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RWTH
This Lecture: Advanced Machine Learning

o Regression Approaches f X —- R
» Linear Regression 1 1 v | e
. Regularization (Ridge, Lasso) \
> Kernels (Kernel Ridge Regression)

> @Gaussian Processes

e Bayesian Estimation & Bayesian Non-Parametrics
> Prob. Distributions, Approx. Inference (= __ ) ;

e
S

Y
N

> Mixture Models & EM o\ Fgue
> Dirichlet Processes Xn M

~ Latent Factor Models W
> Beta Processes

e SVMs and Structured Output Learning
~ SV Regression, SVDD f : X — y

> Large-margin Learning
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Topics of This Lecture

e Recap: Sampling approaches
> Sampling from a distribution
> Rejection Sampling
> Importance Sampling
> Sampling-Importance-Resampling

e Markov Chain Monte Carlo
> Markov Chains
~ Metropolis Algorithm
> Metropolis-Hastings Algorithm
~ Gibbs Sampling
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Recap: Sampling Idea

e Objective:
- Evaluate expectation of a function f(z) p(2)
w.r.t. a probability distribution p(z).

- [ t@pia)az

e Sampling idea -

- Draw L independent samples z!) with [ = 1,...,L from p(z).

f(z)

aY

> This allows the expectatlon to be approximated by a finite sum
L
1=1
- As long as the samples z() are drawn independently from p(z),
then Em = E[/]

= Unbiased estimate, independent of the dimension of z!
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Image source: C.M. Bishop, 2006

Slide adapted from Bernt Schiele B. Leibe



Recap: Sampling from a pdf

e In general, assume we are given the pdf p(x) and the
corresponding cumulative distribution:
F(x) = / p(z)dz

e To draw samples from this pdf, we can invert the
cumulative distribution function:

w ~ Uniform(0,1) = F~ 1 (u) ~ p(z)
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RWTHAACHEN
. UNIVERSITY
General Advice

e Use library functions whenever
possible

> Many efficient algorithms available
for known univariate distributions
(and some other special cases)

> This book (free online) explains
how some of them work

> http://www.nrbook.com/devroye/
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http://www.nrbook.com/devroye/
http://www.nrbook.com/devroye/

Recap: Rejection Sampling

e Assumptions
» Sampling directly from p(z) is difficult.

» But we can easily evaluate p(z) (up to some norm. factor Z,):

1

o Idea p(z) = Z—pﬁ(z)

- We need some simpler distribution ¢(z) (called proposal
distribution) from which we can draw samples.

- Choose a constant £ such that: Vz : kqg(2) > p(2)

e Sampling procedure ka(eo) )
- Generate a number z, from ¢(z).
~ Generate a number u, from the / B
uniform distribution over [0,kq(z,)].__. L .

. If ugp > P(z0) reject sample, otherwise accept.
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Evaluating Expectations

e Motivation

» Often, our goal is not sampling from p(z) by itself, but to
evaluate expectations of the form

— [ ta)p(a)dz

> Assumption again: can evaluate p(z) up to normalization factor.

e Simplistic strategy: Grid sampling
» Discretize z-space into a uniform grid.
» Evaluate the integrand as a sum of the form

Z f(z (l) (l)

> Problem: number of terms grows exponentially with number of
dimensions!
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Importance Sampling

e Idea

» Method approximates expectations directly
(but does not enable to draw samples from p(z) directly).

» Use a proposal distribution ¢(z) from we can easily draw samples

> Express expectations in the form of a finite sum over samples
{z} drawn from ¢(z

~ [ wtaa = [ 1@ S etz

1 < [pz®)
L ; Z;(z(l)) f(=)

> with importance weights

p(z")
q(z)

Slide credit: Bernt Schiele B. Leibe

T —
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Importance Sampling

e Typical setting:
> p(z) can only be evaluated up to an unknown normalization
constant p(z) _ ﬁ(z)/Zp
> @(z) can also be treated in a similar fashion.
q(z) = 4(z)/ 2,

= 7)p(z)dz é z@ 7)dz
Blf] = [ Sl =5 [ @5 @)
P =1
o B(EY)
> with: Tl:(j(z(l))

Slide credit: Bernt Schiele B. Leibe

10



(9|
-
.
Q
P
=
(@))
.E
C
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

Importance Sampling

e Removing the unknown normalization constants

> We can use the sample set to evaluate the ratio of hormalization
constants

Zy 1 [ [ p(zW) 1 3
7~ 7| Mo | Gmpeteia= 300

> and therefore

E[f] ~ > wf(z")
=1

5 p(z)
Tl o q(z™)

- s T 5(z(m)
Zom T S BT

= In contrast to Rejection Sampling, all generated samples are
retained (but they may get a small weight).

with w;

11
B. Leibe
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RWTH
Importance Sampling - Discussion

e Observations

~ Success of importance sampling depends crucially on how well
the sampling distribution ¢(z) matches the desired distribution
p(z).

- Often, p(z) f(z) is strongly varying and has a significant propor-
tion of its mass concentrated over small regions of z-space.

= Weights r, may be dominated by a few weights having large
values.

» Practical issue: if none of the samples falls in the regions where
p(z) f(z) is large...
- The results may be arbitrary in error.
- And there will be no diagnostic indication (no large variance in 7;)!

- Key requirement for sampling distribution ¢(z):

- Should not be small or zero in regions where p(z) is significant!

. 12
Slide credit: Bernt Schiele B. Leibe
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RWTH
Sampling-Importance-Resampling (SIR)

e Observation

~ Success of rejection sampling depends on finding a good value
for the constant k.

» For many pairs of distributions p(z) and ¢(z), it will be
impractical to determine a suitable value for k.

- Any value that is sufficiently large to guarantee ¢(z) > p(z) will
lead to impractically small acceptance rates.

e Sampling-Importance-Resampling Approach

» Also makes use of a sampling distribution ¢(z), but avoids
having to determine k.

B. Leibe

13
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Sampling-Importance-Resampling

e Two stages
. Draw L samples z(*),..., zL) from ¢(z).

> Construct weights using importance weighting

5 p(z)
'rl [j(z(z))

- Y or Tm 3 p(z(™))

wp

and draw a second set of samples z(*),..., z(X) with probabilities
given by the weights w®),..., w(L),

e Result

> The resulting L samples are only approximately distributed
according to p(z), but the distribution becomes correct in the
limit L — oo.

B. Leibe

14



(9|
-
.
Q
P
=
(@))
.E
C
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

Curse of Dimensionality

e Problem

» Rejection & Importance Sampling both scale badly with high
dimensionality.

» Example:

p(Z) ~ N(Oaf)a Q(Z) NN(Oa 021)

e Rejection Sampling
- Requires o > 1. Fraction of proposals accepted: o 7.

e Importance Sampling

o2 D/2
- Variance of importance weights: —1
2—1/0?

- Infinite / undefined variance if o0 < 1/\/5

Slide credit: lain Murray B. Leibe
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Topics of This Lecture

e Markov Chain Monte Carlo
> Markov Chains
~ Metropolis Algorithm
» Metropolis-Hastings Algorithm
~ Gibbs Sampling
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RWTH
Independent Sampling vs. Markov Chains

e So far

» We’ve considered three methods, Rejection Sampling,
Importance Sampling, and SIR, which were all based on
independent samples from ¢(z).

- However, for many problems of practical interest, it is often
difficult or impossible to find ¢(z) with the necessary properties.

> In addition, those methods suffer from severe limitations in
high-dimensional spaces.

e Different approach
> We abandon the idea of independent sampling.

» Instead, rely on a Markov Chain to generate dependent samples
from the target distribution.

> Independence would be a nice thing, but it is not necessary for
the Monte Carlo estimate to be valid.

17

Slide credit: Zoubin Ghahramani B. Leibe



RWNTH
MCMC - Markov Chain Monte Carlo

e Overview
~ Allows to sample from a large class of distributions.
~ Scales well with the dimensionality of the sample space.

e ldea
- We maintain a record of the current state z("
. The proposal distribution depends on the current state: ¢(z|z()
- The sequence of samples forms a Markov chain z(V, z@), ..

e Setting
- We can evaluate p(z) (up to some normalizing factor Z ):
p(z) = Pz)
Z

p
» At each time step, we generate a candidate sample from the
proposal distribution and accept the sample according to a
criterion.

Slide credit: Bernt Schiele B. Leibe
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MCMC - Metropolis Algorithm

e Metropolis algorithm [Metropolis et al., 1953]
. Proposal distribution is symmetric: ¢(za|zg) = q(zB|z4)
- The new candidate sample z’ is accepted with probability
(PN p(z*)
A(z*,2z'"’) = min (1, p~—(z(7))>
e Implementation
> Choose random number u uniformly from unit interval (0,1).
. Accept sample if A(z*,z(™) > w.

e Note
. New candidate samples always accepted if p(z*) > p(z(™).
- l.e. when new sample has higher probability than the previous one.
» The algorithm sometimes accepts a state with lower probability.
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MCMC - Metropolis Algorithm

e Two cases
. If new sample is accepted: z("tD = z*
. Otherwise: 7(TTL) — 5(7)

> This is in contrast to rejection sampling, where rejected samples
are simply discarded.

= Leads to multiple copies of the same sample!

. 20
Slide credit: Bernt Schiele B. Leibe



MCMC - Metropolis Algorithm

e Property

- When ¢(z 4|zg) > O for all z, the distribution of z™ tends to p(z)
as 7 — 00.

e Note

- Sequence z(1), z(2),... is not a set of independent samples from
p(z), as successive samples are highly correlated.

> We can obtain (largely) independent samples by just retaining
every Mth sample. ;

2.5

e Example: Sampling from a Gaussian
» Proposal: Gaussian with o = 0.2.

L5f

> Green: accepted samples
> Red: rejected samples

05F
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Slide credit: Bernt Schiele B. Leibe Image source: C.M. Bishop, 2006




Line Fitting Example

e Importance Sampling weights

° %e e %e e %e e e e %e

A AT AT

w =0.00548 w =1.59e-08 w =9.65e-06 w =0.371 w =0.103

% e ° %e e e

S o L S B s N

™ ™ ° %e

w =1.01e-08 w =0.111 w =1.92e-09 w =0.0126 w =1.1le-51

= Many samples with very low weights...

B. Leibe
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Line Fitting Example (cont’d)

e Metropolis algorithm

% e

. Perturb parameters: Q(z';z), e.g. Mz, 0?)

> Accept with probability min (1,

» Otherwise, keep old parameters.

Slide credit: lain Murray

B. Leibe

p(z'|D)
p(z|D)

)

23
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Markov Chains

e Question
» How can we show that z" tends to p(z) as 7 — o0?

e Markov chains
> First-order Markov chain:

P (Z<m+1> PON 7z<m>) —p (Z<m+1> |z<m>)

~ Marginal probability

P (z<m+1>) -3 p (Z<m+1> yz<m>) P (z<m>>

z(m)

» A Markov chain is called homogeneous if the transition
probabilities p(z(™*") | z(™)) are the same for all m.

Slide adapted from Bernt Schiele B. Leibe

24



Markov Chains - Properties

e |nvariant distribution

> A distribution is said to be invariant (or stationary) w.r.t. a
Markov chain if each step in the chain leaves that distribution
invariant.

~ Transition probabilities:
T (z<m>, Z<m+1>) —p (Z<m+1> |z<m>)
. For homogeneous Markov chain, distribution p’(z) is invariant if:

p*(z) =) T(z,2)p"(2)

e Detailed balance

» Sufficient (but not necessary) condition to ensure that a
distribution is invariant:

p*(2)T (z,2') = p*(2')T (', 2)
> A Markov chain which respects detailed balance is reversible.
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Detailed Balance

e Detailed balance means

- If we pick a state from the target distribution p(z) and make a
transition under 7'to another state, it is just as likely that we
will pick z , and go from z , to z; than that we will pick z; and
go from z; to z ,.

> It can easily be seen that a transition probability that satisfies
detailed balance w.r.t. a particular distribution will leave that
distribution invariant, because

S p@)T(2.2) = Y 0 (2T (2,2)
= (@) Y p(@]2) = p*(2)

B. Leibe

26



Ergodicity in Markov Chains

e Remark

> Our goal is to use Markov chains to sample from a given
distribution.

> We can achieve this if we set up a Markov chain such that the
desired distribution is invariant.

- However, must also require that for m — oo, the distribution
p(z™) converges to the required invariant distribution p*(z)
irrespective of the choice of initial distribution p(z®).

~ This property is called ergodicity and the invariant distribution
is called the equilibrium distribution.

> It can be shown that this is the case for a homogeneous Markov
chain, subject only to weak restrictions on the invariant
distribution and the transition probabilities.
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Mixture Transition Distributions

e Mixture distributions

> In practice, we often construct the transition probabilities from
a set of ‘base’ transitions 5 ,..., B,.

> This can be achieved through a mixture distribution
K
T(z',z) = Z oy Bi(z', z)
k=1

with mixing coefficients o, > 0 and 2, o, = 1.

e Properties

-~ If the distribution is invariant w.r.t. each of the base transitions,
then it will also be invariant w.r.t. T(z’,z).

> If each of the base transitions satisfies detailed balance, then
the mixture transition T will also satisfy detailed balance.

> Common example: each base transition changes only a subset of

variables. 28
B. Leibe
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RWTH
MCMC - Metropolis-Hastings Algorithm

e Metropolis-Hastings Algorithm

~ Generalization: Proposal distribution not required to be
symmetric.

- The new candidate sample z" is accepted with probability

A(z*,2™) = min (1, ,?(Z*)Qk(Z(T”Z*) )
p(zM)qx(2*|z()

> where k labels the members of the set of possible transitions
considered.

e Note

> Evaluation of acceptance criterion does not require normalizing
constant Z .

> When the proposal distributions are symmetric, Metropolis-
Hastings reduces to the standard Metropolis algorithm.
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RWNTH
MCMC - Metropolis-Hastings Algorithm

e Properties

» We can show that p(z) is an invariant distribution of the Markov
chain defined by the Metropolis-Hastings algorithm.

> We show detailed balance:

A(7',7) = min { p(z')q(2|z') }

' p(z)qi(2|2)
P(z)qr(2'|2)A(2',2) = min{p(2z)q:(2'|2),5(z")qu(2|2)}
= min {p(z')qx(2|2), p(2)q:(z'|z) }
p(z)qn(Z'|2)Ax(z',2) = p(2')qi(z]z')Ar(z,2')
p(z)I(z',2) = p(z')T(z,2)

Update: This was wrong on the first version of the slides
(also wrong in the Bishop book)!
B. Leibe
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Random Walks

e Example: Random Walk behavior

» Consider a state space consisting of the integers z € Z with
initial state z(1) = 0 and transition probabilities

p(zm Y =27) = 0.5
p(z Y =20 1 1) = 0.25
p(z™Y =27 —1) = 0.25

e Analysis
- Expected state at time 7:  [E[2(7)] =0
- Variance: E[(z(T))2] =7/2

» After 7 steps, the random walk has only traversed a distance
that is on average proportional to T

= Central goal in MCMC is to avoid random walk behavior!
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RWTH
MCMC - Metropolis-Hastings Algorithm

e Schematic illustration

~ For continuous state spaces, a common Vg
choice of proposal distribution is a
Gaussian centered on the current state.

= What should be the variance of the ami:x
proposal distribution?

- Large variance: rejection rate will be high for complex problems.

- The scale p of the proposal distribution should be as large as
possible without incurring high rejection rates.

= p should be of the same order as the smallest length scale o ;..
» This causes the system to explore the distribution by means of a
random walk.

- Undesired behavior: number of steps to arrive at state that is

independent of original state is of order (0 ,,/ 01 )?%-

- Strong correlations can slow down the Metropolis(-Hastings)

algorithm! 34
B. Leibe

(9|
-
.
Q
P
=
(@))
IE
C
-
®
Q
—
Q
=
N e
(&)
(3]
=
©
Q
(&)
c
©
3
<

Image source: C.M. Bishop, 2006



(9|
-
.
Q
P
=
(@))
.E
C
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

Gibbs Sampling

e Approach
- MCMC-algorithm that is simple and widely applicable.
~ May be seen as a special case of Metropolis-Hastings.

e ldea
- Sample variable-wise: replace z; by a value drawn from the
distribution p(z;| z\;).
- This means we update one coordinate at a time.

- Repeat procedure either by cycling through all variables or by
choosing the next variable.

Slide adapted from Bernt Schiele B. Leibe
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Gibbs Sampling

e Example

- Assume distribution p(z,, z,, 2,).
. Replace 2" with new value drawn from 2"t ~ p(z|2{7, {7

- Replace zéT) with new value drawn from zéTH) ~ p(22 zYH), Z:(J,T))

- Replace zéT) with new value drawn from z§T+1) ~ p(z3 ng+1)7 Z§T+1))
> And so on...
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Gibbs Sampling

e Properties

. Since the components are unchanged by sampling: z™*, = z,,.

~ The factor that determines the acceptance probability in the
Metropolis-Hastings is thus determined by

p(z*)qr(z|z*) p(2 |23, )P (2, )P (2| 233,)

A(z",z) = p(z)ar(z*z)  p(zi|zyi)p(z\n)p (2|20 1)

=1

- (we have used ¢,(z*|z) = p(z';]zy;) and p(z) = p(z;/zy;) p(zy))-

» l.e. we get an algorithm which always accepts!

= If you can compute (and sample from) the conditionals, you can
apply Gibbs sampling.
= The algorithm is completely parameter free.

= Can also be applied to subsets of variables.

37

Slide adapted from Zoubin Ghahramani B. Leibe



Discussion

e Gibbs sampling benefits from few free choices and
convenient features of conditional distributions:

~ Conditionals with a few discrete settings can be explicitly
normalized:

(2] %5z = (i, Xji) <« This sum is small
PAbilfaz) = Y o P(Th, X 524) and easy.

~ Continuous conditionals are often only univariate.
= amenable to standard sampling methods.

> In case of graphical models, the conditional distributions depend
only on the variables in the corresponding Markov blankets.
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Gibbs Sampling

e Example
~ 20 iterations of Gibbs sampling on a bivariate Gaussian.

> Note: strong correlations can slow down Gibbs sampling.
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R\WNTH
Over-Relaxation [Adler 1981]

e Goal: Reduce random walk behavior in Gibbs sampling

> In its original form, applicable to problems for which conditional
distributions are Gaussian.

~ At each step of Gibbs sampling, the conditional distribution for
a particular component has man p; and variance o 2.

- Over-relaxation: replace value of z, by
2i = i+ alz — ) + oi(1 = af) 2w

where v is a Gaussian random variable with zero mean and unit
variance and -1 < o <1 (usually negative).

Y

This step leaves the desired distribution invariant because z,’
also has mean p,; and variance ¢ 2.

Effect of over-relaxation is to sample from a Gaussian that is
biased to the opposite side of the conditional distribution.

= Encourage directed motion when variables are highly correlateglO
B. Leibe
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How Should We Run MCMC?

e Arbitrary initialization means starting iterations are bad
~ Discard a “burn-in” period.

e How do we know if we have run for long enough?
> You don’t. That’s the problem.

e The samples are not independent
» Solution 1: Keep only every Mth sample (“thinning”).

> Solution 2: Keep all samples and use the simple Monte Carlo
estimator on MCMC samples

- It is consistent and unbiased if the chain has “burned in”.
= Use thinning only if computing f(x()) is expensive.

e For opinion on thinning, multiple runs, burn in, etc.

> Charles J. Geyer, Practical Markov chain Monte Carlo, Statistical Science.
7(4):473{483, 1992. (http://www.jstor.org/stable/2246094)
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Summary: Approximate Inference

e Exact Bayesian Inference often intractable.

e Rejection and Importance Sampling
~ Generate independent samples.
> Impractical in high-dimensional state spaces.

e Markov Chain Monte Carlo (MCMC)

» Simple & effective (even though typically computationally
expensive).

~ Scales well with the dimensionality of the state space.
~ Issues of convergence have to be considered carefully.

e Gibbs Sampling
» Used extensively in practice.
~ Parameter free

> Requires sampling conditional distributions.
B. Leibe
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References and Further Reading

e Sampling methods for approximate inference are
described in detail in Chapter 11 of Bishop’s book.

avi ¢ maocy Christopher M. P!ShOP . . & PATTERN RECOGNITION &
Pattern Recognition and Machine Learning ZPSNEINAF G
Information Theory, Inference, ; g CHRISTOPHER M. BISHOP E3
and Learning Algorithms Springer, 2006 & CH R M. BISHOP F§
" - David MacKay
, Information Theory, Inference, and Learning Algorithms
van L

Cambridge University Press, 2003

e Another good introduction to Monte Carlo methods can
be found in Chapter 29 of MacKay’s book (also available
online: http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html)
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