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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Kernels (Kernel Ridge Regression) 

 Gaussian Processes 
 

• Bayesian Estimation & Bayesian Non-Parametrics  

 Prob. Distributions, Approx. Inference 

 Mixture Models & EM 

 Dirichlet Processes 

 Latent Factor Models  

 Beta Processes 
 

• SVMs and Structured Output Learning 

 SV Regression, SVDD 

 Large-margin Learning 
B. Leibe 
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Topics of This Lecture 

• Recap: Sampling approaches 
 Sampling from a distribution 

 Rejection Sampling 

 Importance Sampling 

 Sampling-Importance-Resampling 
 

• Markov Chain Monte Carlo 
 Markov Chains 

 Metropolis Algorithm 

 Metropolis-Hastings Algorithm 

 Gibbs Sampling 

3 
B. Leibe 
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Recap: Sampling Idea 

• Objective:  

 Evaluate expectation of a function f(z)  

w.r.t. a probability distribution p(z). 

 

 

• Sampling idea 

 Draw L independent samples z(l) with l = 1,…,L from p(z). 

 This allows the expectation to be approximated by a finite sum 

 

 
 

 As long as the samples z(l) are drawn independently from p(z), 
then 
 

 Unbiased estimate, independent of the dimension of z! 
4 

B. Leibe Slide adapted from Bernt Schiele 

f̂ =
1

L

LX

l=1

f(zl)

Image source: C.M. Bishop, 2006 
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Recap: Sampling from a pdf 

• In general, assume we are given the pdf p(x) and the 

corresponding cumulative distribution: 

 

 

• To draw samples from this pdf, we can invert the 

cumulative distribution function: 

 

 

 

5 
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F (x) =

Z x

¡1
p(z)dz

u » Uniform(0;1)) F¡1(u) » p(x)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006 
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General Advice 

• Use library functions whenever 

possible  

 Many efficient algorithms available 

for known univariate distributions 

(and some other special cases) 

 

 This book (free online) explains  

how some of them work 

 http://www.nrbook.com/devroye/ 

 

6 
B. Leibe Slide credit: Iain Murray 

http://www.nrbook.com/devroye/
http://www.nrbook.com/devroye/


P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Recap: Rejection Sampling 

• Assumptions 

 Sampling directly from p(z) is difficult. 

 But we can easily evaluate p(z) (up to some norm. factor Zp): 
 

• Idea 

 We need some simpler distribution q(z) (called proposal 

distribution) from which we can draw samples. 

 Choose a constant k such that:  
 

• Sampling procedure 

 Generate a number z0 from q(z). 

 Generate a number u0 from the 

uniform distribution over [0,kq(z0)]. 

 If                    reject sample, otherwise accept. 

 7 
B. Leibe 

p(z) =
1

Zp

~p(z)

8z : kq(z) ¸ ~p(z)

Slide adapted from Bernt Schiele 

u0 > ~p(z0)

Image source: C.M. Bishop, 2006 
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Evaluating Expectations 

• Motivation 

 Often, our goal is not sampling from p(z) by itself, but to 

evaluate expectations of the form 

 

 

 Assumption again: can evaluate p(z) up to normalization factor. 
 

• Simplistic strategy: Grid sampling 

 Discretize z-space into a uniform grid. 

 Evaluate the integrand as a sum of the form 

 

 
 

 Problem: number of terms grows exponentially with number of 

dimensions! 
8 

B. Leibe Slide credit: Bernt Schiele 
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Importance Sampling 

• Idea 

 Method approximates expectations directly 

(but does not enable to draw samples from p(z) directly). 

 Use a proposal distribution q(z) from we can easily draw samples 

 Express expectations in the form of a finite sum over samples 

{z(l)} drawn from q(z). 

 

 

 

 

 

 with importance weights 

 

9 
B. Leibe Slide credit: Bernt Schiele 

rl =
p(z(l))

q(z(l))
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Importance Sampling 

• Typical setting: 

 p(z) can only be evaluated up to an unknown normalization 

constant 
 

 q(z) can also be treated in a similar fashion. 

 
 

 Then 

 

 

 

 

 
 with: 
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B. Leibe Slide credit: Bernt Schiele 

p(z) = ~p(z)=Zp

q(z) = ~q(z)=Zq

~rl =
~p(z(l))

~q(z(l))
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Importance Sampling 

• Removing the unknown normalization constants 

 We can use the sample set to evaluate the ratio of normalization 

constants 

 
 

 
 

 and therefore 

 

 

 

 with 

 
 

 In contrast to Rejection Sampling, all generated samples are 

retained (but they may get a small weight). 
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Zp

Zq

=
1

Zq

Z
~p(z)dz =

Z
~p(z(l))

~q(z(l))
q(z)dz ' 1

L

LX

l=1

~rl

wl =
~rlP
m ~rm

=

~p(z(l))

~q(z(l))P
m

~p(z(m))

~q(z(m))
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Importance Sampling – Discussion 

• Observations 

 Success of importance sampling depends crucially on how well 

the sampling distribution q(z) matches the desired distribution 

p(z). 

 Often, p(z)f(z) is strongly varying and has a significant propor-

tion of its mass concentrated over small regions of z-space. 

 Weights rl may be dominated by a few weights having large 

values. 
 

 Practical issue: if none of the samples falls in the regions where 

p(z)f(z) is large… 

– The results may be arbitrary in error. 

– And there will be no diagnostic indication (no large variance in rl)! 
 

 Key requirement for sampling distribution q(z): 

– Should not be small or zero in regions where p(z) is significant! 
12 

B. Leibe Slide credit: Bernt Schiele 
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Sampling-Importance-Resampling (SIR) 

• Observation 

 Success of rejection sampling depends on finding a good value 

for the constant k. 

 For many pairs of distributions p(z) and q(z), it will be 

impractical to determine a suitable value for k. 

– Any value that is sufficiently large to guarantee q(z) ¸ p(z) will 

lead to impractically small acceptance rates. 
 

• Sampling-Importance-Resampling Approach 

 Also makes use of a sampling distribution q(z), but avoids  

having to determine k. 

13 
B. Leibe 
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Sampling-Importance-Resampling 

• Two stages 

 Draw L samples z(1),…, z(L) from q(z). 
 

 Construct weights using importance weighting 

 

 

 
 

and draw a second set of samples z(1),…, z(L) with probabilities 

given by the weights w(1),…, w(L). 
 

• Result 

 The resulting L samples are only approximately distributed 

according to p(z), but the distribution becomes correct in the 

limit L ! 1. 

14 
B. Leibe 
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Curse of Dimensionality 

• Problem 

 Rejection & Importance Sampling both scale badly with high 

dimensionality. 

 Example: 

 

 

• Rejection Sampling 

 Requires ¾ ¸ 1. Fraction of proposals accepted: ¾ –D. 

 

• Importance Sampling 

 Variance of importance weights: 

 
 

 Infinite / undefined variance if 

15 
B. Leibe Slide credit: Iain Murray 
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Topics of This Lecture 

• Recap: Sampling approaches 
 Sampling from a distribution 

 Rejection Sampling 

 Importance Sampling 

 Sampling-Importance-Resampling 
 

• Markov Chain Monte Carlo 
 Markov Chains 

 Metropolis Algorithm 

 Metropolis-Hastings Algorithm 

 Gibbs Sampling 

16 
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Independent Sampling vs. Markov Chains 

• So far  

 We’ve considered three methods, Rejection Sampling, 

Importance Sampling, and SIR, which were all based on 

independent samples from q(z).  

 However, for many problems of practical interest, it is often 

difficult or impossible to find q(z) with the necessary properties. 

 In addition, those methods suffer from severe limitations in 

high-dimensional spaces. 
 

• Different approach 

 We abandon the idea of independent sampling. 

 Instead, rely on a Markov Chain to generate dependent samples 

from the target distribution. 

 Independence would be a nice thing, but it is not necessary for 

the Monte Carlo estimate to be valid. 

17 
B. Leibe Slide credit: Zoubin Ghahramani 
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p(z) =
~p(z)

Zp

• Overview 

 Allows to sample from a large class of distributions. 

 Scales well with the dimensionality of the sample space. 
 

• Idea 

 We maintain a record of the current state z(¿)  

 The proposal distribution depends on the current state: q(z|z(¿))  

 The sequence of samples forms a Markov chain z(1), z(2),… 
 

• Setting 

 We can evaluate p(z) (up to some normalizing factor Zp):  

 
 

 At each time step, we generate a candidate sample from the 

proposal distribution and accept the sample according to a 

criterion. 

MCMC – Markov Chain Monte Carlo 

18 
B. Leibe Slide credit: Bernt Schiele 
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MCMC – Metropolis Algorithm 

• Metropolis algorithm        [Metropolis et al., 1953] 

 Proposal distribution is symmetric:  

 The new candidate sample z* is accepted with probability 

 

 
 

• Implementation 

 Choose random number u uniformly from unit interval (0,1). 

 Accept sample if                        . 
 

• Note 

 New candidate samples always accepted if                        . 

– I.e. when new sample has higher probability than the previous one. 

 The algorithm sometimes accepts a state with lower probability. 

19 
B. Leibe 

q(zAjzB) = q(zBjzA)

A(z?; z(¿)) = min

µ
1;

~p(z?)

~p(z(¿))

¶

A(z?;z(¿)) > u

~p(z?) ¸ ~p(z(¿))

Slide credit: Bernt Schiele 
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MCMC – Metropolis Algorithm 

• Two cases 

 If new sample is accepted: 

 Otherwise:  

 

 This is in contrast to rejection sampling, where rejected samples 

are simply discarded. 

 Leads to multiple copies of the same sample! 

 

 

20 
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z(¿+1) = z?

z(¿+1) = z(¿)

Slide credit: Bernt Schiele 
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MCMC – Metropolis Algorithm 

• Property 

 When q(zA|zB) > 0 for all z, the distribution of z¿ tends to p(z) 

as ¿ ! 1. 
 

• Note 

 Sequence z(1), z(2),… is not a set of independent samples from 

p(z), as successive samples are highly correlated. 

 We can obtain (largely) independent samples by just retaining 

every Mth sample. 
 

• Example: Sampling from a Gaussian 

 Proposal: Gaussian with ¾ = 0.2. 

 Green:  accepted samples 

 Red: rejected samples 

21 
B. Leibe Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006 
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Line Fitting Example 

• Importance Sampling weights 

 

 

 

 

 

 

 

 

 

 

 

 

 Many samples with very low weights… 
22 

B. Leibe Slide credit: Iain Murray 
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Line Fitting Example (cont’d) 

• Metropolis algorithm 

 

 

 

 

 

 

 

 

 Perturb parameters:               ,  e.g.  N(z, ¾2) 
 

 Accept with probability  
 

 Otherwise, keep old parameters.  23 
B. Leibe Slide credit: Iain Murray 
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Markov Chains 

• Question 

 How can we show that z¿ tends to p(z) as ¿ ! 1? 

 

• Markov chains 

 First-order Markov chain: 

 

 

 Marginal probability 

 

 

 

 A Markov chain is called homogeneous if the transition 

probabilities p(z(m+1) | z(m)) are the same for all m. 

24 
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p
³
z(m+1)jz(1); : : : ;z(m)

´
= p

³
z(m+1)jz(m)

´

p
³
z(m+1)

´
=
X

z(m)

p
³
z(m+1)jz(m)

´
p
³
z(m)

´

Slide adapted from Bernt Schiele 
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Markov Chains – Properties 

• Invariant distribution 

 A distribution is said to be invariant (or stationary) w.r.t. a 

Markov chain if each step in the chain leaves that distribution 

invariant. 

 Transition probabilities: 

 
 

 For homogeneous Markov chain, distribution p*(z) is invariant if: 

 

 

• Detailed balance 

 Sufficient (but not necessary) condition to ensure that a 

distribution is invariant: 

 

 A Markov chain which respects detailed balance is reversible. 
25 
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T
³
z(m);z(m+1)

´
= p

³
z(m+1)jz(m)

´

p?(z) =
X

z0

T (z0; z)p?(z0)

p?(z)T (z;z0) = p?(z0)T (z0;z)

Slide credit: Bernt Schiele 
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Detailed Balance 

• Detailed balance means 

 If we pick a state from the target distribution p(z) and make a 

transition under T to another state, it is just as likely that we 

will pick zA and go from zA to zB than that we will pick zB and 

go from zB to zA. 

 

 It can easily be seen that a transition probability that satisfies 

detailed balance w.r.t. a particular distribution will leave that 

distribution invariant, because 

 

26 
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Ergodicity in Markov Chains 

• Remark 

 Our goal is to use Markov chains to sample from a given 

distribution. 

 We can achieve this if we set up a Markov chain such that the 

desired distribution is invariant. 

 However, must also require that for m !1, the distribution 

p(z(m)) converges to the required invariant distribution p*(z) 

irrespective of the choice of initial distribution p(z(0)).  

 This property is called ergodicity and the invariant distribution 

is called the equilibrium distribution. 

 It can be shown that this is the case for a homogeneous Markov 

chain, subject only to weak restrictions on the invariant 

distribution and the transition probabilities. 

27 
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Mixture Transition Distributions 

• Mixture distributions 

 In practice, we often construct the transition probabilities from 

a set of ‘base’ transitions B1,…,BK. 

 This can be achieved through a mixture distribution 

 

 
 

with mixing coefficients ®k ¸ 0 and k ®k = 1. 
 

• Properties 

 If the distribution is invariant w.r.t. each of the base transitions, 

then it will also be invariant w.r.t. T(z’,z). 

 If each of the base transitions satisfies detailed balance, then 

the mixture transition T will also satisfy detailed balance. 

 Common example: each base transition changes only a subset of 

variables. 28 
B. Leibe 
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MCMC – Metropolis-Hastings Algorithm 

• Metropolis-Hastings Algorithm 

 Generalization: Proposal distribution not required to be 

symmetric. 

 The new candidate sample z* is accepted with probability 

 

 
 

 where k labels the members of the set of possible transitions 

considered. 

 

• Note 

 Evaluation of acceptance criterion does not require normalizing 

constant Zp. 

 When the proposal distributions are symmetric, Metropolis-

Hastings reduces to the standard Metropolis algorithm. 
29 
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MCMC – Metropolis-Hastings Algorithm 

• Properties 

 We can show that p(z) is an invariant distribution of the Markov 

chain defined by the Metropolis-Hastings algorithm. 

 We show detailed balance: 

31 
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Update: This was wrong on the first version of the slides 

             (also wrong in the Bishop book)! 
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Random Walks 

• Example: Random Walk behavior 

 Consider a state space consisting of the integers z 2 Z with 

initial state z(1) = 0  and transition probabilities 

 

 

 
 

 

• Analysis 

 Expected state at time ¿ :  

 Variance: 

 After ¿ steps, the random walk has only traversed a distance 

that is on average proportional to ¿. 

 Central goal in MCMC is to avoid random walk behavior! 

33 
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E[z(¿)] = 0

E[(z(¿))
2

] = ¿=2
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MCMC – Metropolis-Hastings Algorithm 

• Schematic illustration 

 For continuous state spaces, a common  

choice of proposal distribution is a  

Gaussian centered on the current state. 

 What should be the variance of the 

proposal distribution? 

– Large variance: rejection rate will be high for complex problems. 

– The scale ½ of the proposal distribution should be as large as 

possible without incurring high rejection rates. 

 ½ should be of the same order as the smallest length scale ¾min. 
 

 This causes the system to explore the distribution by means of a 

random walk. 

– Undesired behavior: number of steps to arrive at state that is 

independent of original state is of order (¾max/¾min)
2. 

– Strong correlations can slow down the Metropolis(-Hastings) 

algorithm! 

 

34 
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P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Gibbs Sampling 

• Approach 

 MCMC-algorithm that is simple and widely applicable. 

 May be seen as a special case of Metropolis-Hastings. 
 

• Idea 

 Sample variable-wise: replace zi by a value drawn from the 

distribution p(zi|z\i). 

– This means we update one coordinate at a time. 

 Repeat procedure either by cycling through all variables or by 

choosing the next variable. 

35 
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Gibbs Sampling 

• Example 

 Assume distribution p(z1, z2, z3). 

 Replace       with new value drawn from  
 

 Replace       with new value drawn from  
 

 Replace       with new value drawn from  

 And so on… 

36 
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Gibbs Sampling 

• Properties 

 Since the components are unchanged by sampling: z*\k = z\k. 

 The factor that determines the acceptance probability in the 

Metropolis-Hastings is thus determined by 

 

 
 

 (we have used qk(z*|z) = p(z*
k|z\k) and p(z) = p(zk|z\k) p(z\k)). 

 

 I.e. we get an algorithm which always accepts! 

 

 If you can compute (and sample from) the conditionals, you can 

apply Gibbs sampling. 

 The algorithm is completely parameter free. 

 Can also be applied to subsets of variables. 
37 
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Discussion 

• Gibbs sampling benefits from few free choices and 

convenient features of conditional distributions: 

 Conditionals with a few discrete settings can be explicitly 

normalized: 

 

 
 

 Continuous conditionals are often only univariate. 

 amenable to standard sampling methods. 
 

 In case of graphical models, the conditional distributions depend 

only on the variables in the corresponding Markov blankets. 
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This sum is small 

and easy. 

Slide adapted from Iain Murray 
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Gibbs Sampling 

• Example 

 20 iterations of Gibbs sampling on a bivariate Gaussian. 

 

 

 

 

 

 

 

 

 

 

 Note: strong correlations can slow down Gibbs sampling. 

39 
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Over-Relaxation           [Adler 1981] 

• Goal: Reduce random walk behavior in Gibbs sampling 

 In its original form, applicable to problems for which conditional 

distributions are Gaussian. 

 At each step of Gibbs sampling, the conditional distribution for   

a particular component has man ¹i and variance ¾i
2. 

 Over-relaxation: replace value of zi by 

 
 

where º is a Gaussian random variable with zero mean and unit 

variance and -1 < ® < 1 (usually negative). 
 

 This step leaves the desired distribution invariant because zi’ 
also has mean ¹i and variance ¾i

2. 

 Effect of over-relaxation is to sample from a Gaussian that is 

biased to the opposite side of the conditional distribution.  

 Encourage directed motion when variables are highly correlated 
40 
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How Should We Run MCMC? 

• Arbitrary initialization means starting iterations are bad 

 Discard a “burn-in” period. 
 

• How do we know if we have run for long enough? 

 You don’t. That’s the problem. 
 

• The samples are not independent 

 Solution 1: Keep only every Mth sample (“thinning”). 

 Solution 2: Keep all samples and use the simple Monte Carlo 

estimator on MCMC samples 

– It is consistent and unbiased if the chain has “burned in”. 

 Use thinning only if computing f(x(s)) is expensive. 
 

• For opinion on thinning, multiple runs, burn in, etc. 
 Charles J. Geyer, Practical Markov chain Monte Carlo, Statistical Science. 

7(4):473{483, 1992. (http://www.jstor.org/stable/2246094) 
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Summary: Approximate Inference 

• Exact Bayesian Inference often intractable. 
 

• Rejection and Importance Sampling 

 Generate independent samples. 

 Impractical in high-dimensional state spaces. 
 

• Markov Chain Monte Carlo (MCMC) 

 Simple & effective (even though typically computationally 

expensive). 

 Scales well with the dimensionality of the state space. 

 Issues of convergence have to be considered carefully. 
 

• Gibbs Sampling 

 Used extensively in practice. 

 Parameter free 

 Requires sampling conditional distributions. 
42 
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References and Further Reading 

• Sampling methods for approximate inference are 

described in detail in Chapter 11 of Bishop’s book. 

 

 

 

 

 

 
 

• Another good introduction to Monte Carlo methods can 

be found in Chapter 29 of MacKay’s book (also available 

online: http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html) 
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