
P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Machine Learning – Lecture 17

Exact Inference & Belief Propagation

11.07.2016

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

 TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.:
AAAAAAAAAAAAAAAAAAAAAAAAAAAA

Many slides adapted from C. Bishop, Z. Gharahmani

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Course Outline

• Fundamentals (2 weeks)

 Bayes Decision Theory

 Probability Density Estimation

• Discriminative Approaches (5 weeks)

 Linear Discriminant Functions

 Statistical Learning Theory & SVMs

 Ensemble Methods & Boosting

 Decision Trees & Randomized Trees

• Generative Models (4 weeks)

 Bayesian Networks

 Markov Random Fields

 Exact Inference

B. Leibe
3

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Recap: Undirected Graphical Models

• Undirected graphical models (“Markov Random Fields”)

 Given by undirected graph

• Conditional independence for undirected graphs

 If every path from any node in set A to set B passes through at

least one node in set C, then .

 Simple Markov blanket:

4
B. Leibe Image source: C. Bishop, 2006

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Recap: Factorization in MRFs

• Joint distribution

 Written as product of potential functions over maximal cliques

in the graph:

 The normalization constant Z is called the partition function.

• Remarks

 BNs are automatically normalized. But for MRFs, we have to

explicitly perform the normalization.

 Presence of normalization constant is major limitation!

– Evaluation of Z involves summing over O(KM) terms for M nodes!

5
B. Leibe

p(x) =
1

Z

Y

C

ÃC(xC)

Z =
X

x

Y

C

ÃC(xC)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Recap: Factorization in MRFs

• Role of the potential functions

 General interpretation

– No restriction to potential functions that have a specific

probabilistic interpretation as marginals or conditional distributions.

 Convenient to express them as exponential functions

(“Boltzmann distribution”)

– with an energy function E.

 Why is this convenient?

– Joint distribution is the product of potentials  sum of energies.

– We can take the log and simply work with the sums…

6
B. Leibe

ÃC(xC) = expf¡E(xC)g

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

• Problematic case: multiple parents

 Need to introduce additional links (“marry the parents”).

 This process is called moralization. It results in the moral graph.

Recap: Converting Directed to Undirected Graphs

7
B. Leibe Image source: C. Bishop, 2006

Need a clique of x1,…,x4 to represent this factor!

Fully connected,

no cond. indep.!

Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Recap: Conversion Algorithm

• General procedure to convert directed  undirected

1. Add undirected links to marry the parents of each node.

2. Drop the arrows on the original links  moral graph.

3. Find maximal cliques for each node and initialize all clique

potentials to 1.

4. Take each conditional distribution factor of the original

directed graph and multiply it into one clique potential.

• Restriction

 Conditional independence properties are often lost!

 Moralization results in additional connections and larger cliques.

8
B. Leibe Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Computing Marginals

• How do we apply graphical models?

 Given some observed variables,

we want to compute distributions

of the unobserved variables.

 In particular, we want to compute

marginal distributions, for example p(x4).

• How can we compute marginals?

 Classical technique: sum-product algorithm by Judea Pearl.

 In the context of (loopy) undirected models, this is also called

(loopy) belief propagation [Weiss, 1997].

 Basic idea: message-passing.

9
B. Leibe Slide credit: Bernt Schiele, Stefan Roth

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Inference on a Chain

• Chain graph

 Joint probability

 Marginalization

10
B. Leibe Image source: C. Bishop, 2006 Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Inference on a Chain

 Idea: Split the computation into two parts (“messages”).

11
B. Leibe Image source: C. Bishop, 2006 Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Inference on a Chain

 We can define the messages recursively…

12
B. Leibe Image source: C. Bishop, 2006 Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Inference on a Chain

 Until we reach the leaf nodes…

 Interpretation

– We pass messages from the two ends towards the query node xn.

 We still need the normalization constant Z.

– This can be easily obtained from the marginals:

13
B. Leibe Image source: C. Bishop, 2006

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Summary: Inference on a Chain

• To compute local marginals:

 Compute and store all forward messages ¹®(xn).

 Compute and store all backward messages ¹¯(xn).

 Compute Z at any node xm.

 Compute

for all variables required.

• Inference through message passing

 We have thus seen a first message passing algorithm.

 How can we generalize this?

15
B. Leibe Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Inference on Trees

• Let’s next assume a tree graph.

 Example:

 We are given the following joint distribution:

 Assume we want to know the marginal p(E)…

16
B. Leibe Slide credit: Bernt Schiele, Stefan Roth

p(A;B;C;D;E) = ?p(A;B;C;D;E) =
1

Z
f1(A;B) ¢ f2(B;D) ¢ f3(C;D) ¢ f4(D;E)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Inference on Trees

• Strategy

 Marginalize out all other variables by

summing over them.

 Then rearrange terms:

17
B. Leibe

p(E) =
X

A

X

B

X

C

X

D

p(A;B;C;D;E)

Slide credit: Bernt Schiele, Stefan Roth

=
X

A

X

B

X

C

X

D

1

Z
f1(A;B) ¢ f2(B;D) ¢ f3(C;D) ¢ f4(D;E)

=
1

Z

ÃX

D

f4(D;E)¢
ÃX

C

f3(C;D)

!
¢
ÃX

B

f2(B;D)¢
ÃX

A

f1(A;B)

!!!

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Marginalization with Messages

• Use messages to express the marginalization:

18
B. Leibe

mA!B =
X

A

f1(A;B)

Slide credit: Bernt Schiele, Stefan Roth

p(E) =
1

Z

ÃX

D

f4(D;E)¢
ÃX

C

f3(C;D)

!
¢
ÃX

B

f2(B;D)¢
ÃX

A

f1(A;B)

!!!

mC!D =
X

C

f3(C;D)

mB!D =
X

B

f2(B;D)mA!B(B)

mD!E =
X

D

f4(D;E)mB!D(D)mC!D(D)

=
1

Z

ÃX

D

f4(D;E)¢
ÃX

C

f3(C;D)

!
¢
ÃX

B

f2(B;D)¢mA!B(B)

!!

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Marginalization with Messages

• Use messages to express the marginalization:

19
B. Leibe Slide credit: Bernt Schiele, Stefan Roth

p(E) =
1

Z

ÃX

D

f4(D;E)¢
ÃX

C

f3(C;D)

!
¢
ÃX

B

f2(B;D)¢
ÃX

A

f1(A;B)

!!!

mC!D =
X

C

f3(C;D)

=
1

Z

ÃX

D

f4(D;E)¢
ÃX

C

f3(C;D)

!
¢mB!D(D)

!

mA!B =
X

A

f1(A;B)

mB!D =
X

B

f2(B;D)mA!B(B)

mD!E =
X

D

f4(D;E)mB!D(D)mC!D(D)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Marginalization with Messages

• Use messages to express the marginalization:

20
B. Leibe Slide credit: Bernt Schiele, Stefan Roth

p(E) =
1

Z

ÃX

D

f4(D;E)¢
ÃX

C

f3(C;D)

!
¢
ÃX

B

f2(B;D)¢
ÃX

A

f1(A;B)

!!!

mC!D =
X

C

f3(C;D)

=
1

Z

ÃX

D

f4(D;E)¢mC!D(D)¢mB!D(D)

!

mA!B =
X

A

f1(A;B)

mB!D =
X

B

f2(B;D)mA!B(B)

mD!E =
X

D

f4(D;E)mB!D(D)mC!D(D)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Marginalization with Messages

• Use messages to express the marginalization:

21
B. Leibe Slide credit: Bernt Schiele, Stefan Roth

p(E) =
1

Z

ÃX

D

f4(D;E)¢
ÃX

C

f3(C;D)

!
¢
ÃX

B

f2(B;D)¢
ÃX

A

f1(A;B)

!!!

mC!D =
X

C

f3(C;D)

=
1

Z
mD!E(E)

mA!B =
X

A

f1(A;B)

mB!D =
X

B

f2(B;D)mA!B(B)

mD!E =
X

D

f4(D;E)mB!D(D)mC!D(D)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Recap: Message Passing on Trees

• General procedure for all tree graphs.

 Root the tree at the variable that we want

to compute the marginal of.

 Start computing messages at the leaves.

 Compute the messages for all nodes for which all

incoming messages have already been computed.

 Repeat until we reach the root.

• If we want to compute the marginals for all possible

nodes (roots), we can reuse some of the messages.

 Computational expense linear in the number of nodes.

• We already motivated message passing for inference.

 How can we formalize this into a general algorithm?

23
B. Leibe Slide credit: Bernt Schiele, Stefan Roth

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

How Can We Generalize This?

• Message passing algorithm motivated for trees.

 Now: generalize this to directed polytrees.

 We do this by introducing a common representation

 Factor graphs

24
B. Leibe

Undirected

Tree

Directed Tree Polytree

Image source: C. Bishop, 2006

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Topics of This Lecture

• Factor graphs
 Construction

 Properties

• Sum-Product Algorithm for computing marginals
 Key ideas

 Derivation

 Example

• Max-Sum Algorithm for finding most probable value
 Key ideas

 Derivation

 Example

• Algorithms for loopy graphs
 Junction Tree algorithm

 Loopy Belief Propagation
25

B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Factor Graphs

• Motivation

 Joint probabilities on both directed and undirected graphs can

be expressed as a product of factors over subsets of variables.

 Factor graphs make this decomposition explicit by introducing

separate nodes for the factors.

 Joint probability

26

Regular nodes

Factor nodes

p(x) =
1

Z
fa(x1; x2)fb(x1; x2)fc(x2; x3)fd(x3)

=
1

Z

Y

s

fs(xs)

B. Leibe Image source: C. Bishop, 2006 Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Factor Graphs from Directed Graphs

• Conversion procedure

1. Take variable nodes from directed graph.

2. Create factor nodes corresponding to conditional distributions.

3. Add the appropriate links.

 Different factor graphs possible for same directed graph.

27
B. Leibe Image source: C. Bishop, 2006 Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Factor Graphs from Undirected Graphs

• Some factor graphs for the same undirected graph:

 The factor graph keeps the factors explicit and can thus convey

more detailed information about the underlying factorization!

 28
B. Leibe Image source: C. Bishop, 2006 Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Factor Graphs – Why Are They Needed?

• Converting a directed or undirected tree to factor graph

 The result will again be a tree.

• Converting a directed polytree

 Conversion to undirected tree creates loops due to moralization!

 Conversion to a factor graph again results in a tree.

29
B. Leibe Image source: C. Bishop, 2006

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Topics of This Lecture

• Factor graphs
 Construction

 Properties

• Sum-Product Algorithm for computing marginals
 Key ideas

 Derivation

 Example

• Max-Sum Algorithm for finding most probable value
 Key ideas

 Derivation

 Example

• Algorithms for loopy graphs
 Junction Tree algorithm

 Loopy Belief Propagation
30

B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Sum-Product Algorithm

• Objectives

 Efficient, exact inference algorithm for finding marginals.

 In situations where several marginals are required, allow

computations to be shared efficiently.

• General form of message-passing idea

 Applicable to tree-structured factor graphs.

 Original graph can be undirected tree or directed tree/polytree.

• Key idea: Distributive Law

 Exchange summations and products exploiting the tree

structure of the factor graph.

 Let’s assume first that all nodes are hidden (no observations).

31
B. Leibe

ab+ ac= a(b+ c)

Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Sum-Product Algorithm

• Goal:

 Compute marginal for x:

 Tree structure of graph allows us to partition the joint distrib.

into groups associated with each neighboring factor node:

32
B. Leibe

p(x) =
X

xnx

p(x)

p(x) =
Y

s2ne(x)

Fs(x;Xs)

ne(x): neighbors of x.

Image source: C. Bishop, 2006 Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Sum-Product Algorithm

• Marginal:

 Exchanging products and sums:

33
B. Leibe

p(x) =
X

Xs

Y

s2ne(x)

Fs(x;Xs)

p(x) =
Y

s2ne(x)

"X

Xs

Fs(x;Xs)

#
=
Y

s2ne(x)

¹fs!x(x)

ne(x): neighbors of x.

Image source: C. Bishop, 2006 Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Sum-Product Algorithm

• Marginal:

 Exchanging products and sums:

34
B. Leibe

p(x) =
X

Xs

Y

s2ne(x)

Fs(x;Xs)

p(x) =
Y

s2ne(x)

"X

Xs

Fs(x;Xs)

#
=
Y

s2ne(x)

¹fs!x(x)

This defines a first type

of message : ¹fs!x(x)

¹fs!x(x) ´
X

Xs

Fs(x;Xs)

Image source: C. Bishop, 2006

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Sum-Product Algorithm

• Evaluating the messages:

 Each factor Fs(x,Xs) is again described by a factor (sub-)graph.

 Can itself be factorized:

35
B. Leibe

Fs(x;Xs) = fs(x;x1; : : : ; xM)G1 (x1;Xs1) : : :GM (xM;XsM)

First message type:

¹fs!x(x) ´
X

Xs

Fs(x;Xs)

Image source: C. Bishop, 2006 Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Sum-Product Algorithm

• Evaluating the messages:

 Thus, we can write

36
B. Leibe

¹fs!x(x) =
X

x1

: : :
X

xM

fs(x; x1; : : : ; xM)
Y

m2ne(fs)nx

"X

Xsm

Gm(xm; Xsm)

#

=
X

x1

: : :
X

xM

fs(x; x1; : : : ; xM)
Y

m2ne(fs)nx

¹xm!fs(xm)

First message type:

¹fs!x(x) ´
X

Xs

Fs(x;Xs)

Image source: C. Bishop, 2006 Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Sum-Product Algorithm

• Evaluating the messages:

 Thus, we can write

37
B. Leibe

¹fs!x(x) =
X

x1

: : :
X

xM

fs(x; x1; : : : ; xM)
Y

m2ne(fs)nx

"X

Xsm

Gm(xm; Xsm)

#

=
X

x1

: : :
X

xM

fs(x; x1; : : : ; xM)
Y

m2ne(fs)nx

¹xm!fs(xm)

Second message type:

¹xm!fs(xm) ´
X

Xsm

Gm(xm;Xsm)

First message type:

¹fs!x(x) ´
X

Xs

Fs(x;Xs)

Image source: C. Bishop, 2006

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Sum-Product Algorithm

• Recursive message evaluation:

 Exchanging sum and product, we again get

38
B. Leibe

¹xm!fs(xm) ´
X

Xsm

Gm(xm;Xsm) =
X

Xsm

Y

l2ne(xm)nfs

Fl(xm;Xml)

Each term Gm(xm, Xsm)
is again given by a product

Gm(xm;Xsm) =

Y

l2ne(xm)nfs

Fl(xm;Xml)

=
Y

l2ne(xm)nfs

¹fl!xm(xm)

¹fl!xm(xm) ´
X

Xsm

Fl(xm;Xsm)
Recursive definition:

Image source: C. Bishop, 2006

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Sum-Product Algorithm – Summary

• Two kinds of messages

 Message from factor node to variable nodes:

– Sum of factor contributions

 Message from variable node to factor node:

– Product of incoming messages

 Simple propagation scheme.

39
B. Leibe

¹fs!x(x) ´
X

Xs

Fs(x;Xs)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

=
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Sum-Product Algorithm

• Initialization

 Start the recursion by sending out messages from the leaf nodes

• Propagation procedure

 A node can send out a message once it has received incoming

messages from all other neighboring nodes.

 Once a variable node has received all messages from its

neighboring factor nodes, we can compute its marginal by

multiplying all messages and renormalizing:

40
B. Leibe

p(x) /
Y

s2ne(x)

¹fs!x(x)

Image source: C. Bishop, 2006

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Sum-Product Algorithm – Summary

• To compute local marginals:

 Pick an arbitrary node as root.

 Compute and propagate messages from the leaf nodes to the

root, storing received messages at every node.

 Compute and propagate messages from the root to the leaf

nodes, storing received messages at every node.

 Compute the product of received messages at each node for

which the marginal is required, and normalize if necessary.

• Computational effort

 Total number of messages = 2 ¢ number of links in the

graph.

 Maximal parallel runtime = 2 ¢ tree height.

 41
B. Leibe Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Sum-Product: Example

• We want to compute the values of all marginals…

42
B. Leibe

Unnormalized joint distribution:

Picking x3 as root…

 x1 and x4 are leaves. fa fb

fc

Image source: C. Bishop, 2006 Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Sum-Product: Example

43
B. Leibe

¹fs!x(x) ´
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

Message definitions:

fa fb

fc

Image source: C. Bishop, 2006 Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Sum-Product: Example

44
B. Leibe

¹fs!x(x) ´
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

Message definitions:

fa fb

fc

Image source: C. Bishop, 2006

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Sum-Product: Example

45
B. Leibe

¹fs!x(x) ´
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

Message definitions:

fa fb

fc

Image source: C. Bishop, 2006

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Sum-Product: Example

46
B. Leibe

¹fs!x(x) ´
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

Message definitions:

fa fb

fc

Image source: C. Bishop, 2006 Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Sum-Product: Example

47
B. Leibe

Verify that marginal is correct:

fa fb

fc

¹fs!x(x) ´
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

Message definitions:

Image source: C. Bishop, 2006 Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Sum-Product Algorithm – Extensions

• Dealing with observed nodes

 Until now we had assumed that all nodes were hidden…

 Observed nodes can easily be incorporated:

– Partition x into hidden variables h and observed variables .

– Simply multiply the joint distribution p(x) by

 Any summation over variables in v collapses into a single term.

• Further generalizations

 So far, assumption that we are dealing with discrete variables.

 But the sum-product algorithm can also be generalized to simple

continuous variable distributions, e.g. linear-Gaussian variables.

48
B. Leibe

v = v̂

Y

i

I(vi; v̂i) I(vi; v̂i) =

(
1; if vi = v̂i

0; else:
where

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Topics of This Lecture

• Factor graphs
 Construction

 Properties

• Sum-Product Algorithm for computing marginals
 Key ideas

 Derivation

 Example

• Max-Sum Algorithm for finding most probable value
 Key ideas

 Derivation

 Example

• Algorithms for loopy graphs
 Junction Tree algorithm

 Loopy Belief Propagation
49

B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Max-Sum Algorithm

• Objective: an efficient algorithm for finding

 Value xmax that maximises p(x);

 Value of p(xmax).

 Application of dynamic programming in graphical models.

• In general, maximum marginals  joint maximum.

 Example:

50
B. Leibe Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Max-Sum Algorithm – Key Ideas

• Key idea 1: Distributive Law (again)

 Exchange products/summations and max operations exploiting

the tree structure of the factor graph.

• Key idea 2: Max-Product  Max-Sum

 We are interested in the maximum value of the joint distribution

 Maximize the product p(x).

 For numerical reasons, use the logarithm.

 Maximize the sum (of log-probabilities).

51
B. Leibe

p(xmax) = max
x

p(x)

max(ab; ac) = amax(b; c)

max(a+ b; a+ c) = a+max(b; c)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Max-Sum Algorithm

• Maximizing over a chain (max-product)

• Exchange max and product operators

• Generalizes to tree-structured factor graph

52
B. Leibe Image source: C. Bishop, 2006 Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Max-Sum Algorithm

• Initialization (leaf nodes)

• Recursion

 Messages

 For each node, keep a record of which values of the variables

gave rise to the maximum state:

53
B. Leibe Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Max-Sum Algorithm

• Termination (root node)

 Score of maximal configuration

 Value of root node variable giving rise to that maximum

 Back-track to get the remaining variable values

54
B. Leibe

xmaxn¡1 = Á(xmaxn)

Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Visualization of the Back-Tracking Procedure

• Example: Markov chain

 Same idea as in Viterbi algorithm for HMMs…
55

B. Leibe

variables

st
a
te

s

stored links

Image source: C. Bishop, 2006 Slide adapted from Chris Bishop

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

References and Further Reading

• A thorough introduction to Graphical Models in general

and Bayesian Networks in particular can be found in

Chapter 8 of Bishop’s book.

B. Leibe
72

Christopher M. Bishop

Pattern Recognition and Machine Learning

Springer, 2006

