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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Kernels (Kernel Ridge Regression) 

 Gaussian Processes 
 

• Bayesian Estimation & Bayesian Non-Parametrics  

 Prob. Distributions, Approx. Inference 

 Mixture Models & EM 

 Dirichlet Processes 

 Latent Factor Models  

 Beta Processes 
 

• SVMs and Structured Output Learning 

 SV Regression, SVDD 

 Large-margin Learning 
B. Leibe 
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Recap: Importance Sampling 

• Approach 

 Approximate expectations directly 

(but does not enable to draw samples from p(z) directly). 

 Goal: 
 

• Idea 

 Use a proposal distribution q(z) from which it is easy to sample. 

 Express expectations in the form of a finite sum over samples 

{z(l)} drawn from q(z). 

 

3 
B. Leibe Slide adapted from Bernt Schiele 

Importance weights 

Image source: C.M. Bishop, 2006 
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• Overview 

 Allows to sample from a large class of distributions. 

 Scales well with the dimensionality of the sample space. 
 

• Idea 

 We maintain a record of the current state z(¿)  

 The proposal distribution depends on the current state: q(z|z(¿))  

 The sequence of samples forms a Markov chain z(1), z(2),… 
 

• Approach 

 At each time step, we generate a candidate  

sample from the proposal distribution and  

accept the sample according to a criterion. 

 Different variants of MCMC for different 

criteria. 

Recap: MCMC – Markov Chain Monte Carlo 

4 
B. Leibe Slide adapted from Bernt Schiele Image source: C.M. Bishop, 2006 
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Recap: Markov Chains – Properties 

• Invariant distribution 

 A distribution is said to be invariant (or stationary) w.r.t. a 

Markov chain if each step in the chain leaves that distribution 

invariant. 

 Transition probabilities: 

 
 

 For homogeneous Markov chain, distribution p*(z) is invariant if: 

 

 

• Detailed balance 

 Sufficient (but not necessary) condition to ensure that a 

distribution is invariant: 

 

 A Markov chain which respects detailed balance is reversible. 
5 

B. Leibe 

T
³
z(m);z(m+1)

´
= p

³
z(m+1)jz(m)

´

p?(z) =
X

z0

T (z0; z)p?(z0)

p?(z)T (z;z0) = p?(z0)T (z0;z)

Slide credit: Bernt Schiele 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Detailed Balance 

• Detailed balance means 

 If we pick a state from the target distribution p(z) and make a 

transition under T to another state, it is just as likely that we 

will pick zA and go from zA to zB than that we will pick zB and 

go from zB to zA. 

 

 It can easily be seen that a transition probability that satisfies 

detailed balance w.r.t. a particular distribution will leave that 

distribution invariant, because 

 

6 
B. Leibe 
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Recap: MCMC – Metropolis Algorithm 

• Metropolis algorithm        [Metropolis et al., 1953] 

 Proposal distribution is symmetric:  

 The new candidate sample z* is accepted with probability 

 
 
 

 New candidate samples always accepted if                        . 

 The algorithm sometimes accepts a state with lower probability. 
 

• Metropolis-Hastings algorithm 

 Generalization: Proposal distribution not necessarily symmetric. 

 The new candidate sample z* is accepted with probability 

 

 
 

 where k labels the members of the set of considered transitions. 
7 

B. Leibe 

q(zAjzB) = q(zBjzA)

A(z?; z(¿)) = min

µ
1;

~p(z?)

~p(z(¿))

¶

~p(z?) ¸ ~p(z(¿))

Slide adapted from Bernt Schiele 

A(z?; z(¿)) = min

µ
1;

~p(z?)qk(z
(¿)jz?)

~p(z(¿))qk(z?jz(¿))

¶
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Recap: MCMC – Metropolis-Hastings Algorithm 

• Properties 

 We can show that p(z) is an invariant distribution of the Markov 

chain defined by the Metropolis-Hastings algorithm. 

 We show detailed balance: 

8 
B. Leibe 

Update: This was wrong on the first version of the slides 

             (also wrong in the Bishop book)! 
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Recap: Gibbs Sampling 

• Approach 

 MCMC-algorithm that is simple and widely applicable. 

 May be seen as a special case of Metropolis-Hastings. 
 

• Idea 

 Sample variable-wise: replace zi by a value drawn from the 

distribution p(zi|z\i). 

– This means we update one coordinate at a time. 

 Repeat procedure either by cycling through all variables or by 

choosing the next variable. 
 

• Properties 

 The algorithm always accepts! 

 Completely parameter free. 

 Can also be applied to subsets of variables. 

 

 

9 
B. Leibe Slide adapted from Bernt Schiele 
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Topics of This Lecture 

• Recap: Mixtures of Gaussians 
 Mixtures of Gaussians 

 ML estimation 

 EM algorithm for MoGs 
 

• An alternative view of EM 
 Latent variables 

 General EM 

 Mixtures of Gaussians revisited 

 Mixtures of Bernoulli distributions 
 

• The EM algorithm in general 
 Generalized EM 

 Monte Carlo EM 

10 
B. Leibe 
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Recap: Mixture of Gaussians (MoG) 

• “Generative model” 

11 
B. Leibe 

x

x

j

p(x)

p(x)

1 
2 3 

p(j) = ¼j

p(xjµj)

p(xjµ) =

MX

j=1

p(xjµj)p(j)

“Weight” of mixture 

component 

Mixture 

component 

Mixture density 

Slide credit: Bernt Schiele 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Recap: Mixture of Multivariate Gaussians 

• Multivariate Gaussians 

 

 

 

 

 

 Mixture weights / mixture coefficients: 
 

                      with                     and 

 

 Parameters: 

12 
B. Leibe 

p(xjµ) =

MX

j=1

p(xjµj)p(j)

p(xjµj) =
1

(2¼)D=2j§jj1=2
exp

½
¡1

2
(x¡¹j)T§¡1

j (x¡¹j)
¾

p(j) = ¼j

MX

j=1

¼j = 10 · ¼j · 1

µ = (¼1;¹1;§1; : : : ; ¼M;¹M;§M)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006 
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Recap: Mixture of Multivariate Gaussians 

• “Generative model” 

13 
B. Leibe 

p(xjµ) =

3X

j=1

¼jp(xjµj)
p(j) = ¼j

j

1 
2 

3 

p(xjµ1)
p(xjµ2)

p(xjµ3)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006 
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E = ¡ lnL(µ) = ¡
NX

n=1

ln p(xnjµ)

• Maximum Likelihood 
 

 Minimize  

 

 

 We can already see that this will be difficult, since 

Recap: ML for Mixtures of Gaussians 

14 
B. Leibe 

ln p(Xj¼;¹;§) =

NX

n=1

ln

(
KX

k=1

¼kN (xnj¹k;§k)
)

This will cause problems! 

Slide adapted from Bernt Schiele 
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Recap: ML for Mixture of Gaussians 

• Minimization: 

 

 

 

 

 

 

 
 

• We thus obtain 

15 
B. Leibe 

) ¹j =

PN

n=1 °j(xn)xnPN

n=1 °j(xn)

@E

@¹j
= ¡

NX

n=1

@
@¹

j

p(xnjµj)
PK

k=1 p(xnjµk)

= ¡
NX

n=1

Ã
§¡1(xn ¡ ¹j)

p(xnjµj)PK

k=1 p(xnjµk)

!

= ¡§¡1
NX

n=1

(xn ¡ ¹j)
¼jN (xnj¹j ;§j)PK

k=1 ¼kN (xnj¹k;§k)

!
= 0

@E

@¹j
= ¡

NX

n=1

@
@¹

j

p(xnjµj)
PK

k=1 p(xnjµk)

= ¡
NX

n=1

Ã
§¡1(xn ¡ ¹j)

p(xnjµj)PK

k=1 p(xnjµk)

!

= ¡ §¡1
PK

k=1 p(xnjµk)

NX

n=1

(xn ¡ ¹j)p(xnjµj)
!
= 0

@E

@¹j
= ¡

NX

n=1

@
@¹

j

p(xnjµj)
PK

k=1 p(xnjµk)

= ¡
NX

n=1

Ã
§¡1(xn ¡ ¹j)

p(xnjµj)PK

k=1 p(xnjµk)

!

= ¡ §¡1
PK

k=1 p(xnjµk)

NX

n=1

(xn ¡ ¹j)p(xnjµj)
!
= 0

@

@¹j
N (xnj¹k;§k) =

§¡1(xn ¡¹j)N (xnj¹k;§k)

= °j(xn)

“responsibility” of 
component j for xn 
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Recap: ML for Mixtures of Gaussians 

16 
B. Leibe 

• But… 

 

 

 

 

• I.e. there is no direct analytical solution! 

 

 

 Complex gradient function (non-linear mutual dependencies) 

 Optimization of one Gaussian depends on all other Gaussians! 

 It is possible to apply iterative numerical optimization here,  

but the EM algorithm provides a simpler alternative. 

¹j =

PN

n=1 °j(xn)xnPN

n=1 °j(xn)
°j(xn) =

¼jN (xnj¹j;§j)PN

k=1 ¼kN (xnj¹k;§k)

@E

@¹j
= f (¼1;¹1;§1; : : : ; ¼M ;¹M ;§M)
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Recap: EM Algorithm 

• Expectation-Maximization (EM) Algorithm 

 E-Step: softly assign samples to mixture components 
 

 

 

 M-Step: re-estimate the parameters (separately for each mixture 

component) based on the soft assignments 

17 
B. Leibe 

8j = 1; : : : ;K; n = 1; : : : ;N

¼̂newj Ã N̂j

N

¹̂
new
j Ã 1

N̂j

NX

n=1

°j(xn)xn

§̂new
j Ã 1

N̂j

NX

n=1

°j(xn)(xn ¡ ¹̂newj )(xn ¡ ¹̂newj )T

N̂j Ã
NX

n=1

°j(xn) = soft number of samples labeled j 

°j(xn)Ã
¼jN (xnj¹j ;§j)PN

k=1 ¼kN (xnj¹k;§k)

Slide adapted from Bernt Schiele 
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Recap: EM Algorithm – An Example 

 

18 
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Image source: C.M. Bishop, 2006 
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Recap: EM – Caveats 

• When implementing EM, we need to take care to avoid 

singularities in the estimation! 

 Mixture components may collapse on single data points. 

 E.g. consider the case                (this also holds in general) 

 Assume component j is exactly centered on data point xn. This 

data point will then contribute a term in the likelihood function 

 

 

 For ¾j ! 0, this term goes to infinity! 

 

 Need to introduce regularization 

 Enforce minimum width for the Gaussians 

19 
B. Leibe 

N (xnjxn; ¾2j I) =
1p

2¼¾j

§k = ¾2kI

Image source: C.M. Bishop, 2006 
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Application: Image Segmentation 

 

 

 

 

 

 

• User assisted image segmentation 

 User marks two regions for foreground and background. 

 Learn a MoG model for the color values in each region. 

 Use those models to classify all other pixels. 

 Simple segmentation procedure 

(building block for more complex applications) 

20 
B. Leibe 
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Application: Color-Based Skin Detection 

• Collect training samples 

for skin/non-skin pixels. 

• Estimate MoG to 

represent the skin/  

non-skin densities 

 

M. Jones and J. Rehg, Statistical Color Models with Application to Skin 

Detection, IJCV 2002. 

 

skin 

non-skin 

21 

Classify skin color pixels in novel images 

http://www.cc.gatech.edu/~rehg/Papers/SkinDetect-IJCV.pdf
http://www.cc.gatech.edu/~rehg/Papers/SkinDetect-IJCV.pdf
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Outlook for Today 

• Criticism 

 This is all very nice, but in the ML lecture, the EM algorithm 

miraculously fell out of the air. 

 Why do we actually solve it this way? 
 

• This lecture 

 We will take a more general view on EM 

– Different interpretation in terms of latent variables 

– Detailed derivation 

 This will allow us to derive EM algorithms also for other cases. 

 In particular, we will use it for estimating mixtures of Bernoulli 

distributions in the next lecture. 

22 
B. Leibe 
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Topics of This Lecture 

• Recap: Mixtures of Gaussians 
 Mixtures of Gaussians 

 ML estimation 

 EM algorithm for MoGs 
 

• An alternative view of EM 
 Latent variables 

 General EM 

 Mixtures of Gaussians revisited 

 Mixtures of Bernoulli distributions 
 

• The EM algorithm in general 
 Generalized EM 

 Monte Carlo EM 

23 
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Gaussian Mixtures as Latent Variable Model 

• Mixture of Gaussians 

 Can be written as linear superposition of Gaussians in the form 

 

 

 
 

• Let’s write this in a different form… 

 Introduce a K-dimensional binary random variable z with  

a 1-of-K coding, i.e., zk = 1 and all other elements are zero. 
 

 Define the joint distribution over x and z as 

 
 

 This corresponds to the following graphical model: 

24 
B. Leibe Image source: C.M. Bishop, 2006 
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Gaussian Mixtures as Latent Variable Models 

• Marginal distribution over z  

 Specified in terms of the mixing coefficients ¼k, such that 

 

 
 

where                       and                   . 

 

 Since z uses a 1-of-K representation, we can also write this as 

 

 
 

 Similarly, we can write for the conditional distribution 

25 
B. Leibe 

0 · ¼j · 1
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Gaussian Mixtures as Latent Variable Models 

• Marginal distribution of x  

 Summing the joint distribution over all possible states of z  

 

 
 

• What have we gained by this? 

 The resulting formula looks still the same after all… 

 We have represented the marginal distribution in terms of  

latent variables z. 

 Since p(x) = z p(x, z), there is a corresponding latent 

variable zn for each data point xn. 

 We are now able to work with the joint distribution p(x, z) 

instead of the marginal distribution p(x). 

 This will lead to significant simplifications… 
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Gaussian Mixtures as Latent Variable Models 

• Conditional probability of z given x: 

 Use again the “responsibility” notation °k(zk)  

 

 

 

 

 

 

 We can view ¼k as the prior probability of zk = 1 and °(zk) as 

the corresponding posterior once we have observed x. 
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Sidenote: Sampling from a Gaussian Mixture 

• MoG Sampling 

 We can use ancestral sampling to generate random samples from 

a Gaussian mixture model. 

1. Generate a value    from the marginal distribution p(z). 

2. Generate a value    from the conditional distribution           . 
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Samples from the 

joint p(x, z) 
Samples from the 

marginal p(x) 
Evaluating the 

responsibilities (znk) 

Image source: C.M. Bishop, 2006 
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Alternative View of EM 

• Complementary view of the EM algorithm 

 The goal of EM is to find ML solutions for models having latent 

variables. 
 

 Notation 

– Set of all data                  X = [x1,…,xN]T  

– Set of all latent variables  Z = [z1,…,zN]T  

– Set of all model parameters  µ  

 

 Log-likelihood function 

 

 

 

 Key observation: summation inside logarithm  difficult. 
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Alternative View of EM 

• Now, suppose we were told for each observation in X 

the corresponding value of the latent variable Z… 

 Call {X,Z} the complete data set and  

 

 

 

refer to the actual observed data X as incomplete. 

 

 
 

 The likelihood for the complete data set now takes the form 

 
 

 Straightforward to marginalize… 
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Alternative View of EM 

• In practice, however,… 

 We are not given the complete data set {X,Z}, but only the 

incomplete data X. 

 Our knowledge of the latent variable values in Z is given only by 

the posterior distribution                 . 

 Since we cannot use the complete-data log-likelihood, we 

consider instead its expected value under the posterior 

distribution of the latent variable: 

 

 

 This corresponds to the E-step of the EM algorithm. 

 In the subsequent M-step, we then maximize the expectation to 

obtain the revised parameter set µnew. 
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General EM Algorithm 

• Algorithm 

1. Choose an initial setting for the parameters  
 

2. E-step: Evaluate  
 

3. M-step: Evaluate           given by 

 

 

where  

 

 
 

4. While not converged, let                       and return to step 2. 
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Remark: MAP-EM 

• Modification for MAP 

 The EM algorithm can be adapted to find MAP solutions for 

models for which a prior         is defined over the parameters. 

 Only changes needed: 

 

2. E-step: Evaluate  
 

3. M-step: Evaluate           given by 

 

 

 

 Suitable choices for the prior will remove the ML singularities! 
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Gaussian Mixtures Revisited 

• Applying the latent variable view of EM 

 Goal is to maximize the log-likelihood using the observed data X 

 

 

 

 Corresponding graphical model: 

 

 

 Suppose we are additionally given the values 

of the latent variables Z. 

 The corresponding graphical model for the 

complete data now looks like this: 

34 
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Gaussian Mixtures Revisited 

• Maximize the likelihood 

 For the complete-data set {X,Z}, the likelihood has the form 

 

 

 

 Taking the logarithm, we obtain  

 

 
 

 Compared to the incomplete-data case, the order of the sum 

and logarithm has been interchanged. 

 Much simpler solution to the ML problem. 

 Maximization w.r.t. a mean or covariance is exactly as for a 

single Gaussian, except that it involves only the subset of data 

points that are “assigned” to that component. 
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Gaussian Mixtures Revisited 

• Maximization w.r.t. mixing coefficients 

 More complex, since the ¼k are coupled by the summation 

constraint 

 

 
 

 Solve with a Lagrange multiplier 

 

 
 

 Solution (after a longer derivation): 

 

 
 

 The complete-data log-likelihood can be maximized trivially in 

closed form. 
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Gaussian Mixtures Revisited 

• In practice, we don’t have values for the latent variables 

 Consider the expectation w.r.t. the posterior distribution of the 

latent variables instead. 

 The posterior distribution takes the form 

 

 

 

and factorizes over n, so that the {zn} are independent under 

the posterior. 

Expected value of indicator variable znk under the posterior. 
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E[znk] =

P
znk

znk [¼kN (xnj¹k;§k)]
znk

P
znj

£
¼jN (xnj¹j ;§j)

¤znj

=
¼kN (xnj¹k;§k)PK

j=1 ¼jN (xnj¹j ;§j)
= °(znk)
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Gaussian Mixtures Revisited 

• Continuing the estimation 

 The complete-data log-likelihood is therefore 

 

 

 

 

 This is precisely the EM algorithm for Gaussian mixtures as 

derived before.  
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EZ[log p(X;Zj¹;§;¼)] =

NX

n=1

KX

k=1

°znk flog ¼k + logN (xnj¹k;§k)g



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

References and Further Reading 

• More information about EM and MoG estimation is 

available in Chapter 9 of Bishop’s book (recommendable 

to read). 

 

 
 

• Additional information 

 Original EM paper: 

– A.P. Dempster, N.M. Laird, D.B. Rubin, „Maximum-Likelihood from 

incomplete data via EM algorithm”, In Journal Royal Statistical 

Society, Series B. Vol 39, 1977 

 EM tutorial: 

– J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its 

Application to Parameter Estimation for Gaussian Mixture and 

Hidden Markov Models“, TR-97-021, ICSI, U.C. Berkeley, CA,USA 
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