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Machine Learning – Lecture 10 

Model Combination & Boosting 
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Read the TexPoint manual before you delete this box.: 
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Many slides adapted from B. Schiele 
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Course Outline 

• Fundamentals (2 weeks) 

 Bayes Decision Theory 

 Probability Density Estimation 
 

• Discriminative Approaches (5 weeks) 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Randomized Trees, Forests & Ferns 
 

• Generative Models (4 weeks) 

 Bayesian Networks 

 Markov Random Fields 
 

B. Leibe 
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»1

»2

»3

»4

Recap: SVM for Non-Separable Data 

• Slack variables 

 One slack variable »n ¸ 0 for each training data point. 
 

• Interpretation 

 »n = 0 for points that are on the correct side of the margin. 

 »n = |tn – y(xn)| for all other points. 

 

 

 

 

 

 
 

 We do not have to set the slack variables ourselves! 

 They are jointly optimized together with w. 
4 
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w
Point on decision  

boundary: »n = 1 

Misclassified point: 

 »n > 1 
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Recap: SVM – New Dual Formulation 

• New SVM Dual: Maximize 

 

 

 

 under the conditions 

 

 

 

 
 

• This is again a quadratic programming problem 

 Solve as before… 
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Ld(a) =

NX

n=1

an ¡
1

2

NX

n=1

NX

m=1

anamtntm(xTmxn)

NX

n=1

antn = 0

0 · an · C

Slide adapted from Bernt Schiele 

This is all  

that changed! 
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Recap: Nonlinear SVMs 

• General idea: The original input space can be mapped to 

some higher-dimensional feature space where the 

training set is separable: 

 

6 

©:  x → Á(x) 

Slide credit: Raymond Mooney 
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Recap: The Kernel Trick 

• Important observation 

 Á(x) only appears in the form of dot products Á(x)TÁ(y): 

 

 

 

 
 

 Define a so-called kernel function k(x,y) = Á(x)TÁ(y). 
 

 Now, in place of the dot product, use the kernel instead: 

 

 

 

 The kernel function implicitly maps the data to the higher-

dimensional space (without having to compute Á(x) explicitly)! 

7 
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y(x) = wTÁ(x) + b

=

NX

n=1

antnÁ(xn)
TÁ(x) + b

y(x) =

NX

n=1

antnk(xn;x) + b
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Recap: Nonlinear SVM – Dual Formulation 

• SVM Dual: Maximize 

 

 
 

 under the conditions 

 

 

 

 
 

• Classify new data points using  
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NX

n=1

antn = 0

0 · an · C
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SVM – Analysis 

• Traditional soft-margin formulation 

 

 
 

subject to the constraints 

 

 

• Different way of looking at it 

 We can reformulate the constraints into the objective function. 

 

 

 

 
 

where [x]+ := max{0,x}. 
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“Hinge loss” L2 regularizer 

“Most points should  

be on the correct 

side of the margin” 

“Maximize  

the margin” 
min

w2RD; »n2R+
1

2
kwk2 + C

NX

n=1

»n

min
w2RD

1

2
kwk2 + C

NX

n=1

[1¡ tny(xn)]+

Slide adapted from Christoph Lampert 
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Recap: Error Functions 

 

 

 

 

 

 

 

 
 

• Ideal misclassification error function (black) 

 This is what we want to approximate,  

 Unfortunately, it is not differentiable. 

 The gradient is zero for misclassified points. 

 We cannot minimize it by gradient descent. 10 
Image source: Bishop, 2006 

Ideal misclassification error 

Not differentiable! 

zn = tny(xn)
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Recap: Error Functions 

 

 

 

 

 

 

 

 
 

• Squared error used in Least-Squares Classification 

 Very popular, leads to closed-form solutions. 

 However, sensitive to outliers due to squared penalty. 

 Penalizes “too correct” data points 

 Generally does not lead to good classifiers. 11 
Image source: Bishop, 2006 

Ideal misclassification error 

Squared error 

Penalizes “too correct” 

 data points! 

Sensitive to outliers! 

zn = tny(xn)
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Error Functions (Loss Functions) 

 

 

 

 

 

 

 

 
 

• “Hinge error” used in SVMs 

 Zero error for points outside the margin (zn > 1)      

sparsity 

 Linear penalty for misclassified points (zn < 1)   robustness 

 Not differentiable around zn = 1  Cannot be optimized directly. 

 
Image source: Bishop, 2006 

Ideal misclassification error 

Hinge error 

Squared error 

Not differentiable! Favors sparse  

solutions! 

Robust to outliers! 

zn = tny(xn)
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SVM – Discussion 

• SVM optimization function 

 

 

 

 

• Hinge loss enforces sparsity 

 Only a subset of training data points actually influences the 

decision boundary. 

 This is different from sparsity obtained through the regularizer! 

There, only a subset of input dimensions are used. 
 

 Unconstrained optimization, but non-differentiable function. 

 Solve, e.g. by subgradient descent 

 Currently most efficient: stochastic gradient descent 
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min
w2RD

1

2
kwk2 + C

NX

n=1

[1¡ tny(xn)]+

Hinge loss L2 regularizer 

Slide adapted from Christoph Lampert 
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Applications of SVMs: Text Classification 

• Problem:  

 Classify a document in a number of categories 
 

 

 
 

• Representation: 

 “Bag-of-words” approach 

 Histogram of word counts (on learned dictionary) 

– Very high-dimensional feature space (~10.000 dimensions) 

– Few irrelevant features 
 

• This was one of the first applications of SVMs  

 T. Joachims (1997) 
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Example Application: Text Classification 

• Results: 
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Example Application: Text Classification 

• This is also how you could implement a simple spam 

filter… 
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Incoming email Word activations 

Dictionary 

SVM 
Mailbox 

Trash 
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Example Application: OCR 

• Handwritten digit 

recognition 

 US Postal Service Database 

 Standard benchmark task  

for many learning algorithms 
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Historical Importance 

• USPS benchmark 

 2.5% error: human performance 

 

• Different learning algorithms 

 16.2% error: Decision tree (C4.5) 

   5.9% error: (best) 2-layer Neural Network 

   5.1% error: LeNet 1 – (massively hand-tuned) 5-layer network 

 

• Different SVMs  

   4.0% error: Polynomial kernel (p=3, 274 support vectors) 

   4.1% error: Gaussian kernel    (¾=0.3, 291 support vectors) 
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Example Application: OCR 

• Results 

 Almost no overfitting with higher-degree kernels. 

19 
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• Sliding-window approach 

 

 

 

 

 

 

 

• E.g. histogram representation (HOG) 

 Map each grid cell in the input window to a  

histogram of gradient orientations. 

 Train a linear SVM using training set of  

pedestrian vs. non-pedestrian windows. 
[Dalal & Triggs, CVPR 2005] 

Example Application: Object Detection 

Obj./non-obj. 

Classifier 
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Example Application: Pedestrian Detection 

N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005  

B. Leibe 
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So Far… 

• We’ve seen already a variety of different classifiers 

 k-NN 

 
 

 Bayes classifiers 

 
 

 Linear discriminants 

 
 

 SVMs 

 
 

• Each of them has their strengths and weaknesses… 

 Can we improve performance by combining them? 
22 
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Topics of This Lecture 

• Ensembles of Classifiers 
 

• Constructing Ensembles 
 Cross-validation 

 Bagging 
 

• Combining Classifiers 
 Stacking 

 Bayesian model averaging 

 Boosting 
 

• AdaBoost 
 Intuition 

 Algorithm 

 Analysis 

 Extensions 
 

• Applications 
23 
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Ensembles of Classifiers 

• Intuition 

 Assume we have K classifiers. 

 They are independent (i.e., their errors are uncorrelated). 

 Each of them has an error probability p < 0.5 on training data. 

– Why can we assume that p won’t be larger than 0.5? 

 

 Then a simple majority vote of all classifiers should have a  

lower error than each individual classifier… 

24 
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Topics of This Lecture 

• Ensembles of Classifiers 
 

• Constructing Ensembles 
 Cross-validation 

 Bagging 
 

• Combining Classifiers 
 Stacking 

 Bayesian Model Averaging 

 Boosting 
 

• AdaBoost 
 Intuition 

 Algorithm 

 Analysis 

 Extensions 
 

• Applications 
26 
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Methods for obtaining  

a set of classifiers 

Methods for combining  

different classifiers 

http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs
http://lear.inrialpes.fr/pubs/2005/DT05/
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Constructing Ensembles 

• How do we get different classifiers? 

 Simplest case: train same classifier on different data. 

 But… where shall we get this additional data from? 

– Recall: training data is very expensive! 
 

• Idea: Subsample the training data 

 Reuse the same training algorithm several times on different 

subsets of the training data. 
 

• Well-suited for “unstable” learning algorithms 

 Unstable: small differences in training data can produce very 

different classifiers 

– E.g., Decision trees, neural networks, rule learning algorithms,… 

 Stable learning algorithms 

– E.g., Nearest neighbor, linear regression, SVMs,… 

27 
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Constructing Ensembles 

• Cross-Validation 

 Split the available data into N disjunct subsets. 

 In each run, train on N-1 subsets for training a classifier. 

 Estimate the generalization error on the held-out validation set. 

 
 

• E.g. 5-fold cross-validation 
 

28 

train train train train test 

train train train train test 

train train train train test 

train train train train test 

train train train train test 
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Constructing Ensembles 

• Bagging = “Bootstrap aggregation” (Breiman 1996) 

 In each run of the training algorithm, randomly select M 

samples from the full set of N training data points. 

 If M = N, then on average, 63.2% of the training points will be 

represented. The rest are duplicates. 

 

• Injecting randomness 

 Many (iterative) learning algorithms need a random initialization 

(e.g. k-means, EM) 

 Perform mutliple runs of the learning algorithm with different 

random initializations. 
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Topics of This Lecture 

• Ensembles of Classifiers 
 

• Constructing Ensembles 
 Cross-validation 

 Bagging 
 

• Combining Classifiers 
 Stacking 

 Bayesian Model Averaging 

 Boosting 
 

• AdaBoost 
 Intuition 

 Algorithm 

 Analysis 

 Extensions 
 

• Applications 
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Methods for obtaining  

a set of classifiers 

Methods for combining  

different classifiers 
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Stacking 

• Idea 

 Learn L classifiers (based on the training data) 

 Find a meta-classifier that takes as input the output of the L 

first-level classifiers. 

 

 

 

• Example 

 Learn L classifiers with  

leave-one-out cross-validation. 

 Interpret the prediction of the L classifiers as L-dimensional 

feature vector. 

 Learn “level-2” classifier based on the examples generated this 

way. 
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Combination 

Classifier 

Classifier 1 

Classifier L 

Classifier 2 

… 

Data 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a

c
h

in
e

 L
e

a
rn

in
g

, 
S

u
m

m
e

r 
‘1

6
 

Stacking 

• Why can this be useful? 

 Simplicity 

– We may already have several existing classifiers available. 

 No need to retrain those, they can just be combined with the rest. 
 

 Correlation between classifiers 

– The combination classifier can learn the correlation. 

 Better results than simple Naïve Bayes combination. 
 

 Feature combination 

– E.g. combine information from different sensors or sources 

(vision, audio, acceleration, temperature, radar, etc.). 

– We can get good training data for each sensor individually, 

but data from all sensors together is rare. 

 Train each of the L classifiers on its own input data. 

Only combination classifier needs to be trained on combined input. 

 32 
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Model Combination 

• E.g. Mixture of Gaussians 

 Several components are combined probabilistically. 

 Interpretation: different data points can be generated by 

different components. 

 We model the uncertainty which mixture component is 

responsible for generating the corresponding data point: 

 

 

 

 For i.i.d. data, we write the marginal probability of a data set  

X = {x1,…,xN} in the form: 
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p(x) =

KX

k=1

¼kN (xj¹k;§k)

p(X) =

NY

n=1

p(xn) =

NY

n=1

KX

k=1

¼kN (xnj¹k;§k)
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Bayesian Model Averaging 

• Model Averaging 

 Suppose we have H different models h = 1,…,H with prior 

probabilities p(h). 

 Construct the marginal distribution over the data set 

 

 

 
 

• Interpretation 

 Just one model is responsible for generating the entire data set. 

 The probability distribution over h just reflects our uncertainty 

which model that is. 

 As the size of the data set increases, this uncertainty reduces, 

and p(X|h) becomes focused on just one of the models. 
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p(X) =

HX

h=1

p(Xjh)p(h)
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Note the Different Interpretations! 

• Model Combination 

 Different data points generated by different model components. 

 Uncertainty is about which component created which data point. 

 One latent variable zn for each data point: 

 

 

 
 

• Bayesian Model Averaging 

 The whole data set is generated by a single model. 

 Uncertainty is about which model was responsible. 

 One latent variable z for the entire data set: 
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p(X) =

NY

n=1

p(xn) =

NY

n=1

X

zn

p(xn; zn)

p(X) =
X

z

p(X; z)
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Model Averaging: Expected Error 

• Combine M predictors ym(x) for target output h(x). 

 E.g. each trained on a different bootstrap data set by bagging.  

 The committee prediction is given by 

 

 

 

 The output can be written as the true value plus some error. 

 
 

 Thus, the expected sum-of-squares error takes the form 
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yCOM (x) =
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MX

m=1

ym(x)

y(x) = h(x) + ²(x)
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Model Averaging: Expected Error 

• Average error of individual models 

 

 

• Average error of committee 

 

 

 

• Assumptions 

 Errors have zero mean: 
 

 Errors are uncorrelated: 

 

• Then: 

37 
B. Leibe 

EAV =
1

M

MX

m=1

Ex
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²m(x)2

¤
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2
4
(

1

M

MX
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ym(x)¡ h(x)

)23
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2
4
(

1

M

MX
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5

Ex [²m(x)] = 0
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Model Averaging: Expected Error 

38 
B. Leibe 

• Average error of committee 

 

 

 This suggests that the average error of a model can be reduced 

by a factor of M simply by averaging M versions of the model! 

 Spectacular indeed… 

 This sounds almost too good to be true… 
 

• And it is… Can you see where the problem is? 

 Unfortunately, this result depends on the assumption that the 

errors are all uncorrelated. 

 In practice, they will typically be highly correlated. 

 Still, it can be shown that 

ECOM =
1

M
EAV

ECOM · EAV
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Discussion: Ensembles of Classifiers  

• Set of simple methods for improving classification 

 Often effective in practice. 
 

• Apparent contradiction 

 We have stressed before that a classifier should be trained on 

samples from the distribution on which it will be tested. 

 Resampling seems to violate this recommendation. 

 Why can a classifier trained on a weighted data distribution do 

better than one trained on the i.i.d. sample? 
 

• Explanation 

 We do not attempt to model the full category distribution here. 

 Instead, try to find the decision boundary more directly. 
 

 Also, increasing number of component classifiers broadens the 

class of implementable decision functions. 
43 

B. Leibe 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a

c
h

in
e

 L
e

a
rn

in
g

, 
S

u
m

m
e

r 
‘1

6
 

Topics of This Lecture 

• Ensembles of Classifiers 
 

• Constructing Ensembles 
 Cross-validation 

 Bagging 
 

• Combining Classifiers 
 Stacking 

 Bayesian model averaging 

 Boosting 
 

• AdaBoost 
 Intuition 

 Algorithm 

 Analysis 

 Extensions 
 

• Applications 
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AdaBoost – “Adaptive Boosting”  

• Main idea             [Freund & Schapire, 1996] 

 Instead of resampling, reweight misclassified training examples. 

– Increase the chance of being selected in a sampled training set. 

– Or increase the misclassification cost when training on the full set. 
 

• Components 
 hm(x): “weak” or base classifier 

– Condition: <50% training error over any distribution 

 H(x): “strong” or final classifier 
 

• AdaBoost:  

 Construct a strong classifier as a thresholded linear combination 

of the weighted weak classifiers: 
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H(x) = sign

Ã
MX

m=1

®mhm(x)
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AdaBoost: Intuition 
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Consider a 2D feature 

space with positive and 

negative examples. 

 

Each weak classifier splits 

the training examples with 

at least 50% accuracy. 

 

Examples misclassified by 

a previous weak learner 

are given more emphasis 

at future rounds. 

Slide credit: Kristen Grauman Figure adapted from Freund & Schapire 
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AdaBoost: Intuition 

47 
B. Leibe Slide credit: Kristen Grauman Figure adapted from Freund & Schapire 
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AdaBoost: Intuition 

 

48 
B. Leibe 

Final classifier is 

combination of the 

weak classifiers 

Slide credit: Kristen Grauman Figure adapted from Freund & Schapire 
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AdaBoost – Formalization 

• 2-class classification problem 

 Given: training set X = {x1, …, xN}  

with target values  T = {t1,  …, tN }, tn 2 {-1,1}. 

 Associated weights W={w1, …, wN} for each training point. 
 

• Basic steps 

 In each iteration, AdaBoost trains a new weak classifier hm(x) 

based on the current weighting coefficients W(m). 

 We then adapt the weighting coefficients for each point 

– Increase  wn if xn was misclassified by hm(x). 

– Decrease wn if xn was classified correctly by hm(x). 

 Make predictions using the final combined model 
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H(x) = sign

Ã
MX

m=1

®mhm(x)
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Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

AdaBoost – Algorithm 

1. Initialization: Set                 for n = 1,…,N. 
 

2. For m = 1,…,M  iterations 

a) Train a new weak classifier hm(x) using the current weighting 

coefficients W(m) by minimizing the weighted error function  

 

 

b) Estimate the weighted error of this classifier on X: 

 

 

c) Calculate a weighting coefficient for hm(x): 

 
 

d) Update the weighting coefficients: 
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w(1)
n =

1

N

²m =

PN

n=1 w
(m)
n I(hm(x) 6= tn)PN

n=1 w
(m)
n

®m = ?

w(m+1)
n = ?

How should we 

do this exactly? 
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AdaBoost – Historical Development 

• Originally motivated by Statistical Learning Theory 

 AdaBoost was introduced in 1996 by Freund & Schapire.  

 It was empirically observed that AdaBoost often tends not to 

overfit. (Breiman 96, Cortes & Drucker 97, etc.) 

 As a result, the margin theory (Schapire et al. 98) developed, 

which is based on loose generalization bounds.  

– Note: margin for boosting is not the same as margin for SVM. 

– A bit like retrofitting the theory… 

 However, those bounds are too loose to be of practical value. 
 

• Different explanation       (Friedman, Hastie, Tibshirani, 2000) 

 Interpretation as sequential minimization of an exponential 

error function (“Forward Stagewise Additive Modeling”). 

 Explains why boosting works well. 

 Improvements possible by altering the error function. 
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• Exponential error function 

 

 

 

 where fm(x) is a classifier defined as a linear combination of 

base classifiers hl(x): 

 

 

 

• Goal 

 Minimize E with respect to both the weighting coefficients ®l 

and the parameters of the base classifiers hl(x). 
 

 

 

 

fm(x) =
1

2

mX

l=1

®lhl(x)

AdaBoost – Minimizing Exponential Error 
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E =
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AdaBoost – Minimizing Exponential Error 

• Sequential Minimization 

 Suppose that the base classifiers h1(x),…, hm-1(x) and their 

coefficients ®1,…,®m-1 are fixed. 

 Only minimize with respect to ®m and hm(x). 

 

53 
B. Leibe 

=

NX

n=1

exp

½
¡tnfm¡1(xn)¡

1

2
tn®mhm(xn)

¾

fm(x) =
1

2

mX

l=1

®lhl(x)E =

NX

n=1

expf¡tnfm(xn)g with 

=

NX

n=1

w(m)
n exp

½
¡1
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¾
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P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a

c
h

in
e

 L
e

a
rn

in
g

, 
S

u
m

m
e

r 
‘1

6
 

AdaBoost – Minimizing Exponential Error 

 

 

 

 Observation:  

– Correctly classified points:  tnhm(xn) = +1 

– Misclassified points:        tnhm(xn) = 1 
 

 Rewrite the error function as 
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E =

NX

n=1

w(m)
n exp

½
¡1

2
tn®mhm(xn)

¾

E = e¡®m=2
X

n2Tm

w(m)
n + e®m=2

X

n2Fm

w(m)
n

 collect in Tm 

 collect in Fm 

=
³
e®m=2 ¡ e¡®m=2

´ NX

n=1

w(m)
n I(hm(xn) 6= tn) + e¡®m=2

NX

n=1

w(m)
n
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AdaBoost – Minimizing Exponential Error 

 

 

 

 Observation:  

– Correctly classified points:  tnhm(xn) = +1 

– Misclassified points:        tnhm(xn) = 1 
 

 Rewrite the error function as 
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NX
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n exp

½
¡1

2
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AdaBoost – Minimizing Exponential Error 
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• Minimize with respect to hm(x): 

 

 

 

 

 

 This is equivalent to minimizing 

 

 
 

 (our weighted error function from step 2a) of the algorithm) 

 

 We’re on the right track. Let’s continue… 

E =
³
e®m=2 ¡ e¡®m=2
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Jm =

NX

n=1
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= const. = const. 
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AdaBoost – Minimizing Exponential Error 
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• Minimize with respect to ®m: 

 

 

 

 

 

 

 

 

 

 
 

 Update for the ® coefficients: 

E =
³
e®m=2 ¡ e¡®m=2

´ NX

n=1

w(m)
n I(hm(xn) 6= tn) + e¡®m=2

NX

n=1
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n
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2
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¶ NX

n=1
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2
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n
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!
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PN
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n=1 w
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AdaBoost – Minimizing Exponential Error 
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• Remaining step: update the weights  

 Recall that 

 

 

 

 

 
 

 Therefore 

 

 

 

 
 

 Update for the weight coefficients. 

 

E =

NX
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n exp

½
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2
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¾

This becomes              

in the next iteration. 
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1. Initialization: Set                 for n = 1,…,N. 
 

2. For m = 1,…,M  iterations 

a) Train a new weak classifier hm(x) using the current weighting 

coefficients W(m) by minimizing the weighted error function  

 

 

b) Estimate the weighted error of this classifier on X: 

 

 

c) Calculate a weighting coefficient for hm(x): 

 
 

d) Update the weighting coefficients: 

 
 

Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

AdaBoost – Final Algorithm 
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AdaBoost – Analysis 

• Result of this derivation 

 We now know that AdaBoost minimizes an exponential error 

function in a sequential fashion. 

 This allows us to analyze AdaBoost’s behavior in more detail. 

 In particular, we can see how robust it is to outlier data points. 

60 
B. Leibe 
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Recap: Error Functions 

 

 

 

 

 

 

 

 
 

• Ideal misclassification error function (black) 

 This is what we want to approximate,  

 Unfortunately, it is not differentiable. 

 The gradient is zero for misclassified points. 

 We cannot minimize it by gradient descent. 61 
Image source: Bishop, 2006 

Ideal misclassification error 

Not differentiable! 

zn = tny(xn)
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Recap: Error Functions 

 

 

 

 

 

 

 

 
 

• Squared error used in Least-Squares Classification 

 Very popular, leads to closed-form solutions. 

 However, sensitive to outliers due to squared penalty. 

 Penalizes “too correct” data points 

 Generally does not lead to good classifiers. 62 
Image source: Bishop, 2006 

Ideal misclassification error 

Squared error 

Penalizes “too correct” 

 data points! 

Sensitive to outliers! 

zn = tny(xn)

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a

c
h

in
e

 L
e

a
rn

in
g

, 
S

u
m

m
e

r 
‘1

6
 

Recap: Error Functions 

 

 

 

 

 

 

 

 
 

• “Hinge error” used in SVMs 

 Zero error for points outside the margin (zn > 1)  

sparsity 

 Linear penalty for misclassified points (zn < 1)   robustness 

 Not differentiable around zn = 1  Cannot be optimized directly. 

 

63 
Image source: Bishop, 2006 

Ideal misclassification error 

Hinge error 

Squared error 

Not differentiable! Favors sparse  

solutions! 

Robust to outliers! 

zn = tny(xn)

B. Leibe 
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Discussion: AdaBoost Error Function 

 

 

 

 

 

 

 

 
 

• Exponential error used in AdaBoost 

 Continuous approximation to ideal misclassification function. 

 Sequential minimization leads to simple AdaBoost scheme. 

 Properties? 

 64 
B. Leibe Image source: Bishop, 2006 

Ideal misclassification error 

Hinge error 

Squared error 

Exponential error 

zn = tny(xn)
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Discussion: AdaBoost Error Function 

 

 

 

 

 

 

 

 
 

• Exponential error used in AdaBoost 

 No penalty for too correct data points, fast convergence. 

 Disadvantage: exponential penalty for large negative values! 

 Less robust to outliers or misclassified data points! 

 65 
B. Leibe Image source: Bishop, 2006 

Ideal misclassification error 

Hinge error 

Squared error 

Exponential error 
Sensitive to outliers! 

zn = tny(xn)
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Discussion: Other Possible Error Functions 

 

 

 

 

 

 

 

 
 

• “Cross-entropy error” used in Logistic Regression 

 Similar to exponential error for z>0. 

 Only grows linearly with large negative values of z. 

 Make AdaBoost more robust by switching to this error function. 

 “GentleBoost” 

 

66 
B. Leibe Image source: Bishop, 2006 

Ideal misclassification error 

Hinge error 

Squared error 

Exponential error 

Cross-entropy error 

E =¡
X

ftn lnyn + (1¡ tn) ln(1¡ yn)g

zn = tny(xn)
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Summary: AdaBoost 

• Properties 

 Simple combination of multiple classifiers. 

 Easy to implement. 

 Can be used with many different types of classifiers. 

– None of them needs to be too good on its own. 

– In fact, they only have to be slightly better than chance. 

 Commonly used in many areas. 

 Empirically good generalization capabilities. 
 

• Limitations 

 Original AdaBoost sensitive to misclassified training data points. 

– Because of exponential error function. 

– Improvement by GentleBoost 

 Single-class classifier 

– Multiclass extensions available 
67 

B. Leibe 
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Topics of This Lecture 

• Ensembles of Classifiers 
 

• Constructing Ensembles 
 Cross-validation 

 Bagging 
 

• Combining Classifiers 
 Stacking 

 Bayesian model averaging 

 Boosting 
 

• AdaBoost 
 Intuition 

 Algorithm 

 Analysis 

 Extensions 
 

• Applications 
68 
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Example Application: Face Detection 

• Frontal faces are a good example of a class where 

global appearance models + a sliding window 

detection approach fit well: 

 Regular 2D structure 

 Center of face almost shaped like a “patch”/window 

 

 

 

 

 

• Now we’ll take AdaBoost and see how the Viola-

Jones face detector works 

69 
B. Leibe Slide credit: Kristen Grauman 
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Feature extraction 

70 
B. Leibe 

Feature output is difference 

between adjacent regions 

[Viola & Jones, CVPR 2001] 

Efficiently computable 

with integral image: any 

sum can be computed 

in constant time 

Avoid scaling images  

scale features directly 

for same cost 

“Rectangular” filters 

Value at (x,y) is 

sum of pixels 

above and to the 

left of (x,y) 

Integral image 

Slide credit: Kristen Grauman 
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Large Library of Filters 

Considering all 

possible filter 

parameters: 

position, scale, 

and type:  

180,000+ possible 

features 

associated with 

each 24 x 24 

window 

 

Use AdaBoost both to select the informative features 

and to form the classifier 

B. Leibe [Viola & Jones, CVPR 2001] Slide credit: Kristen Grauman 
71 
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AdaBoost for Feature+Classifier Selection 

• Want to select the single rectangle feature and threshold 

that best separates positive (faces) and negative (non-

faces) training examples, in terms of weighted error. 

Outputs of a 

possible rectangle 

feature on faces 

and non-faces. 

…
 

Resulting weak classifier: 

For next round, reweight the 

examples according to errors, 

choose another filter/threshold 

combo. 

B. Leibe [Viola & Jones, CVPR 2001] Slide credit: Kristen Grauman 
72 
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AdaBoost for Efficient Feature Selection 

• Image features = weak classifiers 

• For each round of boosting: 

 Evaluate each rectangle filter on each example 

 Sort examples by filter values 

 Select best threshold for each filter (min error) 

– Sorted list can be quickly scanned for the optimal threshold 

 Select best filter/threshold combination 

 Weight on this features is a simple function of error rate 

 Reweight examples 

73 
B. Leibe 

P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004. 

(first version appeared at CVPR 2001)  

Slide credit: Kristen Grauman 
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Viola-Jones Face Detector: Results 

B. Leibe Slide credit: Kristen Grauman 
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Viola-Jones Face Detector: Results 

B. Leibe Slide credit: Kristen Grauman 
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Viola-Jones Face Detector: Results 

B. Leibe Slide credit: Kristen Grauman 
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References and Further Reading 

• More information on Classifier Combination and Boosting 

can be found in Chapters 14.1-14.3 of Bishop’s book.  

 

 

 

 

 
 
 

• A more in-depth discussion of the statistical interpre-

tation of AdaBoost is available in the following paper: 

 J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic 

Regression: a Statistical View of Boosting, The Annals of 

Statistics, Vol. 38(2), pages 337-374, 2000. 
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