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Recap: SVM for Non-Separable Data
¢ Slack variables

~ One slack variable £, > 0 for each training data point.

¢ Interpretation
» &, = 0 for points that are on the correct side of the margin.
> &, = It, — y(x,)| for all other points.

Point on decision
boundary: £, =1

Misclassified point:
£ >1

» We do not have to set the slack variables ourselves!
= They are jointly optimized together with w.

B. Leibe
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Recap: Nonlinear SVMs
¢ General idea: The original input space can be mapped to

some higher-dimensional feature space where the
training set is separable:
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Slide credit: Ravmond Moane:

Course Outline

¢ Fundamentals (2 weeks)
. Bayes Decision Theory @ §7'
» Probability Density Estimation '

¢ Discriminative Approaches (5 weeks)
» Linear Discriminant Functions
» Statistical Learning Theory & SVMs

» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

¢ Generative Models (4 weeks)
» Bayesian Networks
» Markov Random Fields

Machine Learning, Summer ‘16
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Recap: SVM - New Dual Formulation

¢ New SVM Dual: Maximize

N 1 N N
Ly(a) = Z an — 3 Z Z anamtntm(x?nxn)
n=1

n=1m=1

under the conditions
0- ap-

N
Zantn =0
n=1

¢ This is again a quadratic programming problem
= Solve as before...

C This is all
g that changed!

Machine Learning, Summer ‘16

ide adated from Bernt Schiele B. Leibe

Recap: The Kernel Trick

¢ Important observation
> ¢(x) only appears in the form of dot products ¢(x)Té(y):

y(x) = wro(x)+b

N
3 ntud(x)TH(x) + b
n=1

. Define a so-called kernel function k(x,y) = #(x)T¢(y).

» Now, in place of the dot product, use the kernel instead:
N
y(x) = Z Antnk(Xpn,Xx) +b
n=1

» The kernel function implicitly maps the data to the higher-
dimensional space (without having to compute ¢(x) explicitly)!

)
™
I}
£
E
=
7]
=3
5
S
I3
°
o
o
5
=
S
<]
=

B. Leibe




RWTH/CET
Recap: Nonlinear SVM - Dual Formulation

¢ SVM Dual: Max1mlze
N N

Ly(a) = Z a, — %Z Z anmtntm k(X %)

n=1 n=1m=1
under the conditions

0 a, - C
N
Zantn =
n=1
¢ Classify new data pomts using

Za“i,,ﬂ X, X)+b

n=1

Machine Learning, Summer ‘16
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Recap: Error Functions

Ideal misclassification error]

t,c{ L1} E(z)

Not differentiable! ——

) I N4 1 3 Zn = tay(%n)

¢ |deal misclassification error function (black)
» This is what we want to approximate,
» Unfortunately, it is not differentiable.
» The gradient is zero for misclassified points.
= We cannot minimize it by gradient descent. 10

Image source; Bishop, 200
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Error Functions (Loss Functions)
E(z,) Ideal misclassification error}

Squared error
Hinge error

Robust to outliers!

Favors sparse
solutions!

Y—=%= tny(Xy)

Not differentiable! \

-2 =1 0

¢ “Hinge error” used in SVMs
» Lero error for points outside the margin (z, > 1) =
sparsity
» Linear penalty for misclassified points (2, < 1) = robustness

» Not differentiable around z, = 1 = Cannot be optimized directly.
lmage source: Bishop, 2009
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SVM - Analysis
¢ Traditional soft- margin formulation

2 “Maximize
GRD g R+ 2 ” I*+cC Z &n the margin”
subject to the constraints

“Most points should
ny( u) > 1 - gu

be on the correct
side of the margin”|

« Different way of looking at it
» We can reformulate the constraints into the objective function.

1 2
m‘lnD g HWH + Czl [1 - tny(xn)]+
n=
L, regularizer “Hinge loss”
where [z], := max{0,z}.

Machine Learning, Summer ‘16
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Recap: Error Functions

Ideal misclassification error]
Squared error

t, C{ 1.1} \ Bz)
Sensitive to outliers!

Penalizes “too correct”
\ data points!

) I 0 : 7 = (%)

e Squared error used in Least-Squares Classification
» Very popular, leads to closed-form solutions.
» However, sensitive to outliers due to squared penalty.
» Penalizes “too correct” data points
= Generally does not lead to good classifiers. 11

Image source; Bishop, 200
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SVM - Discussion
¢ SVM optimization function

N

2
5 1 —in n
in W+ 0D 1ty
n=1
L, regularizer Hinge loss

¢ Hinge loss enforces sparsity

Only a subset of training data points actually influences the
decision boundary.

This is different from sparsity obtained through the regularizer!
There, only a subset of input dimensions are used.

v

v

Unconstrained optimization, but non-differentiable function.
Solve, e.g. by subgradient descent
Currently most efficient: stochastic gradient descent

v

v

v
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Applications of SVMs: Text Classification

¢ Problem:
» Classify a document in a number of categories

¢ Representation:

» “Bag-of-words” approach

» Histogram of word counts (on learned dictionary)
- Very high-dimensional feature space (~10.000 dimensions)
- Few irrelevant features

« This was one of the first applications of SVMs
» T. Joachims (1997)

B. Leibe
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Example Application: Text Classification

¢ This is also how you could implement a simple spam

filter...

chtlonary

+> — SVM

Incoming email Word activations

Mailbox

-
L

Trash

B. Leibe
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Historical Importance

¢ USPS benchmark

» 2.5% error: human performance

¢ Different learning algorithms
» 16.2% error: Decision tree (C4.5)
> 5.9% error: (best) 2-layer Neural Network
> 5.1% error: LeNet 1 - (massively hand-tuned) 5-layer network

« Different SVMs

» 4.0% error: Polynomial kernel (p=3, 274 support vectors)
> 4.1% error: Gaussian kernel (0=0.3, 291 support vectors)

B. Leibe
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Example Application: Text Classification

¢ Results:

TUM (poly) SVM (i50)

degree d = width v =
Bayes|Rocchiol C4.5)NN|| 1 [ 2 |3 |4 | 5 0608|1012
carn 950 | 96.1 [96.1]07.3 |[95.2]08.4]08.5]95.4| 05.3 [9B.5| 08 5[ 6.4 |65 3
acq 91.5 | 521 |55.3]52.0 |[92.6/04.6]95.2]05.2|95.3]| 95.0[05.365.3|05.4
moneyFx || 620 | 67.6_[69.4] 78.2 [66.572.5| 75.4 | 74.9|76.2][ 74.0 [75.1[76.3| 75.9
grain | 725 | 795 [89.1] 2.2 [91.3[63.1(92.4|91,3|59.8 [93.1[91.9[91.0[90.6
crude | 810 S1.5 [75.5] 85.7 |[36.0|57.3]85.6 8.5 57.8|[58.9|59.0/ 8.9 552
brade | 50.0 | 77.4_|50.2|77.4[[69.3(75.5| 76.6 [ 77.3|77.1]| 76.5 78 0[77.8| 6.8
interest || 58.0 | 725 [49.1] 74.0 [[69.8]63.3(67.9| 73.1 |76.2][ 74.4 [75.0[76.2| 76.1
Ship 78.7 | 83.1 |50.9] 79.2 ||52.0[55.4]86.086.5]56.0 | 85.4(86.5| 576 #7.1
wheal || 60.6 | 794 |85.5] 76.6 |53.1]4.5[85.2[85.9|83.5 |[85.2|85.0| 85.5|55.5
corn 47.3 | 622 [87.7|77.9 |[86.0/86.5[85.3(85.7|83.9(|85.1|85.7[85.7 /845
- §4.2]85.1]55.956.2 85.6 | 86.4[56.5| 56.3| 86.2

microavg. | 72.0 | 79.9 79.4/82.3 H combined: 86.0 combined: 86.4

B. Leibe
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Example Application: OCR
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Example Application: OCR

¢ Results
» Almost no overfitting with higher-degree kernels.

degree of || dimensionality of | support | raw
polynormial feature space vectors | error
1 256 282 8.9
2 ~ 33000 227 4.7
3 =1 x 108 274 4.0
4 71 x 107 321 4.2
5 =1 x 1012 374 4.3
6 21 % 10 377 4.5
7 =1 x 1018 422 45

B. Leibe
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Example Application: Object Detection

RWTH/CET
Example Application: Pedestrian Detection

¢ Sliding-window approach

Obj./non-obj.
—
Classifier

¢ E.g. histogram representation (HOG)
» Map each grid cell in the input window to a
histogram of gradient orientations.
» Train a linear SVM using training set of
pedestrian vs. non-pedestrian windows.

N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

Machine Learning, Summer ‘16
Machine Learning, Summer ‘16
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So Far... Topics of This Lecture
* We’ve seen already a variety of different classifiers * Ensembles of Classifiers
- k-NN o Constructing Ensembles
7~ . Cross-validation
lassif » Bagging
» Bayes classifiers o g3
Y ¢ Combining Classifiers
° © » Stacking
T . Linear discriminants T » Bayesian model averaging
H H . Boosting
E £
a 71| * AdaBoost
E > SVMs = ~ Intuition
= £ » Algorithm
3 g » Analysis
% ¢ Each of them has their strengths and weaknesses... é’ » Extensions
§ » Can we improve performance by combining them? § e Applications
22 23
B. Leibe B. Leibe
RWTH ACHET RWTH ACHET

Ensembles of Classifiers Topics of This Lecture

e Intuition
» Assume we have K classifiers.

¢ Constructing Ensembles .
Th ind dent (i thei lated C lidati Methods for obtaining
» They are independent (i.e., their errors are uncorrelated). » Cross-validation a set of classifiers
» Each of them has an error probability p < 0.5 on training data. - Bagging
- Why can we assume that p won’t be larger than 0.5? . Combining Classifiers
» Stacking Methods for combining
. Then a simple majority vote of all classifiers should have a . Bayesian Model Averaging different classifiers
lower error than each individual classifier... . Boosting
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Constructing Ensembles Constructing Ensembles
* How do we get different classifiers?
~ Simplest case: train same classifier on different data.
> But... where shall we get this additional data from?
- Recall: training data is very expensive!

¢ Cross-Validation
» Split the available data into N disjunct subsets.
» In each run, train on N-1 subsets for training a classifier.
» Estimate the generalization error on the held-out validation set.

¢ |dea: Subsample the training data

» Reuse the same training algorithm several times on different

o e E.g. 5-fold cross-validation
subsets of the training data.

¢ Well-suited for “unstable” learning algorithms
> Unstable: small differences in training data can produce very
different classifiers
- E.g., Decision trees, neural networks, rule learning algorithms,...
» Stable learning algorithms
- E.g., Nearest neighbor, linear regression, SVMs,...

Machine Learning, Summer ‘16
Machine Learning, Summer ‘16
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Constructing Ensembles Topics of This Lecture
¢ Bagging = “Bootstrap aggregation” (Breiman 1996)
» In each run of the training algorithm, randomly select M/ . Constructing Ensembles Methods btaini
‘. . Lo ethods for obtaining
samples from the full set of NV training data points. . Cr05§-vahdatlon 2 set of classifiers
» If M = N, then on average, 63.2% of the training points will be » Bagging
represented. The rest are duplicates.  Combining Classifiers
. Stacking Methods for combining

= . . © 2. sgs
ta| * Injecting randomness < . Bayesian Model Averaging different classifiers
£ ~ Many (iterative) learning algorithms need a random initialization £ » Boosting
"E’ (e.g. k-means, EM) "5’
5 » Perform mutliple runs of the learning algorithm with different S
E random initializations. E
g 2
= <
8 8
= ) 2 = ; 0

ide adapted from Bernt Schiele B. Leibe B. Leibe
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Stacking Stacking
¢ |dea

¢ Why can this be useful?
» Simplicity
- We may already have several existing classifiers available.
= No need to retrain those, they can just be combined with the rest.

» Learn L classifiers (based on the training data)
» Find a meta-classifier that takes as input the output of the L

first-level classifiers.
Classifier 2

» Correlation between classifiers
- The combination classifier can learn the correlation.
= Better results than simple Naive Bayes combination.

¢ Example
» Learn L classifiers with Classifier L
leave-one-out cross-validation.

» Interpret the prediction of the L classifiers as L-dimensional
feature vector.

» Learn “level-2” classifier based on the examples generated this
way.

ide credit; Berpt Schiele B. Leibe

» Feature combination
- E.g. combine information from different sensors or sources
(vision, audio, acceleration, temperature, radar, etc.).
- We can get good training data for each sensor individually,
but data from all sensors together is rare.
= Train each of the L classifiers on its own input data.
Only combination classifier needs to be trained on combined input.
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Model Combination

¢ E.g. Mixture of Gaussians
Several components are combined probabilistically.

Interpretation: different data points can be generated by
different components.

We model the uncertainty which mixture component is
responsible for generating the corresponding data point:

K
p() = D> N (x|py, =)

k=1

v

v

v

» Fori.i.d. data, we write the marginal probability of a data set
X ={xy,...,xy} in the form:

N N K
p(X) = [[ pGen) = [T D meV (enl 1y, 3)

n=1k=1

Machine Learning, Summer ‘16
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Note the Different Interpretations!

¢ Model Combination
-~ Different data points generated by different model components.
» Uncertainty is about which component created which data point.
= One latent variable z, for each data point:

N N
p(X) = Hp(xn) = H Zp(xmzn)

n=1 z,

* Bayesian Model Averaging
» The whole data set is generated by a single model.
» Uncertainty is about which model was responsible.
= One latent variable z for the entire data set:

p(X) = 3 p(X,2)

B. Leibe
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Model Averaging: Expected Error

e Average error of indivigual models

Euv = % E Ex [em(x)?]
m=1

¢ Average error of committee
LM 2 i 7
seon = 5ol { 37 w100 | <5l 37 3 cnt0)

e Assumptions
. Errors have zero mean: [Ex [6,,(x)] =0

- Errors are uncorrelated: Ey [€,,(X)¢;(x)] =0

e Then:
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B. Leibe
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Bayesian Model Averaging

¢ Model Averaging
» Suppose we have H different models h = 1,...,H with prior
probabilities p(h).
» Construct the marginal distribution over the data set

p(X) = 3 p(X[R)p(h)
h=1

¢ Interpretation
» Just one model is responsible for generating the entire data set.
» The probability distribution over A just reflects our uncertainty
which model that is.
As the size of the data set increases, this uncertainty reduces,
and p(X|h) becomes focused on just one of the models.

v

B. Leibe

RWTH CHE
Model Averaging: Expected Error

e Combine M predictors y,,(x) for target output h(x).
» E.g. each trained on a different bootstrap data set by bagging.
» The committee prediction is given by

LM
yoom (x) = 7= > ym(x)

» The output can be written as the true value plus some error.
y(x) = h(x) + €(x)
» Thus, the expected sum-of-squares error takes the form

Ex = [{ym () = h(x)}| = Ex [em(x)]

B. Leibe
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Model Averaging: Expected Error

¢ Average error of committee
1
E =_E
coMm i AV

» This suggests that the average error of a model can be reduced
by a factor of M simply by averaging M versions of the model!

» Spectacular indeed...
» This sounds almost too good to be true...

¢ And it is... Can you see where the problem is?

» Unfortunately, this result depends on the assumption that the
errors are all uncorrelated.

» In practice, they will typically be highly correlated.
~ Still, it can be shown that
Ecoum + Eav

B. Leibe
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Discussion: Ensembles of Classifiers

¢ Set of simple methods for improving classification
» Often effective in practice.

¢ Apparent contradiction

~ We have stressed before that a classifier should be trained on
samples from the distribution on which it will be tested.
Resampling seems to violate this recommendation.

Why can a classifier trained on a weighted data distribution do
better than one trained on the i.i.d. sample?

v

v

« Explanation
> We do not attempt to model the full category distribution here.
» Instead, try to find the decision boundary more directly.

» Also, increasing number of component classifiers broadens the
class of implementable decision functions.

43
B. Leibe
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AdaBoost - “Adaptive Boosting”

¢ Main idea [Freund & Schapire, 1996]
» Instead of resampling, reweight misclassified training examples.
- Increase the chance of being selected in a sampled training set.
- Or increase the misclassification cost when training on the full set.

e Components
> h,(x): “weak” or base classifier
- Condition: <50% training error over any distribution
» H(x): “strong” or final classifier

¢ AdaBoost:

» Construct a strong classifier as a thresholded linear combination
of the weighted weak classifiers:

M
H(x) = sign (Z amhm(x)>

45

8. Leibe
AdaBoost: Intuition
® L Weights
Weak o ® @ morma ° o
Classifier 1 2 ---=~""" @
® 9 Weak '@
[ ] (] Classifier 2 ——1 q
47
Slide credit: Kristen Grauman B. Leibe Eigure adapted from Freund & Schapird
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RWTH/ACHEN
Topics of This Lecture
¢ AdaBoost
> Intuition
» Algorithm
» Analysis
» Extensions
44
B. Leibe
RWTH CHE
AdaBoost: Intuition
e © Consider a 2D feature
Weak - space with positive and
Classiffer 1 negative examples.
Each weak classifier splits
the training examples with
at least 50% accuracy.
Examples misclassified by
a previous weak learner
are given more emphasis
at future rounds.
) 46
ide credit: Kristen Grauman B. Leibe Figure adapted from Freund & Schapire
RWTH ACHET

AdaBoost: Intuition

(<] Weights
L Increased o,
Weak Y [©] ® (
Classifier 1 o ---=-"""" @
LY Weak _\_._é: (]
0 Classifier 2 ——1 a
Weak —F——
classifier 3 o,
®
Final classifier is
combination of the
weak classifiers
; 48
ide credit: Kristen Grauman B. Leibe Figure adapted from Freund & Schapird




AdaBoost - Formalization

¢ 2-class classification problem
» Given: training set X = {x,, ..., Xy}
with target values T ={t,, ...ty }, ¢, € {-1,1}.
» Associated weights W={wj, ..., wy} for each training point.

¢ Basic steps

- In each iteration, AdaBoost trains a new weak classifier h,,(x)
based on the current weighting coefficients W™,

» We then adapt the weighting coefficients for each point
- Increase w, if x, was misclassified by h,,(x).
- Decrease w, if x, was classified correctly by h,,(x).

» Make predictions using the final combined model

M
H(x) = sign Z amhm(x)>
m=1

B. Leibe

Machine Learning, Summer ‘16

49

RWTH CHE
AdaBoost - Historical Development

¢ Originally motivated by Statistical Learning Theory
» AdaBoost was introduced in 1996 by Freund & Schapire.
» It was empirically observed that AdaBoost often tends not to
overfit. (Breiman 96, Cortes & Drucker 97, etc.)
As a result, the margin theory (Schapire et al. 98) developed,
which is based on loose generalization bounds.
- Note: margin for boosting is not the same as margin for SVM.
- A bit like retrofitting the theory...
» However, those bounds are too loose to be of practical value.

v

¢ Different explanation (Friedman, Hastie, Tibshirani, 2000)
» Interpretation as sequential minimization of an exponential
error function (“Forward Stagewise Additive Modeling”).
» Explains why boosting works well.
» Improvements possible by altering the error function.

Machine Learning, Summer ‘16
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AdaBoost - Minimizing Exponential Error

¢ Sequential Minimization
- Suppose that the base classifiers h,(x),..., h,,_,(x) and their
coefficients a,,...,a,,., are fixed.

G-y

= Only minimize with respect to «,, and h,,(x).

N
E=Y"exp{—tafm(xn)} with fu() =3 ahi(x)

=1

n=1
o 1
= Zexp {ﬂfnfm,l(xn) — 5t"ozmhm(xn)}
n=1

-—
= const.
u 1
= Z wﬁlm) exp {7 itnamhm(xn)}
n=1
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AdaBoost - Algorithm

s lio es 1
1. Initialization: Set w() = ¥ forn=1,....N.
2. For m=1,...,M iterations
a) Train a new weak classifier /,,(x) using the current weighting
coefficients W™ by minimizing the weighted error function
N
I = D wl T n0) #t0) - o naem
b) Estimate the weighted error of this classifier on X:

o S () # )
Zlnvzl wﬁf”)

c) Calculate a weighting coefficient for h,,(x):

= 7

How should we

d) Update the weighting coefficients: do this exactly?

wimt) = 7

B. Leibe
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AdaBoost - Minimizing Exponential Error

¢ Exponential error function
N

E= Z exp {—tn frm (xn)}

» where f, (x) is a classifier defined as a linear combination of
base classifiers h,(x):

fm(x) = %Zalhl(x)
=1

¢ Goal

» Minimize E with respect to both the weighting coefficients «;
and the parameters of the base classifiers 7,(x).

B. Leibe
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AdaBoost - Minimizing Exponential Error

N
1
E= (m) —=tn m}m n
nEZIwn exp{ Ftnamh (x )}

» Observation:
- Correctly classified points: ,h,,(x,) = +1
- Misclassified points: th,(x,) = -1

= collectin 7,
= collect in F,

m

» Rewrite the error function as

E=eom/2 Z w(™
n€Tm

N
= (e"‘"'/z ) Z?nffn)l(hm (%n) # tn)
n=1

B. Leibe
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AdaBoost - Minimizing Exponential Error

N
1
E= (m) _—tn mhm n
3:1 wy, exp{ Flnax (x )}

» Observation:
- Correctly classified points:
- Misclassified points:

th(x,) = +1
tah(x,) = -1

= collect in 7,
= collect in 7,

» Rewrite the error function as

e

N

= ( eom/2 _ e"’mn) Zu'(m)l han (%) # tn) e~ om/2 Z w(m)

Machine Learning, Summer ‘16
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AdaBoost - Minimizing Exponential Error
OFE
¢ Minimize with respect toa,: 5—=0

E— ( /2 _ edm/z) Zw(m)l B () # ) +

n=1
(%/eam/z " %/e—am /2)

e—am/2 Z wi™

Mz

N
WO L) #6) L fereer S ul
n=1

© n=1
5 v —am/2
g weighted . _ e—om/
E error T em/2 4 e=am/2
2]
= 1
€y = —
= " evm 41
3
it - 1—é€m
o = Update for the o coefficients: @y = In -
£ m
£
8
= 57
B. Leibe

AdaBoost - Final Algorithm

1. Initialization: Set (! = % forn=1,...,N.
2. For m=1,....M iterations
a) Train a new weak classifier h,,(x) using the current weighting
coefficients W(m) by minimizing the weighted error function

I = Zu "I (R (%) # )

1—ém
Qp =Ind ——
€m

d) Update the weighting coefficients:
Ul,(Lva = ’u-ff” exp {am I (hin(xn) # tn)}

B. Leibe

© n—
o b) Estimate the weighted error of this classifier on X:
o N (m)

£ D ST I<h,n< ) # tn)

3 R

2 c) Calculate a weighting coeffiaent for h,,(x):

&

s

[

£

=

8

=
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AdaBoost - Minimizing Exponential Error
 Minimize with respect to h,,(x): aha—f) <
E= ( /2 _ C—mﬂ) Zw(m)f B (%) # 1) + e~ /2 Zw(m
=
= const. = const.
= This is equivalent to minimizing
I = Zw T (hn (%) # tn)

(our weighted error function from step 2a) of the algorithm)

= We’re on the right track. Let’s continue...

B. Leibe
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AdaBoost - Minimizing Exponential Error

¢ Remaining step: update the weights

» Recall that
al 1
E= Z ngM) exp {7 §tna7nh7n (xn)}
n=1
This becomes w(™+Y
in the next iteration.
» Therefore

1
wlm D) = () exp {—itnamhm(xn)}

= w{™ exp {1 (

P (%) # tn) }

= Update for the weight coefficients.

B. Leibe
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AdaBoost - Analysis

¢ Result of this derivation

» We now know that AdaBoost minimizes an exponential error
function in a sequential fashion.

» This allows us to analyze AdaBoost’s behavior in more detail.
» In particular, we can see how robust it is to outlier data points.

B. Leibe
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Recap: Error Functions Recap: Error Functions

t, C { 1, 1} E[:z.,,) Ideal misclassification error| t, C { 1, 1} \ E[:z.,,) Ideal misclassification error]

Squared error
Sensitive to outliers!

Penalizes “too correct”
data points!

Not differentiable! ———

] _ 0 - Lz Zn = tny(Xn)

e Squared error used in Least-Squares Classification
» Very popular, leads to closed-form solutions.
» However, sensitive to outliers due to squared penalty.
» Penalizes “too correct” data points
= Generally does not lead to good classifiers.

=2 - N4 1 3" %0 = tny(Xn)

¢ |deal misclassification error function (black)
» This is what we want to approximate,
» Unfortunately, it is not differentiable.
» The gradient is zero for misclassified points.
= We cannot minimize it by gradient descent.

Machine Learning, Summer ‘16
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Image source: Bishop, 200

mage source: Bishop, 2001

RWTHACHEN RWTHACHEN
Recap: Error Functions Discussion: AdaBoost Error Function
E[::”) Ideal misclassification error] E[::”) Ideal misclassification error]
Squared error Squared error
Hinge error Hinge error

R Exponential error
Robust to outliers!

© ©

5 Not differentiable! Favors sparse 5

2 \ solutions! 2

= S - = N -

@ =2 - 0 W% = tay(%n) a -2 - 0 1 3~ 2n = tny(%n)
<3 3

= . . c . :

| ¢ “Hinge error” used in SVMs I * Exponential error used in AdaBoost

© ©

3 » Zero error for points outside the margin (z, > 1) = 8 » Continuous approximation to ideal misclassification function.
E sparsity E » Sequential minimization leads to simple AdaBoost scheme.

S » Linear penalty for misclassified points (z, < 1) = robustness El . Properties?

= =

» Not differentiable around fram = Cannot be optimized directly:

Image source; Bishop, 200

64

B. Leibe lmage source: Bishop, 200¢
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Discussion: AdaBoost Error Function

RWTHAACHER
Discussion: Other Possible Error Functions

E(z,) Ideal misclassification error}
Squared error
Hinge error
Exponential error

FE [:z.,,) Ideal misclassification error]
Squared error
Hinge error
Exponential error
Cross-entropy error

Sensitive to outliers!

E= Z{f,nluzun\(l tn)In(1—y,)}

2 - 0 — 7 5 Zn:tny(xn) ) 1 0 — 7 5 Zn:tny(xn)

¢ Exponential error used in AdaBoost
» No penalty for too correct data points, fast convergence.

» Disadvantage: exponential penalty for large negative values!
= Less robust to outliers or misclassified data points!

e “Cross-entropy error” used in Logistic Regression
» Similar to exponential error for z>0.
» Only grows linearly with large negative values of z.
= Make AdaBoost more robust by switching to this error function.
= “GentleBoost” 8. Leibe 66
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Summary: AdaBoost

¢ Properties
~ Simple combination of multiple classifiers.
» Easy to implement.
» Can be used with many different types of classifiers.
- None of them needs to be too good on its own.
- In fact, they only have to be slightly better than chance.
» Commonly used in many areas.
» Empirically good generalization capabilities.

¢ Limitations
» Original AdaBoost sensitive to misclassified training data points.
- Because of exponential error function.
- Improvement by GentleBoost
» Single-class classifier
- Multiclass extensions available
B. Leibe
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Example Application: Face Detection

¢ Frontal faces are a good example of a class where
global appearance models + a sliding window
detection approach fit well:

~ Regular 2D structure
» Center of face almost shaped like a “patch”/window

* Now we’ll take AdaBoost and see how the Viola-
Jones face detector works

Machine Learning, Summer ‘16

Slide credit: Kristen Grauman B. Leibe

Large Library of Filters

Considering all
possible filter
parameters:
position, scale,
and type:

180,000+ possible
features
associated with

each 24 x 24
I ™| window

Use AdaBoost both to select the informative features
and to form the classifier
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[Viola & Jones, CVPR 200

Slide credit: Kristen Grauman LA
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Topics of This Lecture

¢ Applications

B. Leibe

Feature extraction
“ Rectangular" filters
g Feature output is difference
between adjacent regions
— N
= |,

Value at (x,y) is
_sum of pixels
above and to the
left of (x,y)

Efficiently computable
with integral image: any |
sum can be computed
in constant time

‘ : :
Avoid scaling images >

scale features directly Integral image P
for same cost (+(d+B+C+

70
[Viola & Jones, CVPR 2001

ide credit: Kristen Grauman B. Leibe
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RWTHAACHER
AdaBoost for Feature+Classifier Selection

¢ Want to select the single rectangle feature and threshold
that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

t Resulting weak classifier:

3 .
bx) = { 1t £ > 6,

-1 otherwise

f(x)— For next round, reweight the
L examples according to errors,

Outputs of a choose another filter/threshold
possible rectangle combo.

feature on faces
and non-faces.

ide credit: Kristen Grauman LA

72
[Viola & Jones, CVPR 2001]
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AdaBoost for Efficient Feature Selection

¢ Image features = weak classifiers
¢ For each round of boosting:
» Evaluate each rectangle filter on each example
» Sort examples by filter values
» Select best threshold for each filter (min error)
- Sorted list can be quickly scanned for the optimal threshold
Select best filter/threshold combination
Weight on this features is a simple function of error rate
Reweight examples

v

v

v

P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004.
(first version appeared at CVPR 2001)

73
ide credit: Kristen Grauman B. Leibe
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Viola-Jones Face Detector: Results

ide credit: Kristen Grauman B. Leibe
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References and Further Reading

¢ More information on Classifier Combination and Boosting
can be found in Chapters 14.1-14.3 of Bishop’s book.

==
Christopher M. Bishop

Pattern Recognition and Machine Learning
Springer, 2006

¢ A more in-depth discussion of the statistical interpre-
tation of AdaBoost is available in the following paper:
» J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic

Regression: a Statistical View of Boosting, The Annals of
Statistics, Vol. 38(2), pages 337-374, 2000.

B. Leibe
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Viola-Jones Face Detector: Results
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ide credit: Kristen Grauman B. Leibe

RWTHACHE
Viola-Jones Face Detector: Results

ide credit: Kristen Grauman B. Leibe
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