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Computer Vision — Lecture 18

Repetition

09.07.2019

Bastian Leibe

Visual Computing Institute
RWTH Aachen University
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Announcements

* Today, I'll summarize the most important points from the
lecture.
> Itis an opportunity for you to ask questions...
> ...or get additional explanations about certain topics.
> S0, please do ask.

* Today’s slides are intended as an index for the lecture.
> But they are not complete, won’t be sufficient as only tool.
> Also look at the exercises — they often explain algorithms in detail.
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Repetition

* Image Processing Basics
> Image Formation
> Linear Filters
> Edge & Structure Extraction

* Segmentation & Grouping

Object Recognition

Local Features & Matching
* Deep Learning

3D Reconstruction

B. Leibe

Pinhole camera model

o‘zbje:ct % g image

Lenses, focal length, aperture

Color sensors
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Recap: Pinhole Camera

* (Simple) standard and abstract model today
> Box with a small hole in it
> Works in practice

e
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Source: Forsyth & Ponce B. Leibe
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Recap: Focus and Depth of Field

R
e N
5 st P NG
2o g
— N
I al2 . - I
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I ! Axis & . SR
! ~ a’l
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~ g e
— ~  Point

in focus

u

v

* Depth of field:
IS tolerable

Source: Shapiro & Stockman

]
v

Blur

circle

“circles of confusion”

Thin lens: scene points
at distinct depths come
In focus at different
Image planes.

(Real camera lens
systems have greater
depth of field.)

distance between image planes where blur

B. Leibe



RWTH
Recap: Field of View and Focal Length

* As fgets smaller, image
becomes more wide angle

> More world points project
onto the finite image plane

Field of view

* As f gets larger, image
becomes more telescopic

> Smaller part of the world
projects onto the finite image
plane
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B. Leibe from R. Duraiswami
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Recap: Color Sensing in Digital Cameras

Bayer grid

Estimate missing compo-
nents from neighboring
values (demosaicing)
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B. Leibe Source: Steve Seitz
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Repetition

* Image Processing Basics
> Image Formation
> Linear Filters
> Edge & Structure Extraction

* Segmentation & Grouping

Object Recognition

Local Features & Matching
* Deep Learning

3D Reconstruction

B. Leibe

Derivative operators

o

Gaussian/Laplacian pyramid




Recap: Effect of Filtering

* Noise introduces high frequencies. To
remove them, we want to apply a “low- —O’J:’\_\

pass’ filter.

* The ideal filter shape in the frequency
domain would be a box. But this
transfers to a spatial sinc, which has S
Infinite spatial support.

* A compact spatial box filter transfers to
a frequency sinc, which creates N~ —0
artifacts. - -

* A Gaussian has compact support in
both domains. This makes it a
convenient choice for a low-pass filter. N 4

B. Leibe
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Recap: Gaussian Smoothing S

e Gaussian kernel
1 _ @242
Gy = e 202
2ol

* Rotationally symmetric

* Weights nearby pixels more
than distant ones

> This makes sense as
‘probabilistic’ inference
about the signal

* A Gaussian gives a good model
of a fuzzy blob
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B. Leibe Image Source: Forsyth & Ponce



RWNTH
Recap: Smoothing with a Gaussian

 Parameter o is the “scale” / “width” / “spread” of the
Gaussian kernel and controls the amount of smoothing.

2

Is

=

=

)

AN 0 10 20 30 0 10 20 30 0 10 20 30
.é for sigma=1:3:10

=S h = fspecial ('gaussian‘', fsize, sigma) ;
§ out = imfilter(im, h);

é imshow (out) ;

o) pause;

- end

Slide credit: Kristen Grauman B. Leibe
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Recap: Resampling with Prior Smoothing

206 x 256 128 x 128 64 x 64 32 %32 16 x 16
SRR - Artifacs!

no
= smoothing
L
l RN

!QOH

Gaussian
g=1

Gaussian
=2

* Note: We cannot recover the high frequencies, but we can
avoid artifacts by smoothing before resampling.

(@)
o
()]
-
=
>
(0))
(s
S
D
>
o
9
>
o
=
(@)
@)

12
Image Source: Forsyth & Ponce

B. Leibe
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Recap: The Gaussian Pyramid

Low resolution G, = (Gs 93U53|an) 12

N . down-sample

 blur - OW” -Sample

=(G*gaussian) ¥ 2 — .
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High resolution 13

B. Leibe Source: Irani & Basri



Recap: Derivatives and Edges...

10
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RWTH
Recap: 2D Edge Detection Filters Exerg e

e
o r I | 7 3/
JA

A .

A, Laplacian of Gaussian

A i
Y RN
?ﬁ%%&'!’:’:“:‘:"“:‘“ Wf""".‘.““"*\‘\w"’:""v‘o
L AR

s, ey
LSS

Gaussian

1 _ulte?

haolu. vy = ——¢ 202
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¢ VZis the Laplacian operator:

o2 o2
vzf = 8:13]; | 8y£
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Slide credit: Kristen Grauman B. Leibe



(0))
3
£
£
=)
/)]
c
Q
D
>
8
=
Q
S
(@)
S

Repetition

* Image Processing Basics
> Image Formation
> Linear Filters
> Edge & Structure Extraction

* Segmentation & Grouping

Object Recognition

Local Features & Matching
* Deep Learning

3D Reconstruction

B. Leibe

Hogh transfo

Hough transfor
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Recap: Canny Edge Detector Exe, 0

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient

3. Non-maximum suppression:
> Thin multi-pixel wide “ridges” down to single pixel width

4. Linking and thresholding (hysteresis):
> Define two thresholds: low and high

> Use the high threshold to start edge curves and the low threshold to
continue them

* MATLAB:

>> edge (image, ‘canny’) ;
>> help edge
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adapted from D. Lowe, L. Fei-Fei
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e

cap: Edges vs. Boundaries

—

=2

5

¥ Edges useful signal to

7 indicate occluding

; boundaries, shape.

é Here the raw edge ...but quite often boundaries of interest

s outputis not so bad... are fragmented, and we have extra
“clutter” edge points. 18

Slide credit: Kristen Grauman
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Recap: Fitting and Hough Transform

Given a model of interest,
we can overcome some of
the missing and noisy
edges using fitting
techniques.

With voting methods like

. the Hough transform,

! detected points vote on

B possible model parameters.
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Slide credit: Kristen Grauman



Recap: Hough Transform Exe, 0

Y1 y=mx + b b
° (m.la Y1) .
) S \O — —Irom —|— Yyo
(x()’ yO) ﬁ b \\Q —
1 ///4 \‘\ ~
i my m
Image space Hough (parameter) space

* How can we use this to find the most likely parameters
(m,b) for the most prominent line in the image space?

> Let each edge point in image space vote for a set of possible
parameters in Hough space

> Accumulate votes in discrete set of bins; parameters with the most
votes indicate line in image space.
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Slide credit: Steve Seitz
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RWTH
Recap: Hough Transf. Polar Parametrization

 Usual (M,b) parameter space problematic: can take on
Infinite values, undefined for vertical lines.

X
[0.0] 5 - d : perpendicular distance

g from line to origin

@ : angle the perpendicular
makes with the x-axis

Xcosfd—ysind=d

* Point in image space
= sinusoid segment in
Hough space
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Slide credit: Steve Seitz
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Recap: Hough Transform for Circles & %

)(erc o
.5/

e Circle: center (a,b) and radius r

2 2 2
(x —a)*+(y, —b)? =r
* For an unknown radius I, unknown gradient direction

A T
Y|

O \

~..O." \ b
0 - g

Image space ’ Hough space

Slide credit: Kristen Grauman

22



RWTHAACHEN
. UNIVERSITY
Recap: Generalized Hough Transform

* What if want to detect arbitrary shapes defined by boundary
points and a reference point?

At each boundary point,
compute displacement vector:

r=a-p,.

For a given model shape:
store these vectors in a table
iIndexed by gradient

orientation 6.

Image space

D.H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980.
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Slide credit: Kristen Grauman
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Repetition

* Image Processing Basics

* Segmentation & Grouping
> Segmentation and Grouping
> Segmentation as Energy Minimization Gestalt factors

* Object Recognition @ i
* Local Features & Matching @%

* Deep Learning .

K-Means & EM clustering

3D Reconstruction

Mean-shift clustering 5,
B. Leibe
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Recap: Gestalt Theory

* (Gestalt: whole or group
> Whole is greater than sum of its parts
> Relationships among parts can yield new properties/features

* Psychologists identified series of factors that predispose set
of elements to be grouped (by human visual system)

“l stand at the window and see a house, trees, sKy.
Theoretically | might say there were 327 brightnesses
and nuances of colour. Do | have "327"? No. | have sky,
house, and trees.”
Max Wertheimer
(1880-1943)

Untersuchungen zur Lehre von der Gestalt,
Psychologische Forschung, Vol. 4, pp. 301-350, 1923

http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm
B. Leibe
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http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm

Recap: Gestalt Factors

® ® @ o ® ® | Not grouped ) > P_ \(?_ 5 5
ijD 7(: ( ( Parallelism
® @ o @ ® @ | Proximity
O O ® o O O | Similarity ) f) <

B

( gi. > Symmetry
)T

® ® ) | ® @ isiniagy ><(\’J(>

Q‘ Q‘ \ \. .\ .‘ Commeon Fate X S
ontinuity
¢ OG>

Common Region

. @ @ . DQ Closure

* These factors make intuitive sense, but are very difficult to translate
Into algorithms.
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Image source: Forsyth & Ponce

B. Leibe
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Recap: Image Segmentation

* Goal: identify groups of pixels that go together
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Slide credit: Steve Seitz, Kristen Grauman B. Leibe
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Recap: K-Means Clustering

* Basic idea: randomly initialize the k cluster centers, and
iterate between the two following steps

1. Randomly initialize the cluster centers, cq, ..., Cx

2. Given cluster centers, determine points in each cluster
— For each point p, find the closest c;. Put p into cluster i

3. Given points in each cluster, solve for c
— Set ¢, to be the mean of points in cluster i

4. If ¢; have changed, repeat Step 2

* Properties
> WiIll always converge to some solution

> Can be a “local minimum”
— Does not always find the global minimum of objective function:

) > lp — ¢l

clusters ¢ points p in cluster 7

Slide credit: Steve Seitz B. Leibe
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RWNTH
Recap: Expectation Maximization (EM)

-

—
o

e Goal
»  Find blob parameters 6 that maximize the likelihood function:

p(data|f) = H p(x,]0)
* Approach:

1. E-step: given current guess of blobs, compute ownership of each point

2. M-step: given ownership probabilities, update blobs to maximize
likelihood function

3. Repeat until convergence
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Slide credit: Steve Seitz B. Leibe
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Recap: Mean-Shift Algorithm

* -+

10 I

[ UDHHH 1

|
8] 2 4

* |terative Mode Search
1. Initialize random seed, and window W
2. Calculate center of gravity (the “mean”) of W:
3. Shift the search window to the mean
4. Repeat Step 2 until convergence

Slide credit: Steve Seitz B. Leibe

reW
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Recap: Mean-Shift Clustering

* Cluster: all data points in the attraction basin of a mode

* Attraction basin: the region for which all trajectories lead to
the same mode
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Slide by Y. Ukrainitz & B. Sarel B. Leibe
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RWTH//
Recap: Mean-Shift Segmentation Ere, 500

Yertise 2.7
-1/

* Find features (color, gradients, texture, etc)

* Initialize windows at individual pixel locations

* Perform mean shift for each window until convergence

* Merge windows that end up near the same “peak” or mode

32

B. Leibe

Slide credit: Svetlana Lazebnik
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Repetition

* Image Processing Basics

* Segmentation & Grouping
> Segmentation and Grouping
> Segmentation as Energy Minimization

* Object Recognition
* Local Features & Matching
* Deep Learning

3D Reconstruction

B. Leibe

Graph cuts

33



Recap: MRFs for Image Segmentation

* MRF formulation

= Minimize the energy

Unary F(x _ _—
potentials ) ( Y) XZ: P(wi,y )
¢(wzayz) = ! N Zw(%,%)

Pairwise potentials 0]
w(xia wj)

Data (D) MAP Solution
34
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Recap: Energy Formulation

o Energy function

Z¢ xzayz +Z¢ ZEMIEJ

7] -
Unary Pairwise
potentials potentials

* Unary potentials ¢

> Encode local information about the given pixel/patch

> How likely is a pixel/patch to belong to a certain class
(e.g. foreground/background)?

* Pairwise potentials v Nl

> Encode neighborhood information

> How different is a pixel/patch’s label from that of its neighbor?

(e.g. based on intensity/color/texture difference, edges)
B. Leibe
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Recap: How to Set the Potentials?

* Unary potentials
> E.g. color model, modeled with a Mixture of Gaussians

— Learn color distributions for each label

/////"f

[

_ 36
B. Leibe
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RWNTH
Recap: How to Set the Potentials?

* Pairwise potentials

> Potts Model
(i, 253 0p) = Opo(z; # T5)
— Simplest discontinuity preserving model.

— Discontinuities between any pair of labels are penalized equally.
— Useful when labels are unordered or number of labels is small.

> Extension: “Contrast sensitive Potts model”
QP(C% L,y Gij (?/)a sz) — Hngz'j (y)5($z e in)

where 2
g, ()~ el g_2/avg (Hyi -y, HZ)

= Discourages label changes except in places where there is also a
large change in the observations.

B. Leibe
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Recap: Graph-Cuts Energy I\/IinimizatiorE)(e,;‘,ge2
©22

* Solve an equivalent graph cut problem

1. Introduce extra nodes: source and sink

2. Weight connections to source/sink (t-links)
by ¢(z;, = s) and ¢(x, = t), respectively.

3. Weight connections between nodes (n-links)
by ¢(% xj)'

4. Find the minimum cost cut that separates
source from sink.

= Solution is equivalent to minimum of the energy.

* s-t Mincut can be solved efficiently
> Dual to the well-known max flow problem

> Very efficient algorithms available for regular
grid graphs (1-2 MPixels/s)
> Globally optimal result for 2-class problems
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Recap: When Can s-t Graph Cuts Be Applied?

Unary potentials

Pairwise potentials

E(L) Z E. (L) + > E(L,, L)

pPgeN
n-links I—p E{S’t}

t-links

* s-t graph cuts can only globally minimize binary energies
[Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

that are submodular.

E(L) can be minimized
by s-t graph cuts

N

E(s,s)+E(t,t) <E(s,t)+E(t,s)

Submodularity (“convexity”)

* Submodularity is the discrete equivalent to convexity.
> Implies that every local energy minimum is a global minimum.
= Solution will be globally optimal.

B. Leibe
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First Applications Take Up Shape...

detection

o Circle
T detection
()

£

£

-}

7))

S :

® Binary
= Segmen-
a) -

5 tation

O

E

O Simple shape recognition 40

Image Source: http://www.flickr.com/photos/angelsk/2806412807/
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Repetition

* Image Processing Basics
* Segmentation & Grouping

* Object Recognition
> Sliding Window based Object Detection

* Local Features & Matching

* Deep Learning

3D Reconstruction

classifiers with
AdaBoost

Train cascade of] T @

hhhhhhhhhhhhh

HOG detector Viola-Jones face detector
41

B. Leibe
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Recap: Sliding-Window Object Detection

* |f object may be in a cluttered scene, slide a window around
looking for it.

[ )

Car/non-car

Classifier
\_ )

* Essentially, this is a brute-force approach with many local
decisions.
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Slide credit: Kristen Grauman B. Leibe
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Recap: Gradient-based Representations

* Consider edges, contours, and (oriented) intensity gradients

* Summarize local distribution of gradients with histogram
> Locally orderless: offers invariance to small shifts and rotations
> Contrast-normalization: try to correct for variable illumination
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Slide credit: Kristen Grauman B. Leibe



RWNTH
Classifier Construction: Many Choices...

Nearest Neighbor Neural networks

ps 18@10x10
S4:1 maps 16@5x5

C1: feature maps

IIIII

e
o™

- L L]
on '.
.
L » -
" .

Berg, Berg, Malik 2005,
Chum, Zisserman 2007, Rowley, Baluja, Kanade 1998
Boiman, Shechtman, Irani 2008, ...

®8 | Boosting Support Vector Machines| | Randomized Forests
52 H
’g n/.\.n
>
7))
S
g’ Viola, Jones 2001, Vapnik, Scholkopf 19_95’ Amit, Geman 1997,
5 | Torralba et al. 2004, | | Papageorgiou, Poggio ‘01, | | Breiman 2001,
=1 | Opelt et al. 2006, Dalal, Triggs 2005, Lepetit, Fua 20086,
= | Benenson 2012, ... Vedaldi, Zisserman 2012 Gall, Lempitsky 2009,...
O
B. Leibe

Slide adapted from Kristen Grauman
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Recap: Support Vector Machines (SVMs)

Slide credit: Kristen Grauman

B. Leibe

Discriminative classifier
based on optimal
separating hyperplane
(i.e. line for 2D case)

Maximize the margin
between the positive and
negative training
examples

45



Recap: Non-Linear SVMs

* General idea: The original input space can be mapped to
some higher-dimensional feature space where the training
set is separable:

" °
®
@ ® =N :
o R e DI X—>e(X) o
|® e e
° e o
@ ........ ’
— ® ° e o ® °
T ° . .
o @
& ° ° °
= °
= ®
®
n o ® o ® - ° ®
c ® ®
9 e, |
_CL) ® IRLLTTIUN PRIt . o
>
5 °
]
S
o
-
o
@)

46

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html



http://www.autonlab.org/tutorials/svm.html

RWTH
Recap: HOG Descriptor Processing Chain

* SVM Classification ObJeCUNOTn-ObJect

> Typically using a linear SVM Linear SVM
T
Collect HOGs over
detection window
T

Contrast normalize over
overlapping spatial cells

Image Window

o 1

o Weighted vote in spatial &
E orientation cells

)

% t

I5 Compute gradients
= )

5 Gamma compression
5 1

o

£

(@)

O

47

Slide adapted from Navneet Dalal
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Recap: Non-Maximum Suppression &g,

After multi-scale dense scan

==z

Goal

Fusion of multiple detections

RWTHAACHEN
JHERSITY

Cise 23/

A
e
- -ﬁ -

|

Clip detection score

Map each detection to 3D
[x,y,scale] space

Y

Apply robust mode detection,
e.g. mean shift

Non-maximum suppression

48

B. Leibe Image source: Navneet Dalal, PhD Thesis



RWNTH
Classifier Construction: Many Choices...

Nearest Neighbor Neural networks

ps 18@10x10
S4:1 maps 16@5x5

C1: feature maps

IIIII

Shakhnarovich, Viola, Darrell 2003

Berg, Berg, Malik 2005, Rowley, Baluja, Kanade 1998
Boiman, Shechtman, Irani 2008, ... .

8 | Boosting Support Vector Machines| | Randomized Forests
52 H
’g n/.\.n
>
7))
S
g’ Viola, Jones 2001, Vapnik, Scholkopf 19_95’ Amit, Geman 1997,
5 | Torralba et al. 2004, | | Papageorgiou, Poggio ‘01, | | Breiman 2001,
=1 | Opelt et al. 2006, Dalal, Triggs 2005, Lepetit, Fua 20086,
= | Benenson 2012, ... Vedaldi, Zisserman 2012 Gall, Lempitsky 2009,...
O
B. Leibe

Slide adapted from Kristen Grauman



Recap: AdaBoost

Weak . . . Increased .\:-\’.
(]

Classifier1 ~ _o_--=---"""

® O Weak }._'
O O Classifier 2

o) Weak " .
""sq:) classifier 3 .“ )
1
4 o ° 9
= Final classifier is ) ®
C i 1 1
IS combination of the .l.
= weak classifiers
o)
5
o
£
(@)
@)

Slide credit: Kristen Grauman B. Leibe
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Recap: Viola-Jones Face Detection

“Rectangular” filters

Efficiently computable
with integral image: any
sum can be computed in
constant time

Avoid scaling images -2
scale features directly for
same cost

Slide credit: Kristen Grauman

Feature output is difference between

adjacent regions

Value at (x,y) is
sum of pixels

above and tc
left of (X,y)

X,¥)

) the

Integral image

B. Leibe

D=1+4-(2+3)
=A+(A+B+C+D)—(A+C+ A+ B)
=D

51
[Viola & Jones, CVPR 2001]



RWTH
Recap: AdaBoost Feature+Classifier Selection

* Want to select the single rectangle feature and threshold that
best separates positive (faces) and negative (non-faces)
training examples, in terms of weighted error.

1o, Resulting weak classifier:
R

oo {1 5000,

-1 otherwise

For next round, reweight the

examples according to errors,
Outputs of a choose another filter/threshold
possible rectangle combo.

feature on faces
and non-faces.

Computer Vision Summer‘19

| | 52
Slide credit: Kristen Grauman B. Leibe [Viola & Jones, CVPR 2001]
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Recap: Viola-Jones Face Detector

4 N

Train cascade of

classifiers with
AdaBoost

o

= gl (|
—

.| =

e b, Wl Selected features,
Non-faces thresholds, and weights

* Train with 5K positives, 350M negatives
* Real-time detector using 38 layer cascade

* 6061 features in final layer

* [Implementation available in OpenCV:
http://sourceforge.net/projects/opencvlibrary/]
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Slide credit: Kristen Grauman B. Leibe


http://sourceforge.net/projects/opencvlibrary/
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* Image Processing Basics Harris & Hessian eeqy=| = v
detector Ly 1y

* Segmentation & Grouping

* Object Recognition

Do

* Local Features & Matching

> Local Features — scale
Detection and Description Laplacian scale selection

2 . Recognition with Local Features

()

3 « Deep Learning

>

CD .

5 * 3D Reconstruction

n

z

) -~ Ky
"g. # KS.
S s R
(@)

O R P

54

B. Leibe SIFT descriptor
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e.g. color e.g. color
) N pixels ] d(fA, fB)<T
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B. Leibe

Recap: Local Feature Matching Pipeline
1.

Find a set of
distinctive key-
points

. Define a region

around each
keypoint

. Extract and

normalize the
region content

. Compute a local

descriptor from the
normalized region

. Match local

descriptors
55
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Recap: Requirements for Local Features

* Problem 1:
> Detect the same point independently in both images

* Problem 2:
> For each point correctly recognize the corresponding one

We need a repeatable detector!

We need a reliable and distinctive descriptor!
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Slide credit: Darya Frolova, Denis Simakov B. Leibe



Recap: Harris Detector [Harrisss]

* Compute second moment matrix
(autocorrelation matrix)

M(o,,0,) = 9(0.){ 12(c) ley(aD)}

11 (o 1°(o 1. Image
y(90) - 1y(ep) derivatives
2. Square of
derivatives
3. Gaussian
filter g(oy)

4. Cornerness function — two strong eigenvalues
R=det[M(o,,0)]—cftrace(M (o,,c;))]

=9(1,)9(1y) -[9(L1)F —alg(1) + 91y

5. Perform non-maximum suppression
B. Leibe
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Slide credit: Krystian Mikolajczyk
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Recap: Harris Detector Responses [Harris88]

¢

Effect: A very precise
corner detector.
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Slide credit: Krystian Mikolajczyk
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. WHTERSITY

Recap: Hesslan Detector [Beaudet78] sxe,ci§§
3.2/

* Hesslian determinant

Hessian(l):[:XX :Xy}

Xy

det(Hessian(1)) =11, — 1,

In Matlab:
IXX.*IW—(IXy)"Z

Slide credit: Krystian Mikolajczyk
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B. Leibe
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Hessian Detector — Responses [Beaudet78]

Effect: Responses mainly on [
corners and strongly
textured areas.
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Slide credit: Krystian Mikolajczyk



A INVERSITY
Recap: Automatic Scale Selection

* Function responses for increasing scale (scale signature)

=/

L4 T T T T T T T T T e = s T T T T
2.0°2.89 10 20 4?} 19

f(1,.i, (x.0))
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Slide credit: Krystian Mikolajczyk B. Leibe
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Recap: Laplacian-of-Gaussian (LoG)

* Interest points:

> Local maxima in scale
space of Laplacian-of-
Gaussian

o

Al ey
A

. _ ST ST
_ - ST A A
: VAT =7 =7
e Scale AEAEAEAS
P

L L LS L S

S A S
S S S S

= List of (X, Yy, 0)
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Slide adapted from Krystian Mikolajczyk B. Leibe



= :
HI
o
ME
=
MN
=
\\ s ST9 EY D B
| 2ol
st s
O\. : 0
8
g
m

Recap: LoG Detector Responses

Slide credit: Svetlana Lazebnik
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Recap: Key point localization with DoG

* Efficient implementation

> Approximate LoG with a

difference of Gaussians (DoG)

* Approach DoG Detector

>

Detect maxima of difference-of-
Gaussian in scale space

Reject points with low contrast
(threshold)

Eliminate edge responses

\A\2AN2\J

Difference of
Gaussian Gaussian (DOG)

Candidate keypoints:
list of (x,y,0)

Image source: David Lowe
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Recap: Harris-Laplace [Mikolajczyk ‘01]

1. Initialization: Multiscale Harris corner detection

2. Scale selection based on Laplacian
(same procedure with Hessian = Hessian-Laplace)

Harris points

Harris-Laplace points
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Slide adapted from Krystian Mikolajczyk B. Leibe
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Recap: Orientation Normalization

* Compute orientation histogram [Lowe, SIFT, 1999]
* Select dominant orientation
* Normalize: rotate to fixed orientation

‘CE

ks
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@) 66

Slide adapted from David Lowe B. Leibe



Recap: SIFT Feature Descriptor

e Scale Invariant Feature Transform

* Descriptor computation:
> Divide patch into 4x4 sub-patches: 16 cells

> Compute histogram of gradient orientations (8 reference angles) for
all pixels inside each sub-patch

> Resulting descriptor: 4x4x8 = 128 dimensions

D.G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2),
pp. 91-110, 2004.
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Slide credit: Svetlana Lazebnik B. Leibe


http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
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Repetition

* Image Processing Basics
* Segmentation & Grouping
* Object Recognition

* Local Features & Matching

> Local Features —
Detection and Description

> Recognition with Local Features
* Deep Learning
* 3D Reconstruction

B. Leibe

—"RANSAC

Fitting affine transformations
& homographies

-
-
-

-
-
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-
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Recap: Recognition with Local Features

* Image content is transformed into local features that are
Invariant to translation, rotation, and scale

* Goal: Verify if they belong to a consistent configuration

Slide credit: David Lowe

)
—a 7P —
V.

Local Features,
e.g. SIFT

. 69
B. Leibe



RWNTH
Recap: Fitting an Affine Transformation

* Assuming we know the correspondences, how do we get
the transformation?

3

N

1
< X
L 1
||
1
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3 3
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Recap: Fitting a Homography

* Estimating the transformation

&
qg’ Homogenous coordinates
= : :

Xy <X EVEEEE ol Matrix notation
3 *a X |[x] [h, h, h,][x MY
= X — X LI —
;8 & %2 Y [=hy hyy hy Y
| X, <X '
E} AS Bg _Z_ _h31 h32 1_ b X":%Xl
-]
o
g X = hy, Xg + h12YBl +hy _ hy, Xg + h22y|31 +hyg

AT AT
O hyy X +hg,Ye +1 hyy X +N,Ye +1 1
B. Leibe

Slide credit: Krystian Mikolajczyk



Recap: Fitting a Homography BreyS0

* Estimating the transformation

h, Xg + hlz3’51 +hy _XAthl Xg, _)(Aihszys1 —Xp = 0

h21 Xal + hzzyBl + h23 - yA1 h31 XBl - yAlh32yBl - yAl =0

Ah =0 o

B. Leibe

2 X <5 X g2 Yo, 1 0 0 0 —XuXg —XpVs —Xp||his 0
’g A % 0 0 0 Xsl y|31 1 - yALXBl - yA1 ysl - yA1 h21 0
E XA2 H XB2 . h22 =

>

Cg Xp, € Xp, : e L : : : h,,

% L | h31 |
> s

()

= 1

Q

S

o

O

72

Slide credit: Krystian Mikolajczyk



Recap: Fitting a Homography

* Estimating the transformation

e Solution:
> Null-space vector of A

> Corresponds to smallest
eigenvector

SVD Ah =0

(@))
s X, ©X l - T T
GEJ A o d11 d19 Vig o Vi
= BN A=UDV" =U| : N '
o8 X, <X
Ag Bs
I5 _d91 d99_ | Vo1 Vool
(2]
z
Q2 Vig:==V L
3 h= v ) Minimizes least square error
= Vgg
o 73
B. Leibe

Slide credit: Krystian Mikolajczyk
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RWTH
Recap: RANSAC Exer o8

)(e/'C/'se 5 .
N7

RANSAC loop:

1. Randomly select a seed group of points on which to base
transformation estimate (e.g., a group of matches)

2. Compute transformation from seed group
3. Find inliers to this transformation

4. If the number of inliers is sufficiently large, re-compute
least-squares estimate of transformation on all of the
inliers

* Keep the transformation with the largest number of inliers

Slide credit: Kristen Grauman B. Leibe
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Recap: RANSAC Line Fitting Example

* Task: Estimate the best line

Slide credit: Jinxiang Chai B. Leibe

”M \ R

ACHEN
| 1Y
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Recap: RANSAC Line Fitting Example

* Task: Estimate the best line

Sample two points
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Slide credit: Jinxiang Chai B. Leibe
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Recap: RANSAC Line Fitting Example

* Task: Estimate the best line

Fit a line to them

Slide credit: Jinxiang Chai B. Leibe
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RWTH
Recap: RANSAC Line Fitting Example

* Task: Estimate the best line
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Slide credit: Jinxiang Chai
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Recap: RANSAC Line Fitting Example

* Task: Estimate the best line

°
‘ Repeat, until we get a
good result.
B. Leibe

Slide credit: Jinxiang Chai
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Recap: Feature Matching Example

* Find best stereo match within a square search window (here
300 pixels?)
* Global transformation model: epipolar geometry

before RANSAC after RANSAC

R e e T o B,
. -. - “‘W%ﬂ‘
o A

Images from Hartley & Zisserman
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Slide credit: David Lowe B. Leibe



Recap: Generalized Hough Transform

* Suppose our features are scale- and rotation-invariant

> Then a single feature match provides an alignment hypothesis
(translation, scale, orientation).

> Of course, a hypothesis from a single match is unreliable.

> Solution: let each match vote for its hypothesis in a Hough space
with very coarse bins.
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B. Leibe

Slide credit: Svetlana Lazebnik
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Application: Panorama Stitching
=
%)
%
g http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
O
82

B. Leibe [Brown & Lowe, ICCV’'03]


http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

Repetition

* Image Processing Basics

* Segmentation & Grouping Convolutional Neural Networks

* Object Recognition

SN

000

* Local Features & Matching

* Deep Learning Convolution layers

B
B

> > Convolutional Neural Networks (CNNSs) 1[1]2]4

:é » Deep Learning Background N WA

= > CNNs for Object Detection 12]8|4

Ug) > CNNSs for Semantic Segmentation Pooling layers

%’ > CNNSs for Matching & RNNSs o agd ngggﬂggw
=1 * 3D Reconstruction SR e He LU
5 TR figaay:

(@)

O

AlexNet, VGGNe
B. Leibe

—+

, GoogLeNet, ResNetgs
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Recap: Convolutional Neural Networks Exers
INPUT ggéégatguée maps MRS S 0X1SO4: f. maps 16@5x5 “| eNet”
32x32 S2: f. maps ?SO layer ,:864 layer CigTPUT architecture

S |T_ r"r
T

I Fullconrlnection I Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

* Neural network with specialized connectivity structure
> Stack multiple stages of feature extractors
> Higher stages compute more global, more invariant features
> Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.
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Slide credit: Svetlana Lazebnik B. Leibe



Recap: CNN Structure
17

* Feed-forward feature extraction [ Feature maps }
1. Convolve input with learned filters ﬁ
2. Non-linearit

: y [ Normalization }

3. Spatial pooling
4. (Normalization) ﬁ

* Supervised training of convolutional { Spatial pooling }
filters by back-propagating 4
classification error [ Non-linearity

ﬁ

[ Input Image J

85
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Slide credit: Svetlana Lazebnik B. Leibe



RWTHAACHEN
UNIVERSITY

Recap: Intuition of CNNs

e Convolutional network

> Share the same parameters
across different locations

> Convolutions with learned
kernels

Learn multiple filters

> E.g. 1000x1000 image

100 filters
10x 10 filter size

= only 10k parameters

* Result: Response map
» size: 1000x1000x 100

~ Only memory, not params!
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Image source: Yann LeCun

Slide adapted from Marc’Aurelio Ranzato B. Leibe



Recap: Convolution Layers

- Naming convention:

HEIGHT
[~

=0 0000
— ////’VWDTH

DEPTH

32

3

* All Neural Net activations arranged in 3 dimensions

> Multiple neurons all looking at the same input region,
stacked in depth

> Form a single [1x1xdepth] depth column in output volume.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe
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Recap: Activation Maps

Activations:

ARG I SEEENACIIN AN IR EOAETERNERNE SR
one filter = one depth slice (or activation map) 5% 5 filters

ﬁl.l.l

HHIIIH

.H- Each activation map is a depth
slice through the output volume.

Activation maps
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Slide adapted from FeiFei Li, Andrej Karpathy ~ B- Leibe



Recap: Pooling Layers

Single depth slice

Jl1]1 2 4
max pool with 2x2 filters
5|16 | 7|8 and stride 2 6 | 8
312 1|0 3|4
11 2|3 | 4
y
* Effect:

> Make the representation smaller without losing too much information
> Achieve robustness to translations
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Slide adapted from FeiFei Li, Andrej Karpathy ~ B- Leibe
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Recap: Effect of Multiple Convolution Layers

Feature Feature Feature Classifier

Low-Level| |Mid-Level _|High-Level Trainable
— —

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 201 3]
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Slide credit: Yann LeCun B. Leibe
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Recap: AlexNet (2012)

\EE I
D4k Shas \dense

W

PN

192 192 128 2048 2048

‘ 128 g e
55 ¢’ Py , , _
A\ ) 13 13
. S g, At ,
o | = e 4

. ﬁ?? 3 , Q‘ o \ I3 13 dense | [densel |

155 \T ! 28 192 92 28 o
. - 1S 128 Max -
: 2048 2048

w

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012. o1

Image source: A. Krizhevsky, |. Sutskever and G.E. Hinton, NIPS 2012

Strid Max 128 Max pooling
of 4 pooling pooling
o o
5 Similar framework as LeNet, but
= : . .
= > Bigger model (7 hidden layers, 650k units, 60M parameters)
o > More data (10° images instead of 103)
(@)
g > GPU implementation
Is > Better regularization and up-to-date tricks for training (Dropout)
g
(@)
O



http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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Recap: VGGNet (2014/15)

Main ideas
> Deeper network

> Stacked convolutional
layers with smaller
filters (+ nonlinearity)

> Detalled evaluation
of all components

Results

> Improved ILSVRC top-5
error rate to 6.7%.

ConvNet Configuration

A A-LRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
mput (224 x 224 RGB imagp)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 [ conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128
maxpool
conv3-256 | conv3-256 | conv3-256 conv3-256 | conv3-256 f§ conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 [ conv3-256
convl-256 | conv3-256 || conv3-256
conv3-256
maxpool
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
convl-512 | conv3-512 || conv3-512
conv3-512
maxpool
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512
maxpool Ml 1
FC-4096 viallity uscu
FC-4096
FC-1000
soft-max
92
B. Leibe

Image source: Simonyan & Zisserman
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Recap: GooglLeNet (2014)
7] | 2] B
gl & 1 Rigqggdggiie]
f T Yagd20] [ua |na
A g Y e e
0| 64 HH

Convolution
Inception : i
P + copies Pooling
module
| Other |

(@)}

Is

=

=

)

)]

S [ (. 2

g — Auxiliary classification

. g R — outputs for training the
3 D R | Rl [ ool lower layers (deprecated)
g Previous layer

O (b) Inception module with dimension reductions 93

B. Leibe
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Recap: Residual Networks

AlexNet, 8 layers % VGG, 19 layers
(ILSVRC 2012) (ILSVRC 2014)

ResNet, 152 layers
(ILSVRC 2015)

* Core component
> Skip connections

_ X
bypassing each layer
~ Better propagation of weight layer
gradients to the deeper F(x) l relu
layers .
weight layer

> This makes it possible

to train (much) deeper _
networks. H(x) = F(x) + x

B. Leibe

94



RWNTH
Recap: Transfer Learning with CNNs

~ "M% 1 Train on ~ Mm% 3 |f you have a medium
:"“::: ImageNet ::2 sized dataset,

"~ maxpaol e “finetune” instead: use
omi |, I dataset: fi conv-128 the Ol_d WEIghtS .aS
conv-2s 4+ IT SMall dataset. Tix conv-128 initialization, train the
maxpool all WelghtS (treat maxpool full network or Only
conv-256 CNN as fixed feature conv-256 some of the higher
oy 256 extractor), retrain conv-256 lavers
maxpool - - miaxpool y .

~ only the classifier -
2 ~ conv-512 ~ conv-512
o conv-512 conv-512 _ _
E maxpaol l.e., replace the maxpaol Retrain bigger
= conv-512 Softmax layer at conv-512 part of the network
c conv-512 the end conv-512
8 maxpool maxpool
E FC-4096 FC-4096
Q . FC-4096 . FC-096
2 FC-1000 FC-1000
g softmax softmax
O

B. Leibe

Slide credit: Andrej Karpathy



Repetition PN
AR fos
- SICEaCED
* Image Processing Basics Backpropagation Algorithm
* Segmentation & Grouping WD ) OE(w)
& M awk.? wi(T)

° ObjECt Recognition Gradient Descent

* Local Features & Matching B
* Deep Learning ReLU ZZ/ |
> Convolutional Neural Networks (CNNSs)
> Deep Learning Background Var(W;) = 1
> CNNs for Object Detection Tin
> CNNs for Semantic Segmentation Var(W) = 2

Ttip
Glorot & He Initialization

=4

Dropout Learning Rate 96

> CNNs for Matching & RNNs
3D Reconstruction
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Recap: Multi-Layer Perceptrons

* Deep network = Also learning the feature transformation
y1(x) y2(x)  yk(x)

Output layer

Hidden layer
Mapping (learned!)

Input layer
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RWTH
Recap: Backpropagation Algorithm

* General formulation (used in deep learning packages)
> Convert the network into a computational graph.
> Perform reverse-mode-differentiation this graph
> Each new layer/module just needs to specify how it affects the

— forward pass y = module.fprop(x)
— backward pass %_f = module.bprop( g_f )
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= Very general framework, any differentiable layer can be used.
B. Leibe
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Recap: Supervised Learning

* Two main steps
1. Computing the gradients for each weight (backprop)

2. Adjusting the weights in the direction of
the gradient

« Gradient Descent: Basic update equation

(++1) (=) _ OE(w)
Pei TR T Ty

w(T)

* Important considerations
> On what data do we want to apply this? = Minibatches
> How should we choose the step size 7 (the learning rate)?

> More advanced optimizers (Momentum, RMSProp, Adam, ...)

B. Leibe
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Recap: Practical Considerations

* Vanishing gradients problem

> In multilayer nets, gradients need to be propagated
through many layers

> The magnitudes of the gradients are often very
different for the different layers, especially
If the initial weights are small.

= Gradients can get very small in the early layers
of deep nets.

* When designing deep networks, we need to make sure
gradients can be propagated throughout the network
> By restricting the network depth (shallow networks are easier)
. By very careful implementation (numerics matter)
> By choosing suitable nonlinearities (e.g., ReLU)
> By performing proper initialization (Glorot, He)
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Recap: Glorot Initialization

 Variance of neuron activations

>

Suppose we have an input X with n components and a linear
neuron with random weights W that spits out a number Y.

We want the variance of the input and output of a unit to be the
same, therefore n Var(W,) should be 1. This means

1-':r-u':'l_I'(Ir:i":r.i-}I — 1 — 1
n Min

Or for the backpropagated gradient
1

Mot

Var(W;) =

As a compromise, Glorot & Bengio propose to use
2

i T Mot

Var(W) =

= Randomly sample the initial weights with this variance.

B. Leibe

[Glorot & Bengio, “10]
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RWTH
Recap: He Initialization [He et al., 15]

 Extension of Glorot Initialization to ReLU units
> Use Rectified Linear Units (ReLU)

g(a) = max{0,a}

> Effect: gradient is propagated with
a constant factor

|

I, a>0
0, else

e Same basic idea: Output should have the input variance

> However, the Glorot derivation was based on tanh units, linearity
assumption around zero does not hold for ReLU.

> He et al. made the derivations, proposed to use instead

Var(W) = ——

Ttin
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RWTH
Recap: Batch Normalization [loffe & Szegedy *14]

* Motivation
> Optimization works best if all inputs of a layer are normalized.

* |dea

> Introduce intermediate layer that centers the activations of
the previous layer per minibatch.

> l.e., perform transformations on all activations
and undo those transformations when backpropagating gradients

> Complication: centering + normalization also needs to be done
at test time, but minibatches are no longer available at that point.

— Learn the normalization parameters to compensate for the expected
bias of the previous layer (usually a simple moving average)

e Effect
> Much improved convergence (but parameter values are important!)
> Widely used in practice
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RWTH
Recap: Dropout [Srivastava, Hinton ’'12]

{
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%
2
'0:"
X
X
N

@
/

Y2

e

“' c: : \4
(K

V

(a) Standard Neural Net (b) After applyving dropout.

* |dea
> Randomly switch off units during training.

> Change network architecture for each data point, effectively training
many different variants of the network.

> When applying the trained network, multiply activations with the
probability that the unit was set to zero.

= Improved performance
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RWTH
Recap: Reducing the Learning Rate

* Final improvement step after convergence is reached

. Reduce learning rate by a 1
factor of 10.

> Continue training for a few
epochs.

> Do this 1-3 times, then stop
training.

Reduced
learning rate

Training error

* Effect Epoch

> Turning down the learning rate will reduce
the random fluctuations in the error due to
different gradients on different minibatches.

* Be careful: Do not turn down the learning rate too soon!
> Further progress will be much slower after that.

(0))
3
£
£
=)
/)]
c
Q
D
>
8
=
Q
S
(@)
S

105

Slide adapted from Geoff Hinton B. Leibe



HL
. Ul Jt le SITY
Recap: Data Augmentation

 Effect

> Much larger training set

> Robustness against expected
variations

W P

¥ I T
cd b ded,

* During testing
> When cropping was used
during training, need to

(0))
:q:) again apply crops to get ) R , _ b
| e MM
a > Beneficial to also apply S | .
| e RN M
= > Applying several ColorPCA . ' o 1 -
£ variations can bring another Augmented training data
3 ~1% improvement, but at a (from one original image)
3 significantly increased runtime.

B. Leibe 106

Image source: Lucas Beyer



(0))
3
£
£
=)
/)]
c
Q
D
>
8
=
Q
S
(@)
S

._./
]

warped region

Repetition

* Image Processing Basics
* Segmentation & Grouping
* Object Recognition

* Local Features & Matching

* Deep Learning
> Convolutional Neural Networks (CNNs)
> Deep Learning Background
» CNNs for Object Detection E"
> CNNSs for Semantic Segmentation
> CNNSs for Matching & RNNSs

3D Reconstruction

| — ' N 107
B. Leibe YOLO / SSD



Recap: R-CNN for Object Detection

R-CNN: Regions with CNN features

warped region

aeroplane? no.

person? yes.

'.s "‘. =5 % 4 1 .::“4
A 0T ! - .
% R/ [ TR
i i"/’l \‘: '\ L ]
« BT R

, tvmoni.tor? no.
1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions
* Key ideas

> EXxtract region proposals (Selective Search)

> Use a pre-trained/fine-tuned classification network as feature
extractor (initially AlexNet, later VGGNet) on those regions

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation, CVPR 2014 108

Computer Vision Summer‘19



http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

RWTH
Recap: R-CNN for Object Deteection

ConvNet

ConvNet

ConvNet

=
@
£
£

109

Slide credit: Ross Girshick B. Leibe
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Recap: Faster R-CNN

* One network, four losses

> Remove dependence on
external region proposal

algorithm.

Classificati
loss

Classification
loss

Bounding-box
regression loss

> Instead, infer region
proposals from same

CNN.

> Feature sharing

> Joint training

= Object detection in
a single pass becomes

possible.

Slide credit: Ross Girshick

N

f
proposas/ YA/

Region Proposal Network

feature map

Bounding-box
regression loss

A

Rol pooling

ey —
I R Ty L S -
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CHEN
UNIVERSITY

Recap: Mask R-CNN

Classification Scores: C
Box coordinates (per class). 4 * C

AN

/j )
|1
//// /
A —_— —_—
//"/ - Conv Conv
171 ©/" Rol Align
V%
256 x14x14 256x14x 14 Predict a mask for

each of C classes

Cx14x 14

K. He, G. Gkioxari, P. Dollar, R. Girshick, Mask R-CNN, arXiv 1703.06870.
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Slide credit: FeiFei Li


https://arxiv.org/pdf/1703.06870.pdf
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Recap: YOLO / SSD

Input image Divide image into grid
3XHXxW 7x7

* |dea: Directly go from image to detection scores

* Within each grid cell
> Start from a set of anchor boxes
> Regress from each of the B anchor boxes to a final box
> Predict scores for each of C classes (including background)
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Repetition

* Image Processing Basics

* Segmentation & Grouping Fully Convolutional Networks

* Object Recognition

Med-res: Med-res:
D, x H/4 x W/4 D, x H/4 x W/4

* Local Features & Matching

Low-res:
D, x H/4 x W/4
High-res: High-res:
D, x H/2 x Wr2 D, x H/2 x W72

* Deep Learning

- Convolutional Neural Networks (CNNS) = .10 becoder Architecture
> Deep Learning Background
~ CNNs for Object Detection il

ORATIO}

> CNNSs for Semantic Segmentation
> CNNs for Matching & RNNs

3D Reconstruction

Human Pose Estimation
113
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RWNTH
Recap: Fully Convolutional Networks

“tabby cat”

* CNN

6 00 o0
pO%p0%A° d 1

1

convolutionalization

[ apaphqs®

tabby cat heatmap

oo

* |ntuition

> Think of FCNs as performing a sliding-window classification,
producing a heatmap of output scores for each class
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CHEN

. UNIVERSITY
Recap: Fully-Convolutional Networks
C_Oll‘:f C—OT Conv iargmax -
J - redictions:
v CxHxW o
Convolutions:
DxHxW

* Design a network as a sequence of convolutional layers
> To make predictions for all pixels at once

> Fully Convolutional Networks (FCNSs)
— All operations formulated as convolutions
— Fully-connected layers become 1x1 convolutions
— Advantage: can process arbitrarily sized images
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CHEN
. UNIVERSITY
Recap: Encoder-Decorder Architecture

Med-res: Med-res:
D2 X H/4 x W/4 D2 X H/4 x W/4

f

Low-res:
D3 X H/4 x W/4

Input: High-res: High-res:

Predictions:
3xHxW D1xH/2xW/2 D1fo2xW/2 Hx W

* Design a network as a sequence of convolutional layers
> With downsampling and upsampling inside the network!

> Downsampling
— Pooling, strided convolution

> Upsampling
— Unpooling or strided transpose convolution
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Recap: Skip Connections

* Encoder-Decoder Architecture with skip connections
> Problem: downsampling loses high-resolution information
> Use skip connections to preserve this higher-resolution information
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UNIVERSITY
Recap: FCNs for Human Pose Estimation

* |nput data

Image Keypoints Labels
ORATIOM TIRPROPER cOrrree ORATIO

919) §41-9211

* Formulate pose estimation as a segmentation problem
> Annotate images with keypoints for skeleton joints
> Define a target disk around each keypoint with radius r
> Set the ground-truth label to 1 within each such disk
> Infer heatmaps for the joints as in semantic segmentation
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Repetition

* Image Processing Basics

o
B
N

* Segmentation & Grouping Siamese Networks

* Object Recognition

. Anchor LEARNING
* Local Features & Matching '/g. o Negane

Anchor
Positive Positive

* Deep Learning

Triplet Loss
> > Convolutional Neural Networks (CNNSs)
"‘é > Deep Learning Background = e
= > CNNSs for Object Detection T 1 ft
cg > CNNSs for Semantic Segmentation - T*T*T
2 > CNNs for Matching & RNNs 1 1B
%;’ * 3D Reconstruction Recurrent Neural Networks
c

119
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Recap: Types of Models used for Matching Tasks

* I|dentification models (1) Training
ID 1 |
D ID 2 Multi-class
classification loss
IDN

* Embedding models (E)

D D\@ (dot product) Large-margin loss,

D D/ Triplet loss

* Verification models (V)

D” D D< same Two-class
D different classification loss
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RWTHAACHEN
. UNIVERSITY
Triplet Loss Networks

* Learning a discriminative embedding

> Present the network with triplets of examples
Anchor Positive

Negative

> Apply triplet loss to learn an embedding f (-) that groups the positive
example closer to the anchor than the negative one.

| (%) — f(wf)||§ < |f@?) = f=M)3

Negative

Anchor LEARNING
Negative

Anchor
Positive Posntwe

= Used with great success in Google’'s FaceNet face identification
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" ONVERSTY
Offline Hard Triplet Mining I

* Considerable effort needed

Embed data Mine hard

with f, triplets
( fim )
Update

embedding f, <

!

* Using the triplets for learning
> Minibatch learning

This is a very
wasteful design!

Bs as
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Better: Online Hard Triplet Mining

e Coreidea

> The minibatch contains many more potential
triplets than the ones that were mined!

> Why not make use of those also?

triplet 1

triplet K

* Possible improvement

» Each member of another triplet becomes % triplet 1

an additional negative candidate

@ .

e ~ But: need both hard negatives and hard positives! triplet K
£

E .

7 ¢ Better design

é . Sample K images from P classes (=people) for D1

= each minibatch

% . Triplets are only constructed within the minibatch |: :[IDP

5

O

123

B. Leibe



RWTH
Recap: Recurrent Neural Networks

one to one one to many many to one many to many many to many
! Pt f Pt Pt
f f Pt Pt bt
* Up to now

> Simple neural network structure: 1-to-1 mapping of inputs to outputs

* Recurrent Neural Networks
> Generalize this to arbitrary mappings
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Image source: Andrej Karpathy
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Recap: RNNSs

* RNNSs are regular NNs whose
hidden units have additional
forward connections over time.

> You can unroll them to create T T T T
a network that extends over
time. o> T

> When you do this, keep in mind T T T T

that the weights for the hidden
units are shared between
temporal layers.
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Recap: RNNSs

* RNNSs are very powerful,
because they combine two
properties:

> Distributed hidden state that T T T T
allows them to store a lot of
information about the past > W

efficiently.

> Non-linear dynamics that allows T T T T
them to update their hidden
state in complicated ways.

* With enough neurons and time, RNNs can compute
anything that can be computed by your computer.

* Training is more challenging (unrolled networks are deep)
> See Machine Learning lecture for details...
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RWTHAACHEN
L. _ UNIVERSITY
Recap: Applications — Image Tagging

“straw” “hat” END

START “straw” “hat”

* Simple combination of CNN and RNN
> Use CNN to define initial state h, of an RNN.
> Use RNN to produce text description of the image.
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X world point RMH :
Repetition

* Image Processing Basics
* Segmentation & Grouping
* Object Recognition

* Local Features & Matching

* Deep Learning

3D Reconstruction

> Epipolar Geometry and
Stereo Basics

> Camera Calibration &
Uncalibrated Reconstruction

> Structure-from-Motion

B il B B -
B. Leibe Dense stereo matching
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Recap: What Is Stereo Vision?

* Generic problem formulation: given several images of the
same object or scene, compute a representation of its 3D
shape -
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Recap: Depth with Stereo — Basic Idea o

* Basic Principle: Triangulation

> Glves reconstruction as intersection of two rays

> Requires
— Camera pose (calibration)
— Point correspondence
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Recap: Epipolar Geometry

* Geometry of two views allows us to constrain where the
corresponding pixel for some image point in the first view
must occur in the second view.

epipolar line epipolar line

* Epipolar constraint:

.~ Correspondence for point p in I1 must lie on the epipolar line /" in IT’
(and vice versa).

> Reduces correspondence problem to 1D search along conjugate
epipolar lines.

Slide adapted from Steve Seitz

. 131
B. Leibe



RWTH
Recap: Stereo Geometry With Calibrated Cameras

X world point

R
* Camera-centered coordinate systems are related by known

rotation R and translation T:

X' =RX+T

B. Leibe
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RWNTH
Recap: Essential Matrix

/ X world point
X' (TxRX)=0
X'-(Tx RX)=0
P N
//Zc \\\\
0, — N
et E=T:R / P
XIT E)( . O " R

* This holds for the rays p and p’ that
are parallel to the camera-centered -
position vectors X and X', so we have: P Ep =0

* E is called the essential matrix, which relates corresponding
Image points [Longuet-Higgins 1981]

B. Leibe
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RWNTH
Recap: Essential Matrix and Epipolar Lines

T Epipolar constraint: if we observe point
P Ep=0 p in one image, then its position p’ in
second image must satisfy this
equation.

;»l = Ep IS the coordinate vector representing

the epipolar line for point p
=

(l.e., the line is given
by: I''x=0)

[ = ET p' IS the coordinate vector representing the
epipolar line for point p’
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RWTHAACHEN
UNIVERSITY

Recap: Stereo Image Rectification

* In practice, it is
convenient if image
scanlines are the
epipolar lines.

e Algorithm A’

> Reproject image planes onto a common
plane parallel to the line between optical
centers

> Pixel motion is horizontal after this transformation

> Two homographies (3x3 transforms), one for each
input image reprojection
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Slide adapted from Li Zhang C. Loop & Z. Zhang, Computing Rectifying Homographies for Stereo Vision. CVPR’99



http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

RWTH
Recap: Dense Correspondence Search

T HON. ABRAIIAM LINCOLN] President of United States. =g

\ e e AR
..A'. i :',E::E ' » -. - ‘:
el i f’. - . - : 2 |
:
] -
4 :
% g 1 \-.
v
Es
i 42
B - s
=1, - | : .

* For each pixel in the first image
> Find corresponding epipolar line in the right image

> Examine all pixels on the epipolar line and pick the best match
(e.g. SSD, correlation)

> Triangulate the matches to get depth information

* This is easiest when epipolar lines are scanlines

= Rectify images first
Adapted from Svetlana Lazebnik, Li Zhang

(0))
3
£
£
=)
/)]
c
Q
D
>
8
=
Q
S
(@)
S

136




W =20

Want window large enough to have sufficient intensity
variation, yet small enough to contain only pixels with about
the same disparity.
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Repetlthn 1 | Camera models
* Image Processing Basics

Camera
* Segmentation & Grouping calibration

* Object Recognition

* Local Features & Matching Triangulation

* Deep Learning

(@) - T
= ° 3D Reconstruction Essential matrix X' Ex'=0
(] . y
E ~ Epipolar Geometry and Fundamental matrix Ty _
= Stereo Basics

- - ' ’ ' ’ ’ 2 ’ ‘_Fll_
= > Camera Calibration & hoa oo e
‘» 1 1 uzuf uzv% u2 v2uf vzvf v2 uf vf 1 P
S Uncalibrated Reconstruction e ils  Eight-point
= . u4u"1 u4v"‘ u4 v4u"1 v4vf v4 u‘: v‘: For | =0 .
= > Structure-from-Motion Su v o v v v | algorithm
o uurouv, U, VUl owvvLov,up vl E“
g |Ugls  UgVe U VeUs VeVs Vg Ug Vg 1] F:z
O

B. Leibe SVD! 138



Recap: A General Point

* Equations of the form

AX =0

* How do we solve them? (always!)
> Apply SVD

SVvD B I 7
l d11 Vip o Vi

A=UDV' =U

dNN ] _VNl 0 M

Singular values Singular vectors

> Singular values of A = square roots of the eigenvalues of ATA.
> The solution of Ax=0 is the nullspace vector of A.

> This corresponds to the smallest singular vector of A.
B. Leibe
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Recap: Camera Parameters

* Intrinsic parameters

-~ Principal point coordinates m, f s p] [a s X
> Focal length K{ m, ﬂ f py}{ a, yo}
» Pixel magnification factors 1

> Skew (non-rectangular pixels)
> Radial distortion

* EXxtrinsic parameters

— CCD Camera with square pixels: 10 DoF

— General camera; 11 DoF 140
B. Leibe

>

5 - Rotation R

E > Translation t

7 (both relative to world coordinate system)
c

ke L :

2=+ Camera projection matrix P=K[R|t]
o = General pinhole camera: 9 DoF
s

(@)
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Recap: Calibrating a Camera

Goal

* Compute intrinsic and extrinsic
parameters using observed camera
data.

Main idea
* Place “calibration object” with known

“:;, geometry in the scene

= * (et correspondences

7))

5l * Solve for mapping from scene to

= image: estimate P=P, P, o

2

£ /

3 =5
B. Leibe P?

Slide credit: Kristen Grauman



Recap: Camera Calibration (DLT Algorithm)
00 X{ -yX]
X{ 00 —xX] [P
P, |=0 Ap=0

D e 2 Y
X, 00 —x X,
* P has 11 degrees of freedom.

* Two linearly independent equations per independent 2D/3D
correspondence.

* Solve with SVD (similar to homography estimation)
> Solution corresponds to smallest singular vector.

* 514 correspondences needed for a minimal solution.

(0))
3
£
£
=)
/)]
c
Q
D
>
8
=
Q
S
(@)
S

142

Slide adapted from Svetlana Lazebnik B. Leibe



RWTH
Recap: Triangulation — Lin. Alg. Approach Bxg,.0€

)(erc o
ISG 6
.3/

A X, =PX X, xP,X=0 [X, JP,X=0
LX,=P,X  x,xPX=0 [X,]P,X=0

* Two independent equations each in terms of
three unknown entries of X.

* Stack equations and solve with SVD.
* This approach nicely generalizes to multiple cameras.
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Slide credit: Svetlana Lazebnik B. Leibe



Recap: Epipolar Geometry — Calibrated Case

X

In the first one.

= R

“’g) \_/

: R

"  Camera matrix: [1|0] Camera matrix: [RT| —R't]
(@) .

g X=(u,v,w, 1T Vector x’ in second coord.
o x=(u,v,w)! system has coordinates Rx ’
3

£

(@)

o

The vectors x, 1, and Rx’ are coplanar

Slide credit: Svetlana Lazebnik
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Recap: Epipolar Geometry — Calibrated Case

X

[

P N\

e ec

!J

O 0’

x-[tx(Rx)]=0 mE) x'Ex'=0 with E=[t]R

8

Essential Matrix
(Longuet-Higgins, 1981)
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Slide credit: Svetlana Lazebnik B. Leibe



RWNTH
Recap: Epipolar Geometry — Calibrated Case

O \E G
x-[tx(Rx)]=0 ®mE) Xx'Ex'=0 with E=[t]R

OJ

* E X’ iIs the epipolar line associated with x’ (/ = E x))
* E'X is the epipolar line associated with x (I’ = E™X)
* Ee’'=0 and ETe=0

* E is singular (rank two)

* E has five degrees of freedom (up to scale)
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Slide credit: Svetlana Lazebnik B. Leibe



RWTH
Recap: Epipolar Geometry — Uncalibrated Case

X

[

O \e ) 0’
* The calibration matrices K and K’ of the two cameras are
unknown

* We can write the epipolar constraint in terms of unknown
normalized coordinates:

LER =0 X=KX, X =K%
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Slide credit: Svetlana Lazebnik B. Leibe



Recap: Epipolar Geometry — Uncalibra@ﬁ'ulh IMIVEI%II%
Case

!J

N\

e ec .
OJ

(@)) O

% R'EX =0 mm) x'Fx'=0 with F=KTEK'"
®

4 X=KX 4

z , A Fundamental Matrix

= X = KX (Faugeras and Luong, 1992)

&

S
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Slide credit: Svetlana Lazebnik B. Leibe



RWTH
Recap: Epipolar Geometry — Uncalibrated Case

X

R'EX'=0 mm) X' Fx'=0 with F=KTEK'™"
* Fx’ is the epipolar line associated with x’ (/ = F x’)
* FTx is the epipolar line associated with x (I’= F'X)
* Fe’=0 and F'e=0
* Fis singular (rank two)
* F has seven degrees of freedom 149

B. Leibe

OJ
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Recap: The Eight-Point Algorithm Bre, %0

€6
~ ; s (Fi 71
X=(u,v, DT, x’=(@’v’,1) Fis
Fi3
Fin Fy Fig)\ [ Fo
.
(w,v,1)| For Faa Fy ||V [=0 ‘ (u, uv', u,vu', vv', v, 0,0, 1) | Fae | =0
Fy Fy Fy )\ 1 Foy
F3
B ' ' ' ' ' ' 1_ Fll F:ﬂ
u,u; uv, u v, vv, v, u Vv = l\ F33 )
12
uu, u\Vv, u, V,u, Vv, Vv, u, v, 1 :
(@)} ’ ’ ' ’ ' ' F13 1) SOIVe W|th SVD
o | UUs UV U Voug VoV Vo up v 1 L
5 ; , , , o F,. This minimizes
E uu, uVv, u, vu, vv, v, u, v, 1 = |—o ‘ N
22 |~ T 2
D UUs  UsVg Us  Vgls VeV Vg Ug Vg 1 = Z (Xi F X:)
.é ueue’s UGVé Us V6ue,s V6VE,3 Ve uE,i Vé 1 F23 =1
— ’ ' ' ' ' ' 31
E u,u; UV, U, Vol VRV v UV 1 = 2.) Enfore rank-2
32 . :
% | Ugls UV Ug  VeUy VgVg Vg Ug Vg 1] - constraint using SVD
= . o
s * Problem: poor numerical conditioning -
B. Leibe

Slide credit: Svetlana Lazebnik



RWNTH
Recap: Normalized Eight-Point Alg. Sterozeg
7/

1. Center the image data at the origin, and scale it so the
mean squared distance between the origin and the data
points is 2 pixels.

2. Use the eight-point algorithm to compute F from the
normalized points.

3. Enforce the rank-2 constraint using SVD. Set dy, t
SVD d,, v, eV 1 zeroand

v . reconstruct F
FIubv'=u| d, /
@‘ 31 V33_

4. Transform fundamental matrix back to original units: if T
and T’ are the normalizing transformations in the two
Images, than the fundamental matrix in original coordinates
ISTTFT.

Slide credit: Svetlana Lazebnik
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Recap: Comparison of Estimation Algorithms

8-point

Normalized 8-point

Nonlinear least squares
Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel
Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel

Slide credit: Svetlana Lazebnik
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Recap: Epipolar Transfer

* Assume the epipolar geometry is known

* Given projections of the same point in two images, how can
we compute the projection of that point in a third image?
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Slide credit: Svetlana Lazebnik B. Leibe
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Repetition

Structure-

* Image Processing Basics
from-Motion

* Segmentation & Grouping

* Object Recognition

* Local Features & Matching Pfog)e_C“};e
ambiguity

* Object Categorization

3D Reconstruction

> Epipolar Geometry and
Stereo Basics

> Camera Calibration &
Uncalibrated Reconstruction

> Structure-from-Motion
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Recap: Structure from Motion

* Given: m images of n fixed 3D points
Xij:Pin, =1 ....,m j=1 ..,n

* Problem: estimate m projection matrices P; and
n 3D points X; from the mn correspondences Xx;
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Slide credit: Svetlana Lazebnik B. Leibe



RWTH
Recap: Structure from Motion Ambiguity

* If we scale the entire scene by some factor k and, at the
same time, scale the camera matrices by the factor of 1/k,
the projections of the scene points in the image remain
exactly the same.

* More generally: if we transform the scene using a

transformation Q and apply the inverse transformation to the
camera matrices, then the images do not change

x =PX = (PQ QX
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Slide credit: Svetlana Lazebnik
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RWNTH
Recap: Hierarchy of 3D Transformations

Projective (At Preserves intersection and
tangenc

15dof _vT v gency

Affine At Preserves parallellism,

12dof o' 1 volume ratios

Similarity SRt Preserves angles, ratios of

7dof 0" 1 length

Preserves angles, lengths

Euclidean R t
6dof o7 1

* With no constraints on the camera calibration matrix or on the scene, we
get a projective reconstruction.

* Need additional information to upgrade the reconstruction to affine,

similarity, or Euclidean. | -
Slide credit: Svetlana Lazebnik B. Leibe
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A INVERSITY
Any More Questions?

Good luck for the exam!
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