Advanced Machine Learning
Lecture 6

Probability Distributions

05.11.2012

Bastian Leibe

RWTH Aachen
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N
-—
.
Q
]
=
(@)
IE
c
-
®
Q
—
Q
£
N
(&)
(14}
=
©
Q
(&)
c
(1]
>
©
<

leibe®@vision.rwth-aachen.de




Announcement

e Exercise sheet 1 online
> Linear Regression
> Ridge Regression
» Kernel Ridge Regression
> Gaussian Process Regression
~ Exercise will be on Monday, 19.11.
= Please submit your results until 18.11. midnight.
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RWTH
This Lecture: Advanced Machine Learning

o Regression Approaches f X —- R
~ Linear Regression 1 1 vo |l e
. Regularization (Ridge, Lasso) \
> Kernels (Kernel Ridge Regression)

> @Gaussian Processes

e Bayesian Estimation & Bayesian Non-Parametrics

e
S

- Mixture Models & EM [ :

. Dirichlet Processes @ f_“ O \. V

. Latent Factor Models “ f . ‘
N

> Beta Processes

e SVMs and Structured Output Learning
> SV Regression, SVDD f . X N y

> Large-margin Learning
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RWTH
Recap: Bayesian Model Selection for GPs

e Goal
- Determine/learn different parameters of Gaussian Processes

e Hierarchy of parameters

» Lowest level
— w - e.g. parameters of a linear model.

> Mid-level (hyperparameters)
- 0 - e.g. controlling prior distribution of w.

> Top level
- Typically discrete set of model structures ..

e Approach

> Inference takes place one level at a time.
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RWTH
Recap: Model Selection at Lowest Level

e Posterior of the parameters w is given by Bayes’ rule
p(t‘Xv W, 97 HZ)P(W‘Ha X? H%)

plwlt X.0.76) = p(EIX, 0.7
_ p(t[ X, w, Ha)p(wl0, Hs)
p(t‘X,Q,H@')
e with
> p(t| X,w,H;) likelihood and
> p(wl0,H,) prior parameters w,

> Denominator (normalizing constant) is independent of the
parameters and is called marginal likelihood.

p(]X, 8, 1,) = / p(6]X, w0, Ho)p(wl|8, Hy)dw
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RWTH
Recap: Model Selection at Mid Level

e Posterior of parameters 6 is again given by Bayes’ rule

p(t|X, 0, H;:)p(0| X, H;)

p(t‘X, H%)
X070
p(t‘X, 7‘[@)

e where

- The marginal likelihood of the previous level p(t | X,0,H,)
plays the role of the likelihood of this level.

> p(0|H,) is the hyperprior (prior of the hyperparameters)
> Denominator (normalizing constant) is given by:

p(b1X, Hy) = / p(b1X, 0, H:)p(6[H:)do
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RWTH
Recap: Model Selection at Top Level

e At the top level, we calculate the posterior of the model

p(t| X, H:)p(H,;)
p(t]X)

p(%’i‘ta X) —

e where

- Again, the denominator of the previous level p(t| X, H,)
plays the role of the likelihood.

> p(H,;) is the prior of the model structure.
> Denominator (normalizing constant) is given by:

p(t|X) = Zp(tlx, H:)p(H,:)
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RWTH
Recap: Bayesian Model Selection

e Discussion

> Marginal likelihood is main difference to non-Bayesian methods

~ It automatically incorporates a trade-off
between the model fit and the model

complexity:
- A simple model can only account o[- simple
for a limited range of possible S D it

sets of target values - if a simple
model fits well, it obtains a high
posterior.

- A complex model can account for
a large range of possible sets of
target values - therefore, it can
never attain a very high posterior.

marginal likelihood, p(yIX,Hi}

Y
all possible data sets
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Topics of This Lecture

e Probability Distributions
~ Bayesian Estimation Reloaded

e Binary Variables
> Bernoulli distribution
> Binomial distribution
» Beta distribution

e Multinomial Variables
> Multinomial distribution
> Dirichlet distribution

e Continuous Variables
> Gaussian distribution
> Gamma distribution
> Student’s t distribution
» Exponential Family
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Motivation

e Recall: Bayesian estimation
p(X|0)p(0)

pelX) = [ pleld) ot

~ So far, we have only done this for Gaussian distributions, where
the integrals could be solved analytically.

> Now, let’s also examine other distributions...
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Conjugate Priors

e Problem: How to evaluate the integrals?

> We will see that if likelihood and prior have the same functional
form c- f(x), then the analysis will be greatly simplified and the
integrals will be solvable in closed form.

p(X|0)p®) = []cif(zn, 0)caf(6, )

= Hcf(a:n,@,a)

> Such an algebraically convenient choice is called a conjugate
prior. Whenever possible, we should use it.

~ To do this, we need to know for each probability distribution
what is its conjugate prior. = Topic of this lecture.

e What to do when we cannot use the conjugate prior?

= Use approximate inference methods. Next lecture...
B. Leibe
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Topics of This Lecture

e Binary Variables
> Bernoulli distribution
> Binomial distribution
» Beta distribution
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Binary Variables

e Example: Flipping a coin
~ Binary random variable x € {0,1}
> Outcome heads: z =1
> Outcome tails: = =0

» Denote probability of landing heads by parameter u
p(x = 1pu) = p

e Bernoulli distribution
» Probability distribution over z:

Bern(z|p) = p*(1—p)' ™"
Elz] = p
varlz] = p(l—p)
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The Binomial Distribution

e Now consider [V coin flips
. Probability of landing m heads: p(m heads|N, u)

e Binomial distribution
. N m —m
Bin(m|N, ) = <m>u (1 -

> Properties

Eim]| = Z mBin(m|N, u) = Nu

varim| = Z (m — E[m])? Bin(m|N, ) = Nu(1 — p)

» Note: Bernoulli is a special case of the Binomial for n = 1.

Slide adapted from C. Bishop B. Leibe
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RWNTH
Binomial Distribution: Visualization

0.3

02F
Bin(m|10,0.25)

0L
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RWNTH
Parameter Estimation: Maximum Likelihood

e Maximum Likelihood for Bernoulli
- Given adataset D = {z,...,x N} of observed values for x.

> Likelihood

N N

p(Dlp) = H (wnlp) = [ | (1 — )t —*n
n=1 n=1
N

logp(D|p) = Z logp(an|p) = Z {z,logp+ (1 —xy,)log(l —p)}

n=1 n=1

e Observation

~ The log-likelihood depends on the observations x,, only through
their sum.

= 3z, is a sufficient statistic for the Bernoulli distribution.
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ML for Bernoulli Distribution

logp(D|) = > {aylogp+ (1 2,)log(l — )}

n=1
N |

M V.logp(Dlp) = an TMZ“_%) = 0
“a n=1
< N N
= L=p)Y wn = py (11—,
S N N N
% n=1 n=1 n=1
(3]
= 1 N
© o
% e ML estimate: LML = Nz_:lscn
= "
<

17
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ML for Bernoulli Distribution

e Maximum Likelihood estimate

LS =T o heads 1, =1
= — ajn = — o
ML N 2 N for m heads (z, = 1)
e Discussion ]

- Consider a dataset D = {1,1,1}. — ML = = = 1

= Prediction: all future tosses will land head up!

= Overfitting to D!

Slide adapted from C. Bishop B. Leibe
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Bayesian Bernoulli: First Try

e Bayesian estimation

>

>

We can improve the ML estimate by incorporating a prior for L.
How should such a prior look like?

Consider the Bernoulli/Binomial form
N
p(Dlp) oc T w*r (1 — p)t ="
n=1

If we choose a prior with the same functional form, then we will
get a closed-form expression for the posterior; otherwise, a
difficult numerical integration may be necessary.

Most general form here:

p(pla,b) oc p(1 — p)®

This algebraically convenient choice is called a conjugate prior.

19
B. Leibe



The Beta Distribution

e Beta distribution
» Distribution over u € [0,1]:

Beta(u|a,b) = 5((5);(2 ua=1(1 — )2

- Where I'(x) is the gamma function

I‘(a:)z/ e du
0

for which I'(z + 1) = z! iff z is an integer.
= I'(z) is a continuous generalization of the factorial.

> The Beta distribution generalizes the Binomial to arbitrary
values of a and b, while keeping the same functional form.
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» It is therefore a conjugate prior for the Bernoulli and Binomial.
20
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Beta Distribution

e Properties

> In general, the Beta distribution is a suitable model for the
random behavior of percentages and proportions.

> Mean and variance

Eln] = —

a-+ b

ab
(a+b)?(a+b+1)

var[y] =
> The parameters a and b are often called hyperparameters,

because they control the distribution of the parameter .

~ General observation: if a distribution has K parameters, then
the conjugate prior typically has K+1 hyperparameters.
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Beta Distribution: Visualization

3 3
a—=20.1 a=1
b=0.1 b=1

2 ox"
g 1-k J- 1
s
)
]
=
< 0 : 0 '
o 0 0.5 u 1 0 0.5 L 1
g 3 3
§ a=2 a=38
| b=3 b=4
[} i
= > 2
=
(&)
©
= 1 1
©
Q
(&)
c
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0 L 0 i
©
b4 0 0.5 L 1 0 0.5 L 1
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Slide credit: C. Bishop B. Leibe Image source: C. Bishop, 2006




(9|
-
.
Q
P
=
(@))
.E
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

Bayesian Bernoulli

e Bayesian estimate

p(plao,bo, D) o p(D|w)p(|ao, bo)
= (H pe (1 — u)”’") Beta(p|ao, bo)

X [,Lm—I—aO_l(l . /.L)(N_m)—l_bo_l

x Beta(ulan,by)

> This is again a Beta distribution with the parameters
ay = ag+m by =bg+ (N —m)

= We can interpret the hyperparameters a and b as an effective
number of observations for x =1 and x = 0, respectively.

» Note: a and b need not be integers!

Slide adapted from C. Bishop B. Leibe
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Sequential Estimation

e Prior - Likelihood = Posterior

> The posterior can act as a prior if we observe additional data.
> The number of effective observations increases accordingly.

e Example: Taking observations one at a time

2 : 2 — 2 :
prior likelihood function posterior
| . | / Ly
0 ' 0 ' 0 '
0 0.5 1 0 0.5 1 0 0.5 1

T p p
Beta(p|la = 2,b=2) Bin(m =1|N =1,u) Beta(ula = 3,b=2)

= This sequential approach to learning naturally arises when we
take a Bayesian viewpoint.
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Properties of the Posterior

e Behavior in the limit of infinite data
> As the size of the data set, IV, increases

anNy = Gap+m—m
by = bo—l-N—?’)’L—)N—m
anN m
E — > —=
|14 an + by N HUML
b
varju| = INON >0

(any +bn)*(an +bn +1)

= As expected, the Bayesian result reduces to the ML result.

(9|
-
.
Q
P
=
(@))
IE
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
(1
3
<

25

Slide adapted from C. Bishop B. Leibe



(9|
-
.
Q
P
=
(@))
.E
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

Prediction under the Posterior

e Predict the outcome of the next trial
> “What is the probability that the next coin toss will land heads

up?”
= Evaluate the predictive distribution of = given the observed
data set D:
1
p(il? — 1‘&0, b()aD) — / p(CU — 1|“’)p(ﬂla’07 bDa D) dIUJ
0

1
/ up(p|ao, bo, D) dp
0

a
= E[ulao, bo, D] = %

» Simple interpretation: total fraction of observations that
correspond to = = 1.

26
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Topics of This Lecture

e Multinomial Variables
> Multinomial distribution
> Dirichlet distribution
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Multinomial Variables

e Multinomial variables
» Variables that can take one of K possible distinct states

. Convenient: 1-of-K coding scheme: x = (0,0,1,0,0,0)"

e Generalization of the Bernoulli distribution
> Distribution of x with K outcomes

p(x|p) = Hu

with the constraints

K
Vk:ur, >0 and Zukzl

Slide adapted from C. Bishop B. Leibe
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Multinomial Variables

e Properties
> Distribution is normalized

> Expectation

X|I'l’ ZpX“‘l’X_(Mlvnu‘K) — M

» Likelihood given a data set D = {x X v}
K
(X, zn
p(Dlp) = HHM%’“_H% 2 = ][
n=1k=1 k=1

where m, is the number of cases for which x, has output £.

Slide adapted from C. Bishop B. Leibe

29



(9|
—
.
Q
P
=
(@))
.E
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

ML Parameter Estimation

e Maximum Likelihood solution for
> Need to maximize

K
log p(D|w) logHuk =) " my log uk

Under the constraint ), u, =1

e Solution with Lagrange multiplier

K K
arg max mz lo + A —1
g ) Z k 10g [l (Zﬂk )

k=1 k=1

» Setting the derivative to zero yields

M

pr = —mp/X e = ~

Slide adapted from C. Bishop B. Leibe
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The Multinomial Distribution

e Multinomial Distribution
> Joint distribution over m _,...,m, conditioned on i and N

N K
Mult(my, ma,...,mg|u, N) = (m1m2 mK) py:
L1

with the normalization coefficient

N N!
mims ... Mg milmo! .. .mg!

> Properties
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Emg] = Npug
varfmg] = Npuk(l — px)
covimymg| = —Npu;puy
B. Leibe

Slide adapted from C. Bishop
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Bayesian Multinomial

e Conjugate prior for the Multinomial

- Introduce a family of prior distributions for the parameters {1, }
of the Multinomial.

~ The conjugate prior is given by
K
ap—1
p(p|a) o H "
k=1

with the constraints

K
Vk:0<ppr <1 and Y =1
k=1

32
B. Leibe



The Dirichlet Distribution

e Dirichlet Distribution
> Multivariate generalization of the Beta distribution

R . 0 Oé,tg—]. o N
Dir(p|la) = Tlon) - T(ag) klzll [ with g = 321 Qg

s
Y « Properties r
=
i > The Dirichlet distribution over K variables
= is confined to a K-1 dimensional simplex.
8 . (8958
:', > Expectations: E[,Uk] - 2 )
= o7y
E ar(ag — ag)
g V&I‘[/J,k- — k2 0 k Hs3
B ' ag(og +1)
% cov| ' %Ak
vimiugl = —
g ratt o3(ap + 1)

33
Image source: C. Bishop, 2006

Slide adapted from C. Bishop B. Leibe
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UNIVERSITY
Dirichlet Distribution: Visualization

N
=
s
Q
whd
=
=
O
IE
c
S
©
o
-
o
=
e
o
= 0
= ap = 1071 oy, = 10 oy, = 10
Q

o

c

©

>

©

<

. 34
Slide credit: C. Bishop B. Leibe Image source: C. Bishop, 2006
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RWNTH
Bayesian Multinomial

e Posterior distribution over the parameters {1}
p(|D, o) o p(D|p)p(pe] ) o H ppk et

» Comparison with the definition gives us the normalization factor

p(n/D,a) = Dir(p|a+ m)
_ F(Ofo + N) H o ma]
Iag +mq) - T(ax + mg)

= We can interpret the parameters «; of the Dirichlet prior as an
effective number of observations of x, = 1.

35

Slide adapted from C. Bishop B. Leibe



Topics of This Lecture

e Continuous Variables
> Gaussian distribution
> Gamma distribution
> Student’s t distribution
» Exponential Family
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The Gaussian Distribution

e One-dimensional case !
> Mean u

)
N(z|p,0?)

> Variance o2

Nalp.o?) = —=—exp {_ (2 —p)’ }

v

e Multi-dimensional case
> Mean u

> Covariance X
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Nl D) = e exp {50 0= - )

B. Leibe

37
Image source: C.M. Bishop, 2006



RWTH
Gaussian Distribution - Properties

e Central Limit Theorem

“The distribution of the sum of Vi.i.d. random variables
becomes increasingly Gaussian as /N grows.”

~ In practice, the convergence to a Gaussian can be very rapid.
> This makes the Gaussian interesting for many applications.

e Example: N uniform [0,1] random variables.
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B. Leibe

Slide adapted from C. Bishop
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RWNTH
Gaussian Distribution - Properties

e Properties

e Limitations

~ Distribution is intrinsically unimodal, i.e. it is unable to provide
a good approximation to multimodal distributions.

= We will see how to fix that with mixture distributions later...

B. Leibe
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RWTH
Bayes’ Theorem for Gaussian Variables

e Marginal and Conditional Gaussians

» Suppose we are given a Gaussian prior p(x) and a Gaussian
conditional distribution p(y|x) (a linear Gaussian model)

px) = N (xlp A7)
p(ylx) = N(y|Ax—|—b,L_1)

~ From this, we can compute
p(y) = N(ylAp+b L'+ AATAT)
p(xly) = NEZ{A'L(y —b)+ Au},X)

where
>=(A+A'LA)!

= Closed-form solution for (Gaussian) marginal and posterior.
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RWNTH
Maximum Likelihood for the Gaussian

e Maximum Likelihood
- Giveni.i.d. data X = (x_,...,x,)’, the log likelihood function is

given by
ND N
logp(X[p, X) = ———log(2m) — - log |X]
| N
D) (x5 — ﬂ)Tz_l(Xn — 1)

n=1

e Sufficient statistics
» The likelihood depends on the data set only through

N N
E X, E XpX,

> Those are the sufficient statistics for the Gaussian distribution.
41
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ML for the Gaussian

e Setting the derivative to zero

0
o Inp(X|p, = Zz

> Solve to obtain
1 N
Hve = % nz::l Xn-

> And similarly, but a bit more involved

A
EML:NZ — i )(

n=1

Slide credit: C. Bishop B. Leibe
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ML for the Gaussian

e Comparison with true results
> Under the true distribution, we obtain

E[HML] — M
N —1
EXwvL] = TE.

= The ML estimate for the covariance is biased and
underestimates the true covariance!

» Therefore define the following unbiased estimator
. (A
Y= D (%n — tiagr) (%0 — o)

n=1

Slide adapted from C. Bishop B. Leibe
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RWTH
Bayesian Inference for the Gaussian

e Let’s begin with a simple example
» Consider a single Gaussian random variable .
> Assume o? is known and the task is to infer the mean .

- Giveni.i.d. data X = (x,,...,z,)’, the likelihood function for p is
given by

1

n=1 n—

> The likelihood function has a Gaussian shape as a function of ..
= The conjugate prior for this case is again a Gaussian.

p(p) = N (plpo, a5) -

44
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RWNTH
Bayesian Inference for the Gaussian

e Combined with a Gaussian prior over y
p(p) = N (ulpo, a5) -
~ This results in the posterior

p(p]x) oc p(x|p)p(p).

> Completing the square over i, we can derive that

p(p|x) =N (ulpn, o)

where N
0'2 _|_ NO'g 1 Z
p— 4 — 7 x
1 B 1 n N
JJQV a 0‘8 o2
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Visualization of the Results

e Bayes estimate:
oo + Nodumr

N = 02+ No3
1 1 N
i S i

On o O

e Behavior for large v
N=0 N -—x

N 204, HML
0% od 0
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po =0

Image source: C.M. Bishop, 2006
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RWNTH
Bayesian Inference for the Gaussian

e More complex case

> Now assume  is known and the precision ) shall be inferred.

» The likelihood function for A = 1/0° is given by
N

A
p(X|\) = HN B, A7) ox AN/2 exp{ > (- )

n=1

> This has the shape of a Gamma function of ).

Slide adapted from C. Bishop B. Leibe
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The Gamma Distribution

e Gamma distribution
» Product of a power of \ and the exponential of a linear function

of ). .
Gam(\a,b) = b\ exp(—bA
. (Aa:b) = o p(—bA)
3 :
§ e Properties
o > Finite integral if a>0 and the distribution itself is finite if a>1.
= > Moments EN\ = a4 var|\| = l
O b b2
| . . .
o > Visualization
< 2 2 o) .
8 a=0.1 = 1 a =4
p— b=0.1 b=1 b=6
= 1 1 1 1t
(&)
% \
% 0 1 — 0 ; 0 .
< 0 | 2 0 i i 2 0 A 1

2 48
Image source: C.M. Bishop, 2006
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Slide adapted from C. Bishop

RWNTH
Bayesian Inference for the Gaussian

e Bayesian estimation

. Combine a Gamma prior Gam(A\|ag, bg) with the likelihood
function to obtain

N
. A
p(ANX) ox X2~ IA\N/2 exp {—bo)\ — 3 Z:l(xn - ,u)2}
- We recognize this again as a Gamma function Gam(\|ay, by )
with

N

any = ao-+ 5
N

1 N

bN — b0—|— 5;(3371—“)2 :bO+?O§4L'

B. Leibe
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RWNTH
Bayesian Inference for the Gaussian

e Even more complex case
> Assume that both ;s and )\ are unknown
> The joint likelihood function is given by

o) = I (2—);)/ exp {;lcc . m?}

n=1

x [ A2 exp —)\le Nexp )\,ug::c —iixQ
2 — "2 "

= Need a prior with the same functional dependence on i and .

Slide adapted from C. Bishop B. Leibe
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RWNTH
The Gaussian-Gamma Distribution

e Gaussian-Gamma distribution

p(ps A) = N (plpo, (BA) ™) Gam(N|a, b)

YRS

(N J J
Y Y

e Quadratic in . + Gamma distribution over \.
* Linear in \. * Independent of L.

2

-2 0 2

e Visualization
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RWNTH
Bayesian Inference for the Gaussian

e Multivariate conjugate priors
> wunknown, A known: p(u) Gaussian.

> A unknown, u known: p(A) Wishart,

W(A|W,v) = B|A|VP=D 2 exp (—%Tr(WlA)) .

> A and u unknown: p(u,A) Gaussian-Wishart,
p(ua A‘/’I’OJ /87 WJ V) — N(MHMO: (BA)_l) W(A‘W) V)

Slide adapted from C. Bishop B. Leibe
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Student’s t-Distribution

e Gaussian estimation

» The conjugate prior for the precision of a Gaussian is a Gamma
distribution.

. Suppose we have a univariate Gaussian NM(z | u,™ 1) together
with a Gamma prior Gam(7| a,b).

» By integrating out the precision, obtain the marginal distribution

p(x|p,a,b) = /OOON(w\u,T_l)Gam(T\a,b)d’r
= [ A (el (0 ) Gamnlal /2, v/2)

> This corresponds to an infinite mixture of Gaussians having the
same mean, but different precision.

(9|
-
.
Q
P
=
(@))
.E
C
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

53

Slide adapted from C. Bishop B. Leibe



Student’s t-Distribution

e Student’s t-Distribution
- We reparametrize the infinite mixture of Gaussians to get

e Parameters
. “Precision” A=a/b
- “Degrees of freedom” v = 2a.
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Student’s t-Distribution: Visualization o

0.5

VvV — OO

Longer-tailed
distribution!

= More robust
to outliers...

e Behavior
| vr=1 vV — 0

St(a|u, A, v) | Cauchy N (|, A1)
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Image source: C.M. Bishop, 2006
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Student’s t-Distribution

e Robustness to outliers: Gaussian vs t-distribution.

0.5 - - 0.5

04r 04}

03} 03l
0.2} 0.2}

0.1} 0.1}

-5 0 5 10 -5 0 5 10

= The t-distribution is much less sensitive to outliers, can be used
for robust regression.

= Downside: ML solution for t-distribution requires EM algorithm.

56
Image source: C.M. Bishop, 2006
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RWNTH
Student’s t-Distribution: Multivariate Case

e Multivariate case in D dimensions
St(x|w, A,v) = / N (x|, (nA)~HGam(n|v/2,v/2) dn
0

I'(D/2+v/2) |A|Y/? {1 A_QI_D/Q_V/Q
['(v/2) CORE

vV

where A® = (x — u)' A(x — p) is the Mahalanobis distance.

e Properties

cov|x| = AL ifr>2

mode|x| = u

(9|
-
.
Q
P
=
(@))
IE
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

Slide credit: C. Bishop B. Leibe



RO INVERSITY
References and Further Reading

e Probability distributions and their properties are
described in Chapter 2 of Bishop’s book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006
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