Machine Learning - Lecture 8

Linear Support Vector Machines

24.05.2016

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de
Course Outline

• Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation

• Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns

• Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields
Recap: Generalization and Overfitting

- Goal: predict class labels of new observations
 - Train classification model on limited training set.
 - The further we optimize the model parameters, the more the training error will decrease.
 - However, at some point the test error will go up again.
 => Overfitting to the training set!
Recap: Risk

- **Empirical risk**
 - Measured on the training/validation set
 \[
 R_{emp}(\alpha) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i; \alpha))
 \]

- **Actual risk (= Expected risk)**
 - Expectation of the error on all data.
 \[
 R(\alpha) = \int L(y_i, f(x; \alpha))dP_{X,Y}(x, y)
 \]
 - \(P_{X,Y}(x, y)\) is the probability distribution of \((x,y)\).
 It is fixed, but typically unknown.
 \[
 \Rightarrow \text{In general, we can’t compute the actual risk directly!}
 \]
Recap: Statistical Learning Theory

- Idea
 - Compute an upper bound on the actual risk based on the empirical risk
 \[R(\alpha) \cdot R_{emp}(\alpha) + \epsilon(N, p^*, h) \]
 - where
 \[N: \text{number of training examples} \]
 \[p^*: \text{probability that the bound is correct} \]
 \[h: \text{capacity of the learning machine ("VC-dimension")} \]

Slide adapted from Bernt Schiele
Recap: VC Dimension

- Vapnik-Chervonenkis dimension
 - Measure for the capacity of a learning machine.

- Formal definition:
 - If a given set of ℓ points can be labeled in all possible 2^ℓ ways, and for each labeling, a member of the set $\{f(\alpha)\}$ can be found which correctly assigns those labels, we say that the set of points is shattered by the set of functions.

 - The VC dimension for the set of functions $\{f(\alpha)\}$ is defined as the maximum number of training points that can be shattered by $\{f(\alpha)\}$.

Exercise 2.3
VC Dimension

• Interpretation as a two-player game
 - Opponent’s turn: He says a number \(N \).
 - Our turn: We specify a set of \(N \) points \(\{x_1, \ldots, x_N\} \).
 - Opponent’s turn: He gives us a labeling \(\{x_1, \ldots, x_N\} \in \{0,1\}^N \)
 - Our turn: We specify a function \(f(\alpha) \) which correctly classifies all \(N \) points.

\[\Rightarrow \text{If we can do that for all } 2^N \text{ possible labelings, then the VC dimension is at least } N. \]
VC Dimension

- Example
 - The VC dimension of all oriented lines in \mathbb{R}^2 is 3.
 1. Shattering 3 points with an oriented line:

 ![Diagram showing shattering 3 points with a line]

 2. More difficult to show: it is not possible to shatter 4 points (XOR)...

 - More general: the VC dimension of all hyperplanes in \mathbb{R}^n is $n+1$.

Image source: C. Burges, 1998
VC Dimension

- Intuitive feeling (unfortunately wrong)
 - The VC dimension has a direct connection with the number of parameters.

- Counterexample
 \[f(x; \alpha) = g(\sin(\alpha x)) \]

\[g(x) = \begin{cases}
1, & x > 0 \\
-1, & x \leq 0
\end{cases} \]

 - Just a single parameter \(\alpha \).
 - Infinite VC dimension
 - Proof: Choose \(x_i = 10^{-i}, \quad i = 1, \ldots, \ell \)
 \[\alpha = \pi \left(1 + \sum_{i=1}^{\ell} \frac{(1 - y_i)10^i}{2} \right) \]
Upper Bound on the Risk

- Important result (Vapnik 1979, 1995)
 - With probability \(1 - \eta\), the following bound holds
 \[
 R(\alpha) \cdot R_{\text{emp}}(\alpha) + \sqrt{\frac{h(\log(2N/h) + 1) - \log(\eta/4)}{N}}
 \]
 “VC confidence”

- This bound is independent of \(P_{X,Y}(x, y)\)!
- Typically, we cannot compute the left-hand side (the actual risk)
- If we know \(h\) (the VC dimension), we can however easily compute the risk bound
 \[
 R(\alpha) \cdot R_{\text{emp}}(\alpha) + \epsilon(N, p^*, h)
 \]
Upper Bound on the Risk

\[\epsilon(N, p^*, h) \]

\[R_{emp}(\alpha) \]
Recap: Structural Risk Minimization

- How can we implement Structural Risk Minimization?
 \[R(\alpha) \cdot R_{emp}(\alpha) + \epsilon(N, p^*, h) \]

- Classic approach
 - Keep \(\epsilon(N, p^*, h) \) constant and minimize \(R_{emp}(\alpha) \).
 - \(\epsilon(N, p^*, h) \) can be kept constant by controlling the model parameters.

- Support Vector Machines (SVMs)
 - Keep \(R_{emp}(\alpha) \) constant and minimize \(\epsilon(N, p^*, h) \).
 - In fact: \(R_{emp}(\alpha) = 0 \) for separable data.
 - Control \(\epsilon(N, p^*, h) \) by adapting the VC dimension (controlling the “capacity” of the classifier).
Topics of This Lecture

• **Linear Support Vector Machines**
 - Lagrangian (primal) formulation
 - Dual formulation
 - Discussion

• **Linearly non-separable case**
 - Soft-margin classification
 - Updated formulation

• **Nonlinear Support Vector Machines**
 - Nonlinear basis functions
 - The Kernel trick
 - Mercer’s condition
 - Popular kernels

• **Applications**
Revisiting Our Previous Example...

- How to select the classifier with the best generalization performance?
 - Intuitively, we would like to select the classifier which leaves maximal “safety room” for future data points.
 - This can be obtained by maximizing the margin between positive and negative data points.
 - It can be shown that the larger the margin, the lower the corresponding classifier’s VC dimension.

- The SVM takes up this idea
 - It searches for the classifier with maximum margin.
 - Formulation as a convex optimization problem

\[\Rightarrow \text{Possible to find the globally optimal solution!} \]
Support Vector Machine (SVM)

- Let’s first consider linearly separable data
 - N training data points $\{(x_i, y_i)\}_{i=1}^{N}$, $x_i \in \mathbb{R}^d$
 - Target values $t_i \in \{-1, 1\}$
 - Hyperplane separating the data

\[
\begin{align*}
\mathbf{w}^T \mathbf{x} + b &= 0 \\
\mathbf{w} &= \left[\begin{array}{c} w_1 \\ w_2 \end{array}\right] \\
b &= \frac{0 - w_1 x_1 - w_2 x_2}{\sqrt{w_1^2 + w_2^2}}
\end{align*}
\]
Support Vector Machine (SVM)

- Margin of the hyperplane: \(d_- + d_+ \)
 - \(d_+ \): distance to nearest pos. training example
 - \(d_- \): distance to nearest neg. training example

- We can always choose \(w, b \) such that \(d_- = d_+ = \frac{1}{\|w\|} \).
Support Vector Machine (SVM)

- Since the data is linearly separable, there exists a hyperplane with
 \[w^T x_n + b \geq +1 \quad \text{for} \quad t_n = +1 \]
 \[w^T x_n + b \cdot -1 \quad \text{for} \quad t_n = -1 \]

- Combined in one equation, this can be written as
 \[t_n (w^T x_n + b) \geq 1 \quad \forall n \]

⇒ Canonical representation of the decision hyperplane.
 - The equation will hold exactly for the points on the margin
 \[t_n (w^T x_n + b) = 1 \]
 - By definition, there will always be at least one such point.

Slide adapted from Bernt Schiele
Support Vector Machine (SVM)

- We can choose \(w \) such that
 \[
 w^T x_n + b = +1 \quad \text{for one} \quad t_n = +1
 \]
 \[
 w^T x_n + b = -1 \quad \text{for one} \quad t_n = -1
 \]

- The distance between those two hyperplanes is then the margin
 \[
 d_- = d_+ = \frac{1}{\|w\|}
 \]
 \[
 d_- + d_+ = \frac{2}{\|w\|}
 \]

\(\Rightarrow \) We can find the hyperplane with maximal margin by minimizing \(\|w\|^2 \).
Support Vector Machine (SVM)

- Optimization problem
 - Find the hyperplane satisfying
 \[
 \arg \min_{\mathbf{w}, b} \frac{1}{2} \|\mathbf{w}\|^2
 \]
 under the constraints
 \[
 t_n (\mathbf{w}^T \mathbf{x}_n + b) \geq 1 \quad \forall n
 \]

 - Quadratic programming problem with linear constraints.
 - Can be formulated using Lagrange multipliers.

- **Who is already familiar with Lagrange multipliers?**
 - Let’s look at a real-life example...
Recap: Lagrange Multipliers

• Problem
 - We want to maximize $K(x)$ subject to constraints $f(x) = 0$.
 - Example: we want to get as close as possible, but there is a fence.
 - How should we move?

 $$f(x) = 0$$
 $$f(x) < 0$$
 $$f(x) > 0$$

 - We want to maximize ∇K.
 - But we can only move parallel to the fence, i.e. along

 $$\nabla \parallel K = \nabla K + \lambda \nabla f$$

 with $\lambda \neq 0$.

Slide adapted from Mario Fritz
Recap: Lagrange Multipliers

- **Problem**
 - We want to maximize $K(x)$ subject to constraints $f(x) = 0$.
 - Example: we want to get as close as possible, but there is a fence.
 - How should we move?

$$f(x) = 0, \quad f(x) < 0$$

\Rightarrow Optimize

$$\max_{x, \lambda} L(x, \lambda) = K(x) + \lambda f(x)$$

\[
\frac{\partial L}{\partial x} = \nabla \parallel K = 0
\]

\[
\frac{\partial L}{\partial \lambda} = f(x) = 0
\]

B. Leibe
Recap: Lagrange Multipliers

• Problem
 - Now let’s look at constraints of the form $f(x) \geq 0$.
 - Example: There might be a hill from which we can see better...
 - Optimize $\max_{x, \lambda} L(x, \lambda) = K(x) + \lambda f(x)$
 - $f(x) = 0$
 - $f(x) < 0$

• Two cases $f(x) > 0$
 - Solution lies on boundary
 $\Rightarrow f(x) = 0$ for some $\lambda > 0$
 - Solution lies inside $f(x) > 0$
 \Rightarrow Constraint inactive: $\lambda = 0$
 - In both cases
 $\Rightarrow \lambda f(x) = 0$

B. Leibe
Recap: Lagrange Multipliers

- **Problem**
 - Now let’s look at constraints of the form \(f(x) \geq 0 \).
 - Example: There might be a hill from which we can see better...
 - Optimize \(\max_{x,\lambda} L(x, \lambda) = K(x) + \lambda f(x) \)

- **Two cases**
 - Solution lies on boundary
 \(\Rightarrow f(x) = 0 \) for some \(\lambda > 0 \)
 - Solution lies inside \(f(x) > 0 \)
 \(\Rightarrow \) Constraint inactive: \(\lambda = 0 \)
 - In both cases
 \(\Rightarrow \lambda f(x) = 0 \)

Karush-Kuhn-Tucker (KKT) conditions:

\[
\begin{align*}
\lambda &\geq 0 \\
f(x) &\geq 0 \\
\lambda f(x) &= 0
\end{align*}
\]
SVM - Lagrangian Formulation

• Find hyperplane minimizing $\|w\|^2$ under the constraints

$$t_n(w^T x_n + b) - 1 \geq 0 \quad \forall n$$

• Lagrangian formulation

 - Introduce positive Lagrange multipliers: $a_n \geq 0 \quad \forall n$
 - Minimize Lagrangian (“primal form”)

$$L(w, b, a) = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n(w^T x_n + b) - 1 \right\}$$

 - i.e., find w, b, and a such that

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} a_n t_n = 0$$
$$\frac{\partial L}{\partial w} = 0 \Rightarrow w = \sum_{n=1}^{N} a_n t_n x_n$$
SVM - Lagrangian Formulation

• Lagrangian primal form

\[L_p = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n (w^T x_n + b) - 1 \right\} \]

\[= \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n y(x_n) - 1 \right\} \]

• The solution of \(L_p \) needs to fulfill the KKT conditions
 - Necessary and sufficient conditions

\[
\begin{align*}
 a_n & \geq 0 \\
 t_n y(x_n) - 1 & \geq 0 \\
 a_n \left\{ t_n y(x_n) - 1 \right\} & = 0
\end{align*}
\]

KKT:
\[
\begin{align*}
 \lambda & \geq 0 \\
 f(x) & \geq 0 \\
 \lambda f(x) & = 0
\end{align*}
\]
SVM - Solution (Part 1)

• Solution for the hyperplane
 - Computed as a linear combination of the training examples
 \[w = \sum_{n=1}^{N} a_n t_n x_n \]
 - Because of the KKT conditions, the following must also hold
 \[a_n \left(t_n (w^T x_n + b) - 1 \right) = 0 \]

 This implies that \(a_n > 0 \) only for training data points for which
 \[(t_n (w^T x_n + b) - 1) = 0 \]
 \[\Rightarrow \text{Only some of the data points actually influence the decision boundary!} \]
SVM - Support Vectors

- The training points for which $a_n > 0$ are called “support vectors”.

- Graphical interpretation:
 - The support vectors are the points on the margin.
 - They define the margin and thus the hyperplane.

⇒ Robustness to “too correct” points!

Image source: C. Burges, 1998
SVM - Solution (Part 2)

- Solution for the hyperplane
 - To define the decision boundary, we still need to know b.
 - Observation: any support vector x_n satisfies

$$t_n y(x_n) = t_n \left(\sum_{m \in S} a_m t_m x_m^T x_n + b \right) = 1$$

- Using $t_n^2 = 1$, we can derive:

$$b = t_n - \sum_{m \in S} a_m t_m x_m^T x_n$$

- In practice, it is more robust to average over all support vectors:

$$b = \frac{1}{N_S} \sum_{n \in S} \left(t_n - \sum_{m \in S} a_m t_m x_m^T x_n \right)$$
SVM - Discussion (Part 1)

• Linear SVM
 - Linear classifier
 - Approximative implementation of the SRM principle.
 - In case of separable data, the SVM produces an empirical risk of zero with minimal value of the VC confidence (i.e. a classifier minimizing the upper bound on the actual risk).
 - SVMs thus have a “guaranteed” generalization capability.
 - Formulation as convex optimization problem.
 ⇒ Globally optimal solution!

• Primal form formulation
 - Solution to quadratic prog. problem in M variables is in $O(M^3)$.
 - Here: D variables ⇒ $O(D^3)$
 - Problem: scaling with high-dim. data (“curse of dimensionality”)
Improving the scaling behavior: rewrite L_p in a dual form

$$L_p = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \{ t_n (w^T x_n + b) - 1 \}$$

$$= \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n t_n w^T x_n - b \sum_{n=1}^{N} a_n t_n + \sum_{n=1}^{N} a_n$$

Using the constraint $\sum_{n=1}^{N} a_n t_n = 0$, we obtain

$$\frac{\partial L_p}{\partial b} = 0$$

$$L_p = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n t_n w^T x_n + \sum_{n=1}^{N} a_n$$
SVM - Dual Formulation

\[L_p = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n t_n w^T x_n + \sum_{n=1}^{N} a_n \]

Using the constraint \(w = \sum_{n=1}^{N} a_n t_n x_n \), we obtain

\[\frac{\partial L_p}{\partial w} = 0 \]

\[L_p = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n t_n \sum_{m=1}^{N} a_m t_m x_m^T x_n + \sum_{n=1}^{N} a_n \]

\[= \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n) + \sum_{n=1}^{N} a_n \]
SVM - Dual Formulation

\[L = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n) + \sum_{n=1}^{N} a_n \]

- Applying \(\frac{1}{2} \|w\|^2 = \frac{1}{2} w^T w \) and again using \(w = \sum_{n=1}^{N} a_n t_n x_n \)

\[\frac{1}{2} w^T w = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n) \]

- Inserting this, we get the Wolfe dual

\[L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n) \]
SVM - Dual Formulation

• Maximize

\[L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n) \]

under the conditions

\[a_n \geq 0 \quad \forall n \]

\[\sum_{n=1}^{N} a_n t_n = 0 \]

- The hyperplane is given by the \(N_S \) support vectors:

\[w = \sum_{n=1}^{N_S} a_n t_n x_n \]
SVM - Discussion (Part 2)

• Dual form formulation
 - In going to the dual, we now have a problem in \(N \) variables \((a_n) \).
 - Isn’t this worse??? We penalize large training sets!

• However...
 1. SVMs have sparse solutions: \(a_n \neq 0 \) only for support vectors!
 \(\Rightarrow \) This makes it possible to construct efficient algorithms
 - e.g. Sequential Minimal Optimization (SMO)
 - Effective runtime between \(O(N) \) and \(O(N^2) \).
 2. We have avoided the dependency on the dimensionality.
 \(\Rightarrow \) This makes it possible to work with infinite-dimensional feature spaces by using suitable basis functions \(\phi(x) \).
 \(\Rightarrow \) We’ll see that in a few minutes...
So Far...

- Only looked at linearly separable case...
 - Current problem formulation has no solution if the data are not linearly separable!
 - Need to introduce some tolerance to outlier data points.
SVM - Non-Separable Data

- **Non-separable data**
 - I.e. the following inequalities cannot be satisfied for all data points

 \[
 \begin{align*}
 w^T x_n + b & \geq +1 & \text{for } t_n = +1 \\
 w^T x_n + b & \cdot -1 & \text{for } t_n = -1
 \end{align*}
 \]

 - Instead use

 \[
 \begin{align*}
 w^T x_n + b & \geq +1 - \xi_n & \text{for } t_n = +1 \\
 w^T x_n + b & \cdot -1 + \xi_n & \text{for } t_n = -1
 \end{align*}
 \]

 with "slack variables" \(\xi_n \geq 0 \quad \forall n \)
SVM - Soft-Margin Classification

- **Slack variables**
 - One slack variable $\xi_n \geq 0$ for each training data point.

- **Interpretation**
 - $\xi_n = 0$ for points that are on the correct side of the margin.
 - $\xi_n = |t_n - y(x_n)|$ for all other points (linear penalty).

- We do not have to set the slack variables ourselves!
 \Rightarrow They are jointly optimized together with w.

Point on decision boundary: $\xi_n = 1$

Misclassified point: $\xi_n > 1$

How that?
SVM - Non-Separable Data

- Separable data
 - Minimize
 \[
 \frac{1}{2} \| \mathbf{w} \|^2
 \]

- Non-separable data
 - Minimize
 \[
 \frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{n=1}^{N} \xi_n
 \]
 Trade-off parameter!
SVM - New Primal Formulation

- **New SVM Primal: Optimize**

 \[
 L_p = \frac{1}{2} \|w\|^2 + C \sum_{n=1}^{N} \xi_n - \sum_{n=1}^{N} a_n (t_n y(x_n) - 1 + \xi_n) - \sum_{n=1}^{N} \mu_n \xi_n
 \]

 Constraint
 \[
 t_n y(x_n) \geq 1 - \xi_n
 \]

 Constraint
 \[
 \xi_n \geq 0
 \]

- **KKT conditions**

 \[
 a_n \geq 0 \quad \mu_n \geq 0
 \]

 \[
 t_n y(x_n) - 1 + \xi_n \geq 0 \quad \xi_n \geq 0
 \]

 \[
 a_n (t_n y(x_n) - 1 + \xi_n) = 0 \quad \mu_n \xi_n = 0
 \]

KKT:

\[
\lambda \geq 0 \\
f(x) \geq 0 \\
\lambda f(x) = 0
\]
SVM - New Dual Formulation

- New SVM Dual: Maximize

\[
L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n)
\]

under the conditions

\[
0 \cdot a_n \cdot C
\]

\[
\sum_{n=1}^{N} a_n t_n = 0
\]

- This is again a quadratic programming problem

⇒ Solve as before... (more on that later)

Slide adapted from Bernt Schiele
SVM - New Solution

- Solution for the hyperplane
 - Computed as a linear combination of the training examples
 \[w = \sum_{n=1}^{N} a_n t_n x_n \]
 - Again sparse solution: \(a_n = 0 \) for points outside the margin.
 \[\Rightarrow \] The slack points with \(\xi_n > 0 \) are now also support vectors!
 - Compute \(b \) by averaging over all \(N_M \) points with \(0 < a_n < C \):
 \[b = \frac{1}{N_M} \sum_{n \in M} \left(t_n - \sum_{m \in M} a_m t_m x_m^T x_n \right) \]
Interpretation of Support Vectors

- Those are the hard examples!
 - We can visualize them, e.g. for face detection

Image source: E. Osuna, F. Girosi, 1997
References and Further Reading

• More information on SVMs can be found in Chapter 7.1 of Bishop’s book. You can also look at Schölkopf & Smola (some chapters available online).

 Christopher M. Bishop
 Pattern Recognition and Machine Learning
 Springer, 2006

 B. Schölkopf, A. Smola
 Learning with Kernels
 MIT Press, 2002
 http://www.learning-with-kernels.org/

• A more in-depth introduction to SVMs is available in the following tutorial: