6,6°%) = > "p(Z|X,0°) logp(X, Z|6)
Z

4. While not converged, let 9°'9 «— 9™V and return to step 2.

B. Leibe
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Recap: MAP-EM

e Modification for MAP

> The EM algorithm can be adapted to find MAP solutions for
models for which a prior p(0) is defined over the parameters.

> Only changes needed:

2. E-step: Evaluate p(Z|X,0°7)

3. M-step: Evaluate 6"°" given by

6" = arg max Q(0,6°)+1og p(8)

= Suitable choices for the prior will remove the ML singularities!

B. Leibe

11
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Summary So Far

e We have now seen a generalized EM algorithm
~ Applicable to general estimation problems with latent variables

~ In particular, also applicable to mixtures of other base
distributions

> In order to get some familiarity with the general EM algorithm,
let’s apply it to a different class of distributions...

B. Leibe
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Topics of This Lecture

e The EM algorithm in general
> Recap: General EM

» Example: Mixtures of Bernoulli distributions
~ Monte Carlo EM

B. Leibe
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RWNTH
Mixtures of Bernoulli Distributions

e Discrete binary variables

- Consider D binary variables x = (x_,...,x)’, each of them
described by a Bernoulli distribution with parameter p;, so that

p(x|p) = Hu‘”*’ (1— )7

~ Mean and covariance are given by
Ex] = n
covlx| = diag{p(l—p)}

Diagonal covariance
= variables indepen-
dently modeled
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RWNTH
Mixtures of Bernoulli Distributions

e Mixtures of discrete binary variables
> Now, consider a finite mixture of those distributions

p(xlp, ) = > mep(x|py)

K D

= Zm H s (1 — g ) )

k=1 i=1
> Mean and covariance of the mixture are given by

K
Covariance not diagonal

Elx] = Z Tk [y, — Model can capture depen-

k=1 dencies between variables

cov|x|] = Zwk {3k + pppr b — EXEX]
k=1

where X, = diag{s;(1 - py)}- 5
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RWNTH
Mixtures of Bernoulli Distributions

e Log-likelihood for the model
- Given a data set X = {x,,..., Xy},

log p(X|p, ™ Zlog {Zﬂkp Xn|pg) }

~ Again observation: summation inside logarithm = difficult.

> In the following, we will derive the EM algorithm for mixtures of
Bernoulli distributions.

- This will show how we can derive EM algorithms in the general
case...

16
B. Leibe
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EM for Bernoulli Mixtures

e Latent variable formulation
- Introduce latent variable z = (2

1’---’

> Conditional distribution of x
p(X|z, 1) H P(X|py) ™
> Prior distribution for the latent variables
K
- 1l
k=1
> Again, we can verify that

p(x|p, Zp x|z, p)p Z'mcp x|pt)

B. Leibe

zi)! with 1-of-K coding.
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Recap: General EM Algorithm

e Algorithm

1. Choose an initial setting for the parameters geld

2. E-step: Evaluate p(Z|X,901d)

Bl'leW

3. M-step: Evaluate
0"V = arg mgx Q(0, BOId)

given by

where
Q(6,6°%) = > "p(Z|X,0°) logp(X, Z|6)
Z

4. While not converged, let 9°'9 «— 9™V and return to step 2.

B. Leibe
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EM for Bernoulli Mixtures: E-Step

e Complete-data likelihood

p(X,Z|p, ) = ][ (repGenl )1

p(Z‘Xa M, ﬂ-) —

B. Leibe

19
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RWNTH
EM for Bernoulli Mixtures: E-Step

e E-Step

~ Evaluate the responsibilities

Z [mrp(Xn |y, )"
Znk 174
Znk Zj:l ij(xn‘u’j)
TEP(Xn | g )
K
Zj:l ij(xn‘/'l'j)

Y(ens) = Efza] =

> Note: we again get the same form as for Gaussian mixtures
ﬂ-jN(Xn“'l’j? Zj)
N
> 1 TN (Xn| g, X

V5 (Xn) =

B. Leibe
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Recap: General EM Algorithm

e Algorithm
1. Choose an initial setting for the parameters

2. E-step: Evaluate p(Z|X,901d)

Gold

Bl'leW

3. M-step: Evaluate
0"V = arg mgx Q(0, BOId)

given by

where
Q(6,6°%) = > "p(Z|X,0°) logp(X, Z|6)
Z

4. While not converged, let 9°'9 «— 9™V and return to step 2.

B. Leibe
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RWNTH
EM for Bernoulli Mixtures: M-Step

e Complete-data log-likelihood

N K
logp(X: Z’#’a ﬂ-) — Z Z “nk {log Tk

n=1 k=1

D
+ Z (i log ki + (1 — x4;) log(1 — uk@)}}

1=1

e Expectation w.r.t. the posterior distribution of Z

I[':‘:'Z [logp(Xa Z|u’7 Z “nk {IOg Tk
N ~ o n=1 k=1
+ ) [ 10g piks + (1 — @) log (1 — pig)]
1=1
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where ~(z,,.) = E|z,,] are again the responsibilities for each Xpe
B. Leibe
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RWTH
EM for Bernoulli Mixtures: M-Step

e Remark

- The +(z,,) only occur in two forms in the expectation:
N

N = W(an)

N
§ znk

S
|
[

2|+—x

e Interpretation

> N, is the effective number of data points associated with
component k.

» Xgis the responsibility-weighted mean of the data points softly
assigned to component k.

B. Leibe
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RWNTH
EM for Bernoulli Mixtures: M-Step

e M-Step
> Maximize the expected complete-data log-likelihood w.r.t the
parameter ;.

0
—F X, Z
X T z[p(X, Z|p, 7))
..E a N K
S = 5D > V() {logms + [xnlog i + (1= xn) log(1 — )]}
> Ll
E 1 N 1 N !
> _ _ _ !
= — Y(2nk)Xn Y(2nk)(1 — x,) =0
:cl’ Fr n=1 1- Fr nzz:l
£
®
=
3 1 «
O = — Znk)Xn = X
: e = R ;’Y( k) K
<

24
B. Leibe



RWNTH
EM for Bernoulli Mixtures: M-Step

e M-Step
> Maximize the expected complete-data log-likelihood w.r.t the
parameter 7, under the constraint 2, 7, = 1.

» Solution with Lagrange multiplier A

K
arg max Bz [p(X, Z|u, 7)] + A (Z Tk — 1)
Tk
k=1
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Discussion

e Comparison with Gaussian mixtures

> In contrast to Gaussian mixtures, there are no singularities in
which the likelihood goes to infinity.

~ This follows from the property of Bernoulli distributions that
0 < p(xn|py) <1

- However, there are still problem cases when p,; becomes 0 or 1

Ez[logp(X, Z|p, )] = ... [2n; log pas + (1 — ps) log(1 — i)
= Need to enforce a range [MIN_VAL,1-MIN_VAL] for either p,. or +.

e General remarks

~ Bernoulli mixtures are used in practice in order to represent
binary data.

~ The resulting model is also known as latent class analysis.

26
B. Leibe
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Example: Handwritten Digit Recognition

e Binarized digit data (examples from set of 600 digits)

A

7

Lt’

D

‘4

e Means of a 3-component Bernoulli mixture (10 EM iter.)

:

9

3

e Comparison: ML result of single multivariate Bernoulli

distribution

B. Leibe
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Topics of This Lecture

e The EM algorithm in general
> Recap: General EM

> Example: Mixtures of Bernoulli distributions
~ Monte Carlo EM
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Monte Carlo EM

e EM procedure
~ M-step: Maximize expectation of complete-data log-likelihood

Q(6.6™%) = [ (ZIX.67")logp(X. Z/0)dZ

~»  For more complex models, we may not be able to compute this
analytically anymore...

e Idea

> Use sampling to approximate this integral by a finite sum over
samples {Z ()} drawn from the current estimate of the posterior

L
1
Q(G,HOId) ~ z § :logp(X, Z(l)|901d)
=1

> This procedure is called the Monte Carlo EM algorithm.

29
B. Leibe
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Topics of This Lecture

e Bayesian Mixture Models
~ Towards a full Bayesian treatment
~ Dirichlet priors
> Finite mixtures
> Infinite mixtures
> Approximate inference

B. Leibe
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RWNTH
Towards a Full Bayesian Treatment...

e Mixture models
- We have discussed mixture distributions with & components

p(X|6) = pr yAl) Sp—

> So far, we have derived the ML estimates = EM
- Introduced a prior p(f) over parameters = MAP-EM

> One question remains open: how to set K ?
= Let’s also set a prior on the humber of components...

B. Leibe
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Bayesian Mixture Models

e Let’s be Bayesian about mixture models
~ Place priors over our parameters

- Again, introduce variable z  as indicator
which component data point x,, belongs to.

Zn|T™ ~ Multinomial ()
Xn‘zn — ka”’a 2~ N(uka Ek)

> This is similar to the graphical model we’ve
used before, but now the 7 and 0, = (u,;,3,)
are also treated as random variables.

» What would be suitable priors for them?

Slide inspired by Yee Whye Teh B. Leibe
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Bayesian Mixture Models

e Let’s be Bayesian about mixture models
~ Place priors over our parameters

- Again, introduce variable z  as indicator
which component data point x,, belongs to.

Zn|T™ ~ Multinomial ()
Xn‘zn — ka”’a 2~ N(uka Zk)

> Introduce conjugate priors over parameters
Q Q

~ Dirichlet(—, ..., =

™ irichle (K K)

[_Lk,zk ~ H:N_IW(OaSada¢)

“Normal - Inverse Wishart”

Slide inspired by Yee Whye Teh B. Leibe

\9 (=)
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Bayesian Mixture Models

e Full Bayesian Treatment
> Given a dataset, we are interested in the cluster assignments
p(X|Z)p(Z
p(zx) = LEEPE)
>z p(X[Z)p(Z)

where the likelihood is obtained by marginalizing over the
parameters 0

p(X|Z) = / p(X|Z,0)p(6)d6

= [ TL T pcalznes 003061l 1)0

n=1k=1

e The posterior over assignments is intractable!

» Denominator requires summing over all possible partitions of the
data into K groups!
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= We will see efficient approximate inference methods later on..
B. Leibe
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Bayesian Mixture Models

e Let’s examine this model more closely
> Role of Dirichlet priors?
> How can we perform efficient inference?
- What happens when K goes to infinity?

e This will lead us to an interesting class of models...
> Dirichlet Processes
~ Possible to express infinite mixture distributions with their help

> Clustering that automatically adapts the number of clusters to
the data and dynamically creates new clusters on-the-fly.
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Sneak Preview: Dirichlet Process MoG

Samples drawn
from DP mixture

= More structure
appears as more
points are drawn
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RWNTH
Recap: The Dirichlet Distribution

e Dirichlet Distribution
~ Conjugate prior for the Categorical and the Multinomial distrib.

Llao) 1
Dir(p|ar) = ° =l \with g =
o (N| ) F(()dl)r(()t}() ’guk 0
% > Symmetric version (with concentration parameter «)
= K
. I['(a) a/K—1

O

D =
E 11'([.1,‘05) F(Oé/K)K P /'L]g
§ ~ Properties (symmetric version)
(<] _ _ ak 1
8 @0 K
= ] ag (o — ag) K -1

var — p—
3 Fik 2(ag + 1) K2(a+ 1)
% ; ;0L 1
5 covlpjue] = ——— - _
< ! ag(ao + 1) K2(a+1)

B. Leibe 00

Image source: C. Bishop, 2006



RWNTH
Mixture Model with Dirichlet Priors

e Finite mixture of K components A
K . o : .
pixad6) = 3 miplalf e
k=1 TR o oo L
1% “‘_"f.;' -. SR
— Zp(znk — 1‘7Tk)p(xn‘9kaznk — ]-) T
k=1

- The distribution of latent variables z_ given 7 is multinomial
K N
N def
p(z|m) = H Ty Ni = Zznk
k=1 n=1

~ Assume mixing proportions have a given symmetric conjugate

Dirichlet prior K

. F(Oé) a/K-1
p(ﬂ“O&) — F(oz/K)K P 4y’
B. Leibe
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RWNTH
Mixture Model with Dirichlet Priors

e Integrating out the mixing proportions 7

pzla) = f p(z|m)p(r|c)dm

K

fH” s Lo

k=1

K

:f I‘(Oé) Nk‘|‘04/K 1d7‘l‘
Fla/m)% 117

> This is again a Dirichlet distribution (reason for conjugate priors)

N(a) [I5,T Nk+oe/K/ ['(N +a) il
[T, I

a/F TV 0) Nt a/K)

Uy T
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Completed Dirichlet form — integrates to 1
39

B. Leibe
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RWNTH
Mixture Models with Dirichlet Priors

e Integrating out the mixing proportions 7 (cont’d)

I(a) [l T(Ne +a/K)
T'(a/K)K (N + a)

. T(a) 7 T(Nk+a/K)
B + ) kl;[1

p(zla) =

T(N T(a/K)

e Conditional probabilities
- Let’s examine the conditional of z_ given all other variables
p(znk — 1,Z_n|Oé)
p(z—n|@)

p(znk — 1|Z_n,Oé) —
where z_, denotes all indizes except n.

Slide adapted from Zoubin Gharamani B. Leibe
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RWNTH
Mixture Models with Dirichlet Priors

ey o egoy e (z]a) = I'(a) ﬁF(Nk+a/K)
e Conditional probabilities PO TN v a) L T T (/K
p(znk — 1,Z_n‘Od)
P\Znk — 1 Z_p,x) —
( | ) ozl

;ﬁ I'(Np+a/K) K I'(N;

 T(N+a) ~Hex)  Llj=17 T(a/K

D P(N_,kto/K) W
['(N_,+o) LlerK) =T 74k I'(a/K)

. T(N_,+a) T(Ny+a/K)
T T(N+a) T(N_ns +a/K)
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RWNTH
Mixture Models with Dirichlet Priors

e Conditional probabilities I'(n+1) =nl(n)
p(znk — 17Z_n‘Od)
p(z—n|a)

T'(Ny+o/K) K I'(N;
T(Nta) TR 1li=ig T(a/K

T T T(N_nato/K) K LT
TN_.Ta) LK) Ho=T77#k  T(a/K)
'(N_,+a) I'(Np+a/K)

1 N—n,kz -+ Oé/K
N -1+« 1

N—n,k + Oé/K
N -1+«

B. Leibe

p(znk — ]-‘Z—naa) —
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Finite Dirichlet Mixture Models

e Conditional probabilities: Finite K

N
N pnrta/K def
p(znk = 1lz_p,a) = N1 +{1 : N_pnr = Z Zik
i=1,i#n

e This is a very interesting result. Why?
» We directly get a numerical probability, no distribution.

~ The probability of joining a cluster mainly depends on the
number of existing entries in a cluster.

= The more populous a class is, the more likely it is to be joined!

> In addition, we have a base probability of also joining as-yet
empty clusters.

> This result can be directly used in Gibbs Sampling...

Slide adapted from Zoubin Gharamani B. Leibe
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Infinite Dirichlet Mixture Models

e Conditional probabilities: Finite K

N nr+a/K def
p(znk = 1lz_p,a) = ’ : N_pnr = Z Zik
N—-1+a i=1,i%n
S
N « Conditional probabilities: Infinite K
% > Taking the limit as KX — oc yields the conditionals
c
% ( ]\J,V__ffa if & represented
:I: p(an — 1|Z—?’Laa) S
c .
£ \ x—175 Ifall £ not represented
=
§ ~ Left-over mass o = countably infinite number of indicator
§ settings
<

44

Slide adapted from Zoubin Gharamani B. Leibe



(9|
-
.
Q
P
=
(@))
.E
C
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

Discussion

e Infinite Mixture Models

> What we have just seen is a first example of a Dirichlet Process.

> DPs will allow us to work with models that have an infinite
number of components.

> This will raise a number of issues
- How to represent infinitely many parameters?
- How to deal with permutations of the class labels?
- How to control the effective size of the model?
- How to perform efficient inference?

= More background needed here!

> We will hear much more about DPs in the next lecture...

B. Leibe
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Topics of This Lecture

e Bayesian Mixture Models
~ Towards a full Bayesian treatment
~ Dirichlet priors
> Finite mixtures
> Infinite mixtures
> Approximate inference

B. Leibe
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RWNTH
Gibbs Sampling for Finite Mixtures

e We need approximate inference here
~ Gibbs Sampling: Conditionals are simple to compute

K
p(z, = k|others) Zm]\f(xn\p,k, k)

k=1
w | z~Dir(Ny +a/K,..., Nk +a/K)

K, Xy lothers ~ N —IW(v', s, d', ¢')

Il
—

QOO0
B+E
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RWTH
Gibbs Sampling for Finite Mixtures

e Standard finite mixture sampler

. Given mixture weights 7(-1) and cluster parameters {9( B )}k .

from the previous iteration, sample new parameters as follows

1. Independently assign each point x, to one of the K clusters by

sampling the variables z, from the multinomial distributions
K

1 1) (t—1 —1 1 1)
o)~ D el ) 2, = Zw“ p(xal0} )
" k=1
2. Sample new mixture weights from the Dlrlchlet distribution
N
7" ~ Dit(N; + a/K, ..., Nk + a/K) Ne =Y 2
n=1

3. For each of the K clusters, independently sample new
parameters from the conditional of the assigned observations

01 ~ p(Ok| {xn 20k = 1}, H)

. 48
Slide adapted from Erik Sudderth B. Leibe



Standard Sampler: 2 Iterations

log p(x | T, 8) = -539.17 log p(x | m, 6) = —497.77
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Slide credit: Erik Sudderth B. Leibe



Standard Sampler: 10 Iterations

log p(x | T, ©) = —404.18 log p(x | T, 8) = —454.15
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log p(x | &, 8) = —397.40
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Slide credit: Erik Sudderth

B. Leibe

log p(x | &, 8) = —442.89
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RWTH
Gibbs Sampling for Finite Mixtures

e We need approximate inference here
~ Gibbs Sampling: Conditionals are simple to compute

K
p(z, = k|others) Zm]\/'(xn\p,k, k)

k=1
w | z~Dir(Ny +a/K,..., Nk +a/K)

K, Xy lothers ~ N —IW(v', s, d', ¢')

e However, this will be rather inefficient...

~ In each iteration, algorithm can only change
the assignment for individual data points.

~ There are often groups of data points that are
associated with high probability to the same
component. = Unlikely that group is moved.

~ Better performance by collapsed Gibbs sampling
which integrates out the parameters m, u, 3.

Il
—

OO0
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RWTH
Collapsed Finite Bayesian Mixture

 More efficient algorithm
~ Conjugate priors allow analytic integration of some parameters

~ Resulting sampler operates on reduced space of cluster
assignments (implicitly considers all possible cluster shapes)

e Necessary steps
> Derive

pela) = [ plelmp(mia)in /

> Derive

p(Xn|2n, H) = / Zznkp(xn\ﬂk)p(ﬂk\ﬂ)d\@/

k=1

Il
—

OO
%

= Conjugate prior, Normal - Inverse Wishart
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Slide adapted from Erik Sudderth B. Leibe
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RO INVERSITY
Collapsed Finite Mixture Sampler

e To be added...
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RWNTH
References and Further Reading

e More information about EM estimation is available in

Chapter 9 of Bishop’s book (recommendable to read).

P PATTERN RECOGNITION E
g axo MACHINE LEARNING [

Christopher M. Bishop oo B'SHO
Pattern Recognition and Machine Learning T S i
Springer, 2006

e Additional information
~ Original EM paper:

- A.P. Dempster, N.M. Laird, D.B. Rubin, ,,Maximum-Likelihood from
incomplete data via EM algorithm”, In Journal Royal Statistical
Society, Series B. Vol 39, 1977

> EM tutorial:

- J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its
Application to Parameter Estimation for Gaussian Mixture and
Hidden Markov Models“, TR-97-021, ICSI, U.C. Berkeley, CA,USA

B. Leibe
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