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RWTH
This Lecture: Advanced Machine Learning

e Regression Approaches f X = R

> Linear Regression
. Regularization (Ridge, Lasso) J
> Support Vector Regression

> @Gaussian Processes

e Learning with Latent Variables (-~ i®

- EM and Generalizations OO0 \. )

- Dirichlet Processes p ) — > :
e Structured Output Learning . Y y

. Large-margin Learning f . —
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Topics of This Lecture

e Recap: Probabilistic View on Regression

e Properties of Linear Regression
> Loss functions for regression
> Basis functions
> Multiple Outputs
» Sequential Estimation

e Regularization revisited
~ Regularized Least-squares
~ The Lasso
> Discussion

e Bias-Variance Decomposition

B. Leibe



Recap: Probabilistic Regression

e First assumption:

> Our target function values ¢ are generated by adding noise to
the ideal function estimate:

o (S0
value / \

Regression function Input value Weights or
parameters

e Second assumption: "
> The noise is Gaussian distributed.

plthx,w. §) = Ntly(x. w). 6, ")
7\

y(.’Eo,W)

Zo €T

Mean Variance
(B precision)
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Slide adapted from Bernt Schiele B. Leibe
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Recap: Probabilistic Regression

e Given
- Training data points: X = [x1,...,%,] € R¥*"
- Associated function values: t = [t1,...,tn]"

e Conditional likelihood (assuming i.i. d data)

p(tX, W, 5) = HN o |(%0, W HN bW B(x,), 9
n=1 /
= Maximize w.r.t. w, Generalized linear

regression function

Slide adapted from Bernt Schiele B. Leibe
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RWNTH
Recap: Maximum Likelihood Regression

Vw log p(t|X, w, §) —ﬁzt — W' (X)) H(Xn)

e Setting the gradient to zero.
N

0= -0 Z(tn — WTd)(Xn))Qs(Xn)
g Ztnqb(xn) — |:Z ¢<Xn)¢(xn)T:| W

& ot =0 w S = [p(x1),...,0(xp)]

B T\—1
<~ WML = (‘I"I’ ) ®t ¥—— Same as in least-squares

regression!

= Least-squares regression is equivalent to Maximum Likelihood
under the assumption of Gaussian noise.
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RWNTH
Recap: Role of the Precision Parameter

e Also use ML to determlne the precision parameter G

logp(t|X, w, (3) 6 Z{t — W gb Xn,) } 4+ — log,(j’ — E log(2)

e Gradient w.r.t. (:
N1

Valogp(t| X, w, () ——Z{t — W qﬁxn)} 33

% = —Z{t —wo(x,)}"

=> The inverse of the noise precision is given by the residual
variance of the target values around the regression function.
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Recap: Predictive Distribution

e Having determined the parameters w and (3, we can
now make predictions for new values of x.

p(t|X, W, Bur) = N (t|y(x, W), Bat,)

e This means

> Rather than giving a point Lt
estimate, we can now also 2
give an estimate of the
estimation uncertainty.

B. Leibe Image source: C.M. Bishop, 2006



RWTH
Recap: Maximum-A-Posteriori Estimation

e Introduce a prior distribution over the coefficients w.

> For simplicity, assume a zero-mean Gaussian distribution

(M+1)/2
p(w|a) = N(wl|0,a 1) = (%) exp {—%WTW}

> New hyperparameter « controls the distribution of model
parameters.

e Express the posterior distribution over w.
> Using Bayes’ theorem:

p(w|X,t, 3, ) o< p(t| X, w, B)p(w]|a)

> We can now determine w by maximizing the posterior.
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> This technique is called maximum-a-posteriori (MAP).

B. Leibe



Recap: MAP Solution

e Minimize the negative logarithm
—logp(w|X, t, 3,a) o< —logp(t| X, w, 3) — log p(w|a)

N
0B p(t1X,w,9) = 5 3 {yla,w) 1)+ cons

—log p(w|a) = %WTW + const

e The MAP solution is therefore
~ n; T tn ~ T
argmln Z{y X } + 2W 4

= Maximizing the posterior distribution is equivalent to
minimizing the regularized sum-of-squares error (with A =
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RWNTH
MAP Solution (2)

N
Vwlogp(w|X,t,8,a) = —0 Z(t” —wlo(x,))d(x,) + aw
n=1
e Setting the gradient to zero:

0 = B3 (tn — W'G(x.))d(xa) + aw

o
W+ —W

N N
< Ztngb(xn) — [Z ¢(Xn)¢(xn)T

& Bt = ((I)(I)T + 31) w P = [p(x1),...,P(Xn)]

1
& Wiap = (<I><I>T n %Q\(I)t

Effect of regularization:

Keeps the inverse well-conditioned
11

KR
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Recap: Bayesian Curve Fitting

e Given
- Training data points: X = [x1,...,%,] € R¥*"
- Associated function values: t = [t1,...,tn]"

~ Our goal is to predict the value of ¢ for a new point x.

e Evaluate the predictive distribution

pltfe.X,6) = [ e, wip(w/X, t)dw

™~

What we just computed for MAP

~ Noise distribition - again assume a Gaussian here

p(tlz, w) = N(tly(x, w), 57"

> Assume that parameters o and (3 are fixed and known for now.
12
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Recap: Bayesian Curve Fitting

e Under those assumptions, the posterior distribution is a
Gaussian and can be evaluated analytically:

p(tlz, X, t) = N(t|m(z), s*(z))
- where the mean and variance are given by

" |
m(z) = Bp()"S Y d(xn)tn ]| 7

; 1
s(z)? = 67" + o(z)" S¢(x) \C/ |

> and S is the regularized covariance matrix ° e !

N
S'=al+8) ¢(xn)d(xn)"
n=1

13

B. Leibe Image source: C.M. Bishop, 2006



Topics of This Lecture

e Properties of Linear Regression
> Loss functions for regression
> Basis functions
> Multiple Outputs
» Sequential Estimation
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Loss Functions for Regression

e Given p(y, X, w, 3), how do we actually estimate a
function value y, for a new point x,?

e We need a loss function, just as in the classification case
L: RxR — RT

(tn;y(Xn)) = L(tn, y(%n))

e Optimal prediction: Minimize the expected loss

// (¢, y(x))p(x,t) dx dt

Slide adapted from Stefan Roth B. Leibe
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Loss Functions for Regression

// (t,y(x))p(x,t)dxdt
e Simplest case

. Squared loss:  L(t,y(x)) = {y(x) — t}°
» Expected loss

:/ {y(x) — t}°p(x,t) dx dt

= 2 / {y(x) — )7 p(x, t)dt = 0
& /tp(x,t)dt = y(x)/p(x,t)dt

Slide adapted from Stefan Roth B. Leibe

16
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Loss Functions for Regression

[t = ye) [ pix oy
& yx) = /tp(x’t)dt:/tp(ﬂx)dt

p(x)
< y(x) = Eltfx]

e Important result

> Under Squared loss, the optimal regression function is the
mean E [¢|x] of the posterior p(t]|x).

» Also called mean prediction.

~ For our generalized linear regression function and square loss,
we obtain as result

y(x) = / N (tlw $(x), 5~1)dt = w” d(x)

Slide adapted from Stefan Roth B. Leibe
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Visualization of Mean Prediction

mean prediction

Y(xg) pm==m———————-=o

iy X
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Slide adapted from Stefan Roth B. Leibe Image source: C.M. Bishop, 2006
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Loss Functions for Regression

e Different derivation: Expand the square term as follows

{y(x) — t}* = {y(x) — Elt|x] + Eft|x] — t}*
= {y(x) — E[t|x]}* + {E[t|x] -}
+2{y(x) — Blt[x|}{E[t[x] -t}

e Substituting into the loss function
> The cross-term vanishes, and we end up with

E[L] = /{y E[t\x} p(x )dx+/var t|x] p(x) dx

H_J
Optimal least-squares predictor Intrinsic variability of target data
given by the conditional mean = Irreducible minimum value

of the loss function

19
B. Leibe
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Other Loss Functions

e The squared loss is not the only possible choice
» Poor choice when conditional distribution p(¢ | x) is multimodal.

e Simple generalization: Minkowski loss
L(t,y(x)) = ly(x) — t|*
> Expectation

E[L,] = / y(x) — t]7p(x, t)dxdt

 Minimum of E[L | is given by
> Conditional mean for g =2,

» Conditional median for ¢ =1,
» Conditional mode for ¢ =0.

B. Leibe

20



Minkowski Loss Functions

2 2
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Topics of This Lecture

e Properties of Linear Regression
> Loss functions for regression
> Basis functions
> Multiple Outputs
» Sequential Estimation
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Linear Basis Function Models

e Generally, we consider models of the following form

- where ¢,(x) are known as basis functions.
- Typically, ¢,(x) = 1, so that w, acts as a bias.

- In the simplest case, we use linear basis functions: ¢,(x) = .

e Let’s take a look at some other possible basis
functions...

Slide adapted from C.M. Bishop, 2006 B. Leibe

23



Linear Basis Function Models (2)

e Polynomial basis functions

di(z) = x7

e Properties

> Global

= A small change in = affects all
basis functions.
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RWNTH
Linear Basis Function Models (3)

e Gaussian basis functions

b, (x) = exp {_ (z ;SI;J )2 } 1 \ \

0.75}
05t |
* Properties
> Local 055
= A small change in z affects
only nearby basis functions. 0 B O 1

> p;and s control location and
scale (width).
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Slide adapted from C.M. Bishop, 2006 B. Leibe Image source: C.M. Bishop, 2006




RWNTH
Linear Basis Function Models (4)

e Sigmoid basis functions

i) = (L512) o

> where

1 0.5
o(a) = 1+ exp(—a)

0.25 |
e Properties

> Local 0

= A small change in = affects
only nearby basis functions.

> p; and s control location and
scale (slope).
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Slide adapted from C.M. Bishop, 2006 B. Leibe Image source: C.M. Bishop, 2006




Topics of This Lecture

e Properties of Linear Regression
> Loss functions for regression
> Basis functions
> Multiple Outputs
» Sequential Estimation
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Multiple Outputs

e Multiple Output Formulation
» So far only considered the case of a single target variable .

> We may wish to predict K > 1 target variables in a vector t.
~ We can write this in matrix form

N
:E'! Y(wi) — WT¢(X)
S > where
(@))
£ T
= y =[y1,---YK]
Q
T
?c'a o(x) = [1,01(x), -, dmr—1(x),]
& - 17
I Wo,1 Wo,K
3 W=
o
S  WM-11 o WM-1,K |
<

B. Leibe
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Slide adapted from C.M. Bishop, 2006

Multiple Outputs (2)

p(tlx, W,5) =

e Analogously to the single output case we have:

N (tly(W,x), 67'1)
N(t|W'p(x), 371).

e Given observed inputs, X = {x1,..
T = [t1,...,tn]", we obtain the log likelihood function

N
D N (t,[Whg(x,), 67'T)
n=1

B. Leibe

_F

N

.,XN}, and targets,

29
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Multiple Outputs (3)

e Maximizing with respect to W, we obtain
—1
W, = (<I>T<I>) 37T,
e |f we consider a single target variable, ¢,, we see that
—1
Wy = (<I>T<I>) 3Ty, — &',

where t; = [tik,....tnk]", which is identical with the
single output case.

Slide adapted from C.M. Bishop, 2006 B. Leibe
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Topics of This Lecture

e Properties of Linear Regression
> Loss functions for regression
> Basis functions
> Multiple Outputs
> Sequential Estimation

(9|
-
.
Q
i
=
(@))
IE
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
(1
3
<

31

B. Leibe



Sequential Learning

e Up to now, we have mainly considered batch methods
» All data was used at the same time

> Instead, we can also consider data items one at a time
(a.k.a. online learning)

e Stochastic (sequential) gradient descent:
w ) = w _yvE,
= w4 pt, —w T B(x,))P(xn).
e This is known as the least-mean-squares (LMS)
algorithm.
e |ssue: how to choose the learning rate 7?
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Slide adapted from C.M. Bishop, 2006 B. Leibe
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Topics of This Lecture

e Regularization revisited
> Regularized Least-squares
> The Lasso
> Discussion
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Regularization Revisited

e Consider the error function

Data term + Regularization term

e With the sum-of-squares error function and a quadratic
regularizer, we get

] A
5 Z{tn —wip(x,))” + §WTW
n=1

e which is minimized by \is called the

W — ()\I n <I>T<I>) ! Tt regularization
coefficient.
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Regularized Least-Squares

e Let’s look at more general regularizers

—Z{t — W ()} + Z\wglq

o LCI norms”’
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q=0.5 qg=1 q=2 qg=4
“Lasso” “Ridge
. »
Regression -

Slide adapted from C.M. Bishop, 2006 B. Leibe Image source: C.M. Bishop, 2006
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Recall: Lagrange Multipliers
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Regularized Least-Squares

e We want to minimize

—Z{t — W ()} + Z\wglq

e This is equivalent to minimizing
N
1
B Z{tn - WT¢(XR)}2
n=1

» subject to the constraint
M

D lwjlt <

j=1
> (for some suitably chosen 1)

B. Leibe
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Regularized Least-Squares

o Effect: Sparsity for g < 1.
»  Minimization tends to set many coefficients to zero

W2 W2 a

N\

e Why is this good?
e Why don’t we always do it, then? Any problems?

B. Leibe
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The Lasso

e Consider the following regressor

N M
1
Wlasso — al'g m“ifn § Z:l{tn — WTCb(X’n)}Q + A 2:1 ‘w.ﬂ‘
n= j=

> This formulation is known as the Lasso.

e Properties

~ L, regularization = The solution will be sparse
(only few coefficients will be non-zero)

> The L, penalty makes the problem non-linear.
= There is no closed-form solution. _
— Need to solve a quadratic programming problem. /

- However, efficient algorithms are available with
the same computational cost as for ridge regression.
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Image source: C.M. Bishop, 2006
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Lasso as Bayes Estimation

e Interpretation as Bayes Estimation
1 N M
. : T 2 |4
W = argmin =3t~ wPo06)1 £ A by
n=1 7=1
- We can think of |w |? as the log-prior density for w..

e Prior for Lasso (¢ = 1): Laplacian distribution

P(W)=iexp{—|vv!/'r} with 7=

1
2T A
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Analysis

e Equicontours of the prior distribution

| | | | |
| | | |
e Analysis
> For ¢ <1, the prior is not uniform in direction, but

concentrates more mass on the coordinate directions.

» The case g = 1 (lasso) is the smallest ¢ such that the constraint
region is convex.

= Non-convexity makes the optimization problem more difficult.

» Limit for ¢ = 0: regularization term becomes 2;_; y 1= M.
= This is known as Best Subset Selection.
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Discussion

e Bayesian analysis

~ Lasso, Ridge regression and Best Subset Selection are Bayes
estimates with different priors.

- However, derived as maximizers of the posterior.
~ Should ideally use the posterior mean as the Bayes estimate!

= Ridge regression solution is also the posterior mean, but Lasso
and Best Subset Selection are not.

e We might also try using other values of g besides 0,1,2...
» However, experience shows that this is not worth the effort.
» Values of ¢ € (1,2) are a compromise between lasso and ridge
- However, |w |7 with ¢ > 1 is differentiable at 0.
= Loses the ability of lasso for setting coefficients exactly to zero.

42
B. Leibe
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Topics of This Lecture

e Bias-Variance Decomposition
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Bias-Variance Decomposition

e Recall the expected squared loss,

/{y } p(x dX+//{h ) —t} p(x t)dxdt

4

> where

h(x) = E[t|x] = /tp(t\x) dt

e The second term of E|L| corresponds to the noise
inherent in the random variable ¢.

e What about the first term?
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Bias-Variance Decomposition

e Suppose we were given multiple data sets, each of size
N. Any particular data set D will give a particular

function y(x;D). We then have
{y(x: D) — h(x)}?
= {y(x;D) —Eply(x; D)] + Eply(x; D)] — h(x)}’
= {y(xD) - Eply(x;D)|}* + {Epy(x; D)] — h(x)
+2{y(x; D) — Eply(x; D) H{Ep[y(x; D)] — h(x)}.
e Taking the expectation over D vyields

Ep [{y(x; D) — h(x)}?]
— \{ED y(x;D)] — h(X)}QJ—I-EED [{y(X; D) — Ep|y(x; D)]}Q] ,
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Bias-Variance Decomposition

e Thus we can write

expected loss = (bias)? 4 variance + noise

- Where
tins)® = [{Eoly(xiD)] - hx)}p(x) dx
variance = /ED {y(x; D) — Eply(x; D)]}*] p(x) dx

noise = / f {h(x) — t}?p(x,t) dx dt
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Bias-Variance Decomposition

e Example

~ 25 data sets from the sinusoidal, varying the degree of
regularization, ).

InA=26
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Bias-Variance Decomposition

e Example

~ 25 data sets from the sinusoidal, varying the degree of

regularization, ).
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e Example

regularization, ).
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Bias-Variance Decomposition

~ 25 data sets from the sinusoidal, varying the degree of
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The Bias-Variance Trade-Off

e Result from these plots 0.15

> An over-regularized model
(large \) will have a high

bias. 0.09}
> An under-regularized model

(bias)*
Vanance

0.12 1

(blas) + Varlance
test error

0.06 |

(small \) will have a high
variance. 0.03 ‘>%
0

-3 2
In A

e We can compute an estimate for the generalization
capability this way (magenta curve)!
» Can you see where the problem is with this?
= Computation is based on average w.r.t. ensembles of data sets.
= Unfortunately of little practical value...
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RWNTH
References and Further Reading

e More information on linear regression, including a
discussion on regularization can be found in Chapters
1.5.5 and 3.1-3.2 of the Bishop book.

: . BT~ e
Christopher M. Bishop %] PATTERN RECOGNITION &

cqs . . Z E
Pattern Recognition and Machine Learning S CH;‘{';}E’,!L’}ERLNEABRIQ':;?P

Springer, 2006

Data Mining, Inference, and Prediction

T. Hastie, R. Tibshirani, J. Friedman
Elements of Statistical Learning
2nd edition, Springer, 2009

e Additional information on the Lasso, including efficient
algorithms to solve it, can be found in Chapter 3.4 of the
Hastie book.
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