Computer Vision — Lecture 17

Uncalibrated Reconstruction & StM

08.07.2019

Bastian Leibe

Visual Computing Institute
RWTH Aachen University
http://www.vision.rwth-aachen.de/
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Announcements

* No lecture tomorrow (Tuesday)
> Due to a schedule conflict

* Last exercise will be offered on Monday, 15.07.
> Optional, but recommended
> Time slot & room to be announced...

* Repetition slides

> | will provide a slide set (pdf) with summary slides for the
entire lecture

> ldea: you can use this as an index to the lecture
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Course Outline

* Image Processing Basics
* Segmentation & Grouping
* Object Recognition

* Local Features & Matching
* Deep Learning

* 3D Reconstruction
> Epipolar Geometry and Stereo Basics
> Camera calibration & Triangulation
> Uncalibrated Reconstruction & Active Stereo
> Structure-from-Motion



Recap: A General Point
* Equations of the form

AX =0

* How do we solve them? (always!)
> Apply SVD

SVvD B I T
l d11 Vip o Vi

A=UDV' =U

dNN ] _VNl 0 M

Singular values Singular vectors

> Singular values of A = square roots of the eigenvalues of ATA.
> The solution of Ax=0 is the nullspace vector of A.
> This corresponds to the smallest singular vector of A.
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Recap: Camera Parameters

* Intrinsic parameters
> Principal point coordinates m, f
~ Focal length K{ m, H
» Pixel magnification factors 1
> Skew (non-rectangular pixels)
> Radial distortion

* EXxtrinsic parameters
> Rotation R

> Translation t
(both relative to world coordinate system)

* Camera projection matrix
= General pinhole camera: 9 DoF
= CCD Camera with square pixels: 10 DoF

— General camera; 11 DoF
B. Leibe

P=K[R|t]



Recap: Calibrating a Camera

e Goal

> Compute intrinsic and extrinsic parameters
using observed camera data.

* Main idea

> Place “calibration object” with known
geometry in the scene

o » Get correspondences

E > Solve for mapping from scene to image:

Ug) estimate P=P, P,

S

Rl «
> X
()
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3 // e
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Slide credit: Kristen Grauman B. Leibe P



RWTH

Recap: Camera Calibration (DLT Algorithm)
00 X[ -yX] %
XI 0' _X1XI (31\
P, |=0 Ap=0
0" X, =¥, X, (\Ps)
XT 0 —x X
* P has 11 degrees of freedom.

* Two linearly independent equations per independent 2D/3D
correspondence.

o ‘similar to homography estimation)
> Solution corresponds to smallest singular vector.

* 514 correspondences needed for a minimal solution.

P?

(0))
3
£
£
=)
/)]
c
Q
D
>
8
=
Q
S
(@)
S

Slide adapted from Svetlana Lazebnik B. Leibe



R\WNTH
Recap: Triangulation — Linear Algebraic Approach

X, =PX X xPX=0 [X, ]JPX=0
LX,=P,X  x,xPX=0 [X,]P,X=0

* Two independent equations each in terms of
three unknown entries of X.

* Stack equations and solve with SVD.
* This approach nicely generalizes to multiple cameras.

(0))
3
£
£
=)
/)]
c
Q
D
>
8
=
Q
S
(@)
S

Slide credit: Svetlana Lazebnik B. Leibe



Topics of This Lecture

* Revisiting Epipolar Geometry
Calibrated case: Essential matrix

> Uncalibrated case: Fundamental matrix
Weak calibration

Epipolar Transfer

Y

Y

Y

* Active Stereo
> Kinect sensor

Y

Projective factorization
Bundle adjustment

Y

> > Structured Light sensing
2 . Laser scanning

£

7 * Structure from Motion (SfM)
C

9 > Motivation

= ~ Ambiguity
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B. Leibe
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. _ UNIVERSITY
Recap: Epipolar Geometry — Calibrated Case

-

x-[tx(Rx)]=0 mE) x'Ex'=0 with E=[t]R

8

Essential Matrix
(Longuet-Higgins, 1981)
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Slide credit: Svetlana Lazebnik B. Leibe
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RWNTH
Epipolar Geometry: Calibrated Case

o \ 0’
x-[tx(Rx)]=0 ®mE) Xx'Ex'=0 with E=[t]R
* E X’ iIs the epipolar line associated with x’ (/ = E x))
* E'X is the epipolar line associated with x (I’ = ETX)
e Ee’=0 and E'e=0 Why?
* E is singular (rank two) Why?

E has five degrees of freedom (up to scale)

Slide credit: Svetlana Lazebnik B. Leibe

12



RWNTH
Epipolar Geometry: Uncalibrated Case

X

[

o \E “
* The calibration matrices K and K’ of the two cameras
are unknown

* We can write the epipolar constraint in terms of unknown
normalized coordinates:

LER =0 X=KX, X =K%

OJ
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Slide credit: Svetlana Lazebnik B. Leibe
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Epipolar Geometry: Uncalibrated Case

X

!J

e ec .
OJ

(@)) O

% R'EX =0 mm) x'Fx'=0 with F=KTEK'"
: ' 1

4 X=KX

z , A Fundamental Matrix

= X = KX (Faugeras and Luong, 1992)

&

S

16

Slide credit: Svetlana Lazebnik B. Leibe
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RWNTH
Epipolar Geometry: Uncalibrated Case

o \E ¢
)’ZTE)’Z’:O - XTFX’:O with F:K—TEKr—l

* Fx’ is the epipolar line associated with x’ (/ = F x’)
* FTx is the epipolar line associated with x (I’= F'X)
* Fe'=0 and F'e=0

* Fis singular (rank two)

* F has seven degrees of freedom

B. Leibe

OJ

Slide credit: Svetlana Lazebnik

17
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RWNTH
Estimating the Fundamental Matrix

* The Fundamental matrix defines the epipolar geometry
between two uncalibrated cameras.

* How can we estimate F from an image pair?
> We need correspondences...

/. X;
X; /’\ be.
y = A“\"‘X*\\

P? P'?

B. Leibe

18



The Eight-Point Algorithm

Fi1
— T y — ’ ’ T
x=(uv,", x’=@’v’1) Fio
Fi3
Fiin Fy Fg) (v Fa
(w,v,1) | For Fyy Fy || v | =0 ‘ (v u, v'v,u' uv’ vv' 0w, v, 1] | Foao | =0
Fy Fy Fy )\ 1 Fas
F31
: _ Fo
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P / / / / / 1 1 F11 mA) B -
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= =1 19
B. Leibe

Slide adapted from Svetlana Lazebnik
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Excursion: Properties of SVD

* Frobenius norm
> Generalization of the Euclidean norm to matrices

m min(m,n)

(22l = 3 e

* Partial reconstruction property of SVD

- Let g;i=1,...,N be the singular values of A.

Al =

> Let A = UprVpT be the reconstruction of A when we set

Op+1--+» Oy 1O Zero.

» Then Ap = UprVpT is the best rank-p approximation of A in the

sense of the Frobenius norm

(i.e. the best least-squares approximation).
B. Leibe
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The Eight-Point Algorithm

* Problem with noisy data

> The solution will usually not fulfill the constraint that F only has
rank 2.

= There will be no epipoles through which all epipolar lines pass!

* Enforce the rank-2 constraint using SVD

Setdj; to
- - ol
SVD d,, Vy; -0 Vi3 | 1 Zeroand

v . reconstruct F
FIubv'=u| d, /
@J 31 V33_

* As we have just seen, this provides the best least-squares
approximation to the rank-2 solution.
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* In practice, this often looks as follows:

UquUq
UsU2
Usus
Uy Uy
UsUs
UgUp
Urur
Ugusg

Slide adapted from Svetlana Lazebnik

Uy
UsV2
U3U3
Uy Vg
Ug Vs
Ug Ve
Uu-vr
UgUsg

u)  urvf
uh U
w5 uzvh
Uy Ugvy
U UsUL
ug UG
un,  uzvr
ug  UgUg
B. Leibe

V104
V2V,
V3Vqg
Vq4Uy
U5y
Vg Vg
(rdd
VgVg

Ui
U2
usz
Uy
Us
U6
ur
us

RWTH
Problem with the Eight-Point Algorithm

U1
V2
U3
Vg
Us
Ve
U7
U8

—t e e e e et

SO OO OO oo

22
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* In practice, this often looks as follows:

RWTH
Problem with the Eight-Point Algorithm

250906, 36| 153269.57 Bz21.8l1 200%31.10) 146766.13 138,21 272,18 195,481
2692, 258 131633.03 176,27 6196.73 302975, 58 405,71 15.27 746,78
416374, 23] 871684, 30 835.47 408110.589 5854354, 92 216,590 445,10 931.481

1 191133.600 171759.40 410,27 4led3h.62) 374125.90 893.65 465,98 415.65
45935, 686) 30401.76 57,89 296604, 57 185309, 58 352.87 od6, 22 525,15
led7aa. 04 546559.67 B813.17 1993, 37 boZd. 15 9.386 alzZ. a5 672,14
116407, 01 2TET.75 138.89 169941, 27 3982, 21 202,77 838,12 19.64
1535384, 58] 75411.13 193,72 411350.03) 229127.73 603,79 651,28 379,48

= Poor numerical conditioning
— Can be fixed by rescaling the data

Slide adapted from Svetlana Lazebnik

B. Leibe
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The Normalized Eight-Point Algorithm

1. Center the image data at the origin, and scale it so the
mean squared distance between the origin and the data

points is 2 pixels.

2. Use the eight-point algorithm to compute F from the

normalized points.

3. Enforce the rank-2 c_onstraint usi_ng SVD. Set d,, to
SYD dll V11 P V13 T/ Zero and
F=UDV'=U

) . reconstruct F
d,, : ' :
@‘ 31 0 Va3 ]

4. Transform fundamental matrix back to original units: if T
and T’ are the normalizing transformations in the two
Images, then the fundamental matrix in original coordinates

ISTTFT.

Slide credit: Svetlana Lazebnik

_ 24
B. Leibe [Hartley, 1995]



The Eight-Point Algorithm

* Meaning of error Z:(X,T Fx/)*:
i=1
Sum of Euclidean distances between points x; and epipolar
lines Fx’ (or points x’; and epipolar lines Fx;), multiplied by
a scale factor

* Nonlinear approach for refining the solution: minimize

i[dz(xi, Fx)+d2(x, F"x)]

> Similar to nonlinear minimization
approach for triangulation.

> Iterative approach (Gauss-Newton,
Levenberg-Marquardt,...)
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Slide credit: Svetlana Lazebnik B. Leibe
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Comparison of Estimation Algorithms

Normalized 8-point

Nonlinear least squares

Slide credit: Svetlana Lazebnik

Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel
Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel
B. Leibe

26
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RWNTH
3D Reconstruction with Weak Calibration

* \Want to estimate world geometry without requiring
calibrated cameras.

* Many applications:
> Archival videos

> Photos from multiple unrelated users
> Dynamic camera system

* Main idea:

> Estimate epipolar geometry from a (redundant) set of
point correspondences between two uncalibrated
cameras.

Slide credit: Kristen Grauman B. Leibe

27
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Stereo Pipeline with Weak Calibration

* S0, where to start with uncalibrated cameras?

> Need to find fundamental matrix F and the correspondences
(pairs of points (u’,v’) « (u,v)).

* Procedure
1. Find interest points in both images
2. Compute correspondences
3. Compute epipolar geometry
4. Refine

Slide credit: Kristen Grauman
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B. Leibe Example from Andrew Zisserman
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Stereo Pipeline with Weak Calibration

1. Find interest points (e.g. Harris corners)
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Example from Andrew Zisserman

Slide credit: Kristen Grauman B. Leibe
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Stereo Pipeline with Weak Calibration

2. Match points using only proximity
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Slide credit: Kristen Grauman B. Leibe Example from Andrew Zisserman
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UNIVERSITY

Putative Matches based on Correlation Search

* Many wrong matches (10-50%), but enough to compute F
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B. Leibe Example from Andrew Zisserman



RWNTH
RANSAC for Robust Estimation of F

* Select random sample of correspondences

e Compute F using them

> This determines epipolar constraint

* Evaluate amount of support — number of inliers
within threshold distance of epipolar line

* [terate until a solution with sufficient support
has been found (or for max #iterations)

* Choose F with most support (#inliers)
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Slide credit: Kristen Grauman B. Leibe



CHEN
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Putative Matches based on Correlation Search

* Many wrong matches (10-50%), but enough to compute F
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B. Leibe Example from Andrew Zisserman
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Pruned Matches

* Correspondences consistent with epipolar geometry
3 E——— i e 7 -
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B. Leibe Example from Andrew Zisserman
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Resulting Epipolar Geometry
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B. Leibe Example from Andrew Zisserman
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Epipolar Transfer

* Assume the epipolar geometry is known

* Given projections of the same point in two images, how can
we compute the projection of that point in a third image?

36

Slide credit: Svetlana Lazebnik B. Leibe
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Extension: Epipolar Transfer

* Assume the epipolar geometry is known

* Given projections of the same point in two images, how can
we compute the projection of that point in a third image?

: L >
X1 Xy X3
|3 |5,
— T
I3, = Flis X,
— T
I3, = F'ys X%,

When does epipolar transfer fail?

B. Leibe

37
Slide credit: Svetlana Lazebnik
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Topics of This Lecture

* Active Stereo
> Kinect sensor
> Structured Light sensing
> Laser scanning
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Microsoft Kinect — How Does It Work?

KINECT

for &R

o

* Built-in IR
projector

* IR camera for
depth

* Regular camera
for color
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Recall: Optical Triangulation

3D Scene point & X?

\

Image plane
X1

O

b, Camera center
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Recall: Optical Triangulation

3D Scene point 2 X

— —

Image plane
X1

O O

b, Camera center A

* Principle: 3D point given by intersection of two rays.
> Crucial information: point correspondence
> Most expensive and error-prone step in the pipeline...

(0))
3
£
£
=)
/)]
c
Q
D
>
8
=
Q
S
(@)
S

41

B. Leibe



RWTHAACHEN
UNIVERSITY

Active Stereo with Structured Light

3D Scene point

Image plane

Camera center

Projector

* |dea: Replace one camera by a projector.
> Project “structured” light patterns onto the object
> Simplifies the correspondence problem
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B. Leibe
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RWNTH
3D Reconstruction with the Kinect

SIGGRAPH Talks 2011
KinectFusion:

Real-Time Dynamic 3D Surface
Reconstruction and Interaction

Shahram lzadi 1, Richard Newcombe 2, David Kim 1,3, Otmar Hilliges 1,
David Molyneaux 1,4, Pushmeet Kohli 1, Jamie Shotton 1,
Steve Hodges 1, Dustin Freeman 5, Andrew Davison 2, Andrew Fitzgibbon 1

1 Microsoft Research Cambridge 2 Imperial College London
3 Newcastle University 4 Lancaster University
5 University of Toronto

_ 44
B. Leibe



Laser Scanning
Object

Direction of travel
——

%\ CCD image plane

& Y Cylindrical lens Q)
Laser CCD

Laser sheet

Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/

* Optical triangulation
> Project a single stripe of laser light
> Scan it across the surface of the object
> This is a very precise version of structured light scanning
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Slide credit: Steve Seitz B. Leibe


http://graphics.stanford.edu/projects/mich/
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Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.
B. Leibe

Slide credit: Steve Seitz

47
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Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.

Slide credit: Steve Seitz B. Leibe

48
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Laser Scanned Models

R\WNTH

The Digital Michelangelo Project, Levoy et al.

Slide credit: Steve Seitz B. Leibe

49
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Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.

Slide credit: Steve Seitz B. Leibe
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Laser Scanned Models
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Steve Seitz

Slide cred
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Poor Man’s Scanner

Desk
Lamp

Stick or
pencil [

Camera
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Bouget and Perona, ICCV’98



../../../Local Settings/ANGEL.WRL
../../../Local Settings/ANGEL.WRL

RWTHAACHEN
lgNIVERSITY

Slightly More Elaborate (But Still Cheap

-

Software freely available from Robotics Institute TU Braunschweig

http://www.david-laserscanner.com/
B. Leibe
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http://www.david-laserscanner.com/
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Topics of This Lecture

e Structure from Motion (SfM)
Motivation

Ambiguity

Projective factorization
Bundle adjustment

Y Y Y Y
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Structure from Motion

* Given: m images of n fixed 3D points
Xij:Pin, =1 ....,m j=1 ..,n

* Problem: estimate m projection matrices P; and
n 3D points X; from the mn correspondences Xx;

Slide credit: Svetlana Lazebnik B. Leibe
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Applications

* E.g., movie special effects
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56
B. Leibe Video Credit: Stefan Hafeneger



../cv-ws08/videos/MotivationFilm.mov
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Structure from Motion Ambiguity

* If we scale the entire scene by some factor k and, at the
same time, scale the camera matrices by the factor of 1/k,
the projections of the scene points in the image remain
exactly the same:

x = PX = (%P) (kX)

= It is Impossible to recover the absolute scale of the scene!

Slide credit: Svetlana Lazebnik B. Leibe

57



Structure from Motion Ambiguity

* If we scale the entire scene by some factor k and, at the
same time, scale the camera matrices by the factor of 1/k,
the projections of the scene points in the image remain
exactly the same.

* More generally: if we transform the scene using a

transformation Q and apply the inverse transformation to the
camera matrices, then the images do not change

x =PX = (PQ QX
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Slide credit: Svetlana Lazebnik B. Leibe
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Reconstruction Ambiguity: Similarity
-<\‘:
x = PX = (PQ;)QsX
= 59

B. Leibe

Slide credit: Svetlana Lazebnik Images from Hartley & Zisserman
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Reconstruction Ambiguity: Affine

.

Afflne

o

x = PX = (PQ;")Q4X
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B. Leibe Images from Hartley & Zisserman

Slide credit: Svetlana Lazebnik
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Reconstruction Ambiguity: Projective
“é ‘*‘ _ -
x = PX = (PQ;")QpX
g

B. Leibe

Slide credit: Svetlana Lazebnik Images from Hartley & Zisserman
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Projective Ambiguity
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Images from Hartley & Zisserman

B. Leibe

Slide credit: Svetlana Lazebnik
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From Projective to Affine
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Images from Hartley & Zisserman

B. Leibe

Slide credit: Svetlana Lazebnik



From Affine to Similarity
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Images from Hartley & Zisserman

B. Leibe

Slide credit: Svetlana Lazebnik



Hierarchy of 3D Transformations

Projective At Preserves intersection
and tangenc

15dof Vv gency
AfFfi At Preserves llelli

ine parallellism,
12dof 0" 1 volume ratios
Similarity SR Preserves angles, ratios
7dof o’ 1 of length

Preserves angles,

lengths

Euclidean R t
6dof 0" 1

* With no constraints on the camera calibration matrix or on the scene,
we get a projective reconstruction.

* Need additional information to upgrade the reconstruction to affine,

similarity, or Euclidean. | 5
Slide credit: Svetlana Lazebnik B. Leibe
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Structure from Motion

* Given: m images of n fixed 3D points
Xij:Pin, =1 ....,m j=1 ..,n

* Problem: estimate m projection matrices P; and
n 3D points X; from the mn correspondences Xx;

Slide credit: Svetlana Lazebnik B. Leibe
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Projective Structure from Motion

* Given: mimages of n fixed 3D points
¢ ZIJXIj:PIXj’ i:].,...,m, ]:1, ...,n

* Problem: estimate m projection matrices P; and n 3D points
X from the mn correspondences Xi

* With no calibration info, cameras and points can only be
recovered up to a 4 x4 projective transformation Q:

X —QX, P—-PQ!
* We can solve for structure and motion when
2mn >=11m +3n - 15
* For two cameras, at least 7 points are needed.

Slide credit: Svetlana Lazebnik B. Leibe
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RWNTH
Projective SfM: Two-Camera Case

e Assume fundamental matrix F between the two views

> First camera matrix: [1/0]Q1
> Second camera matrix: [A|b]Q1

e Let X=QX, then zx =[1]0]X, z'x'=[ADb]X

e And z'x' = Al O:)Z+b:ZAX+b
= Z'X'xb=zAxxb
% (z'x"xDb)- X' =(zAxxDh) X’
g, 0=(zAxxDb)- X’
% * So we have X'T[b, ]JAX =0
§ F=[b ,JA b: epipole (FTb=0), A=-[b]JF

68

Slide adapted from Svetlana Lazebnik B. Leibe F&P sec. 13.3.1
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Projective SfM: Two-Camera Case

Decomposing the Fundamental Matrix

> This means that if we can compute the fundamental matrix between
two cameras, we can directly estimate the two projection matrices

from F.

> Once we have the projection matrices, we can compute the 3D
position of any point X by triangulation.

How can we obtain both kinds of information at the same
time?

69
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Projective Factorization

Z11X11 £1,X1, 0 LXKy, I:)1
Z,.X Z,.X cer 2o X P
217721 227322 2n\2n 2
D = ‘| —| [Xl Ky o Xn]
y ¥ Points (4 x n)

_Zmlxml Lo Km2 Zmnxmn_ _Pm_

Cameras

(3m x 4)

D = MS has rank 4

* If we knew the depths z, we could factorize D to estimate
M and S.

* |[fwe knew M and S, we could solve for z.

* Solution: iterative approach
(alternate between above two steps).
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Slide credit: Svetlana Lazebnik B. Leibe



Sequential Structure from Motion

* Initialize motion from two images
using fundamental matrix Points

* |nitialize structure

* For each additional view:

> Determine projection matrix
of new camera using all the
known 3D points that are
visible in its image —
calibration

v

Cameras
a & & & & & 8 2
& & & & & & 2 @
& & & & & & & @&
& & & & & 8 9 @
* @ @ @ & @ @9 @9
a & & & & & 8 2
& & & & & & 2 @
& & & & & & & @&

l
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Slide credit: Svetlana Lazebnik B. Leibe
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Sequential Structure from Motion

* Initialize motion from two images
using fundamental matrix

* |nitialize structure

* For each additional view:

> Determine projection matrix
of new camera using all the
known 3D points that are
visible in its image —
calibration

> Refine and extend structure:
compute new 3D points,
re-optimize existing points
that are also seen by this camera —
triangulation

Slide credit: Svetlana Lazebnik B. Leibe

Cameras

Points

v

e & & & & 8 80

* & & & & " 9 000

b B
s B
e @
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Sequential Structure from Motion

* Initialize motion from two images
using fundamental matrix Points

v

* Initialize structure P

1 1 . e & & & & 2 90 9

* For each additional view: 2| leaososes

> Determine projection matrix D| |9®®e e e o0

of new camera using all the % teseeeee

. & & & & & 8 & @9

known 3D points that are Ol leeeoees e
visible in its image — R R
calibration *o 00080
e & @

> Refine and extend structure:
compute new 3D points,
re-optimize existing points
that are also seen by this camera —
triangulation

* Refine structure and motion: bundle adjustment

Slide credit: Svetlana Lazebnik B. Leibe
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Bundle Adjustment

* Non-linear method for refining structure and motion
* Minimizing mean- square reprOJectlon error

E(P, X) = ZZD(XU,PX )

=1l j=1
X|

2
@
£
=
%) W
< .
5 P, ngjxlr Xy \
>
o
: y 2
&)

P,

Slide credit: Svetlana Lazebnik B. Leibe
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Bundle Adjustment

* |dea

> Seek the Maximum Likelihood (ML) solution assuming the
measurement noise is Gaussian.

> Itinvolves adjusting the bundle of rays between each camera center
and the set of 3D points.

> Bundle adjustment should generally be used as the final step
of any multi-view reconstruction algorithm.

— Considerably improves the results.
— Allows assignment of individual covariances to each measurement.

* However...
> It needs a good initialization.
> It can become an extremely large minimization problem.

* Very efficient algorithms available.
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References and Further Reading

* Background information on camera models and calibration
algorithms can be found in Chapters 6 and 7 of

R. Hartley, A. Zisserman
Multiple View Geometry in Computer Vision
2nd Ed., Cambridge Univ. Press, 2004

Richard Hactley and Andrew Zisserman

* Also recommended: Chapter 9 of the same book on
Epipolar geometry and the Fundamental Matrix and
Chapter 11.1-11.6 on automatic computation of F.
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