Machine Learning - Lecture 8

Linear Support Vector Machines
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Course Outline

e Fundamentals (2 weeks)
~ Bayes Decision Theory
~ Probability Density Estimation

e Discriminative Approaches (5 weeks)
> Linear Discriminant Functions
~ Statistical Learning Theory & SVMs
- Ensemble Methods & Boosting
> Randomized Trees, Forests & Ferns

e Generative Models (4 weeks)
> Bayesian Networks
> Markov Random Fields
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RWTH
Recap: Generalization and Overfitting

A

test error

training error

_I —————————————————————————

e Goal: predict class labels of new observations
~ Train classification model on limited training set.

» The further we optimize the model parameters, the more the
training error will decrease.

- However, at some point the test error will go up again.
= Overfitting to the training set!

B. Leibe
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Recap: Risk

e Empirical risk
- Measured on the training/validation set

e Actual risk (= Expected risk)
» Expectation of the error on all data.

R(a) = /L(yi,f(x; «))dPx y(x,y)

. Pxy(x,y) is the probability distribution of (x,).
It is fixed, but typically unknown.
= In general, we can’t compute the actual risk directly!
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RWNTH
Recap: Statistical Learning Theory

e Idea

~» Compute an upper bound on the actual risk based on the
empirical risk

R(a) - Remp(a) +€(N,p*, h)

> where

N: number of training examples
p": probability that the bound is correct

h: capacity of the learning machine (“VC-dimension”)
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Recap: VC Dimension

e Vapnik-Chervonenkis dimension Exorer®

e
. . . Se 2.3
- Measure for the capacity of a learning machine. ’

e Formal definition:

- If a given set of { points can be labeled in all possible ¢ ways,
and for each labeling, a member of the set { f(«)} can be found

which correctly assigns those labels, we say that the set of
points is shattered by the set of functions.

» The VC dimension for the set of functions { f(«)} is defined as
the maximum number of training points that can be shattered

by {f(a)}.
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VC Dimension

e [Interpretation as a two-player game
> Opponent’s turn: He says a number N.

> Our turn: We specify a set of IV points {x,...,x,}.
~ Opponent’s turn: He gives us a labeling {x ,...,x,}€ {0,1}V

> Our turn: We specify a function f(a«) which correctly
classifies all [V points.

= If we can do that for all 2"V possible labelings, then the VC
dimension is at least /V.
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VC Dimension

e Example
», The VC dimension of all oriented lines in R? is 3.
1. Shattering 3 points with an oriented line:

o) L O ®
° 0] o ®

2. More difficult to show: it is not possible to shatter 4 points (XOR)...
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» More general: the VC dimension of all hyperplanes in R" is n+1.

. 9
Slide adapted from Bernt Schiele B. Leibe Image source: C. Burges, 1998




VC Dimension

e Intuitive feeling (unfortunately wrong)

> The VC dimension has a direct connection with the number of
parameters.

e Counterexample

f(z; ) = g(sin(aux))

1, x >0

Tr) = «
g() ISP

\

~ Just a single parameter .

> Infinite VC dimension _
- Proof: Choose x; =107", +=1,....¢

£ i
1+Z(1—gi)1o>

Q=T <
Slide adapted from Bernt Schiele 1=1
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Upper Bound on the Risk

e Important result (Vapnik 1979, 1995)
- With probability (1-n), the following bound holds

R(Q) - Rump(a) + | BN/ + 1) ~ o6/

“VC confidence”

. This bound is independent of Px y(x,y)!
> Typically, we cannot compute the left-hand side (the actual risk)

~ If we know h (the VC dimension), we can however easily
compute the risk bound

R(a) - Remp(a) +€(N,p*, h)

12
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Upper Bound on the Risk

Guaranteed risk
(bound on generalization

Error

0 VC dimension, h

Slide credit: Bernt Schiele B. Leibe
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RWTH
Recap: Structural Risk Minimization

e How can we implement Structural Risk Minimization?

R(a) - Remp(a) +€(N,p*, h)

e Classic approach
. Keep €(IV,p*, h) constant and minimize Ry, ().

. €(IN,p", h) can be kept constant by controlling the model
parameters.

e Support Vector Machines (SVMs)
. Keep Remp() constant and minimize €(N, p*, h) .
. In fact: Rerp () = 0 for separable data.

. Control (N, p*, h) by adapting the VC dimension
(controlling the “capacity” of the classifier).

Slide credit: Bernt Schiele B. Leibe
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Topics of This Lecture

e Linear Support Vector Machines
> Lagrangian (primal) formulation
> Dual formulation
> Discussion

e Linearly non-separable case
~ Soft-margin classification
> Updated formulation

 Nonlinear Support Vector Machines
> Nonlinear basis functions
> The Kernel trick
> Mercer’s condition
- Popular kernels

e Applications
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Revisiting Our Previous Example...

e How to select the classifier with o @

the best generalization performance? @ o® ®
> Intuitively, we would like to select

the classifier which leaves maximal
“safety room” for future data points.

~ This can be obtained by maximizing the
margin between positive and negative
data points.

» It can be shown that the larger the margin, the lower the
corresponding classifier’s VC dimension.

e The SVM takes up this idea

> It searches for the classifier with maximum margin.

> Formulation as a convex optimization problem
= Possible to find the globally optimal solution!
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Support Vector Machine (SVM)

e Let’s first consider linearly separable data
> N training data points 1(xs, yz)}i\;l X; € R4

. Target values t; € {—1,1}

» Hyperplane separating the data
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Support Vector Machine (SVM)

e Margin of the hyperplane: d_ +d

» d,: distance to nearest pos.

y @ ®
training example
> d_: distance to nearest neg. ™. ® °

training example ‘ \ ¢
o
T o
()
S
= ‘~
(7] @ ®
S \
<
= Origin .
g Q, /
c o1 Margin
=
3 . We can always choose w, bsuchthat d_ =d, = —.
= [wl .

B. Leibe

Slide adapted from Bernt Schiele Image source: C. Burges, 1998



Support Vector Machine (SVM)

e Since the data is linearly separable, there exists a
hyperplane with

wix, +b>+1 for t, =+1

wix,+b- —1 for t,=—1

e Combined in one equation, this can be written as
t,(Wix, +b) >1 Vn

= Canonical representation of the decision hyperplane.

» The equation will hold exactly for the points
on the margin

t,(wix, +b) =1

» By definition, there will always be at least
one such point.
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Support Vector Machine (SVM)

e We can choose w such that
wix, +b=+1 forone %, 1
wix, +b=—1 forone t,=—1

e The distance between those two hyperplanes is then the

margin 1
d_ — d_|_ —
il
2
d_ —I— d_|_ —
Iw]

= We can find the hyperplane with maximal margin by
minimizing |[w]|,

. 24
Slide credit: Bernt Schiele B. Leibe



Support Vector Machine (SVM)

e Optimization problem

~ Find the hyperplane satisfying

1
arg min —||W||
w,b

under the constraints

th(W X, +b)>1 Vn

> Quadratic programming problem with linear constraints.
~ Can be formulated using Lagrange multipliers.

e Who is already familiar with Lagrange multipliers?
» Let’s look at a real-life example...
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Recap: Lagrange Multipliers

e Problem
> We want to maximize K(x) subject to constraints f(x) =0.

» Example: we want to get as close as
possible, but there is a fence.

> How should we move?

> We want to maximize VK .

~ But we can only move parallel
to the fence, i.e. along

V”K = VK +A\Vf
with \ = 0.
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Recap: Lagrange Multipliers

e Problem
> We want to maximize K(x) subject to constraints f(x) =0.

- Example: we want to get as close as
possible, but there is a fence.

> How should we move?

qg’ = Optimize

i ma;\XL(X, A =K(x)+ Af
< IV ,

g — =V K=0

: o~ VI

S OL

=

N
8>\ B. Leibe



Recap: Lagrange Multipliers

e Problem
» Now let’s look at constraints of the form f(x) > O.

> Example: There might be a hill from
which we can see better...

. Optimize max L(x,\) = K(x) + \f(x)

> Solution lies on boundary
= f(x) =0 for some A >0
~ Solution lies inside f(x) >0

= Constraint inactive;: A= 0

> In both cases
= A f(x)=0
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Recap: Lagrange Multipliers

e Problem
» Now let’s look at constraints of the form f(x) > O.

> Example: There might be a hill from
which we can see better...

- Optimize max L(x, \) = K(x) + Af(x)

X, A\
Fx) =0 o~ Karush-Kuhn-Tucker (KKT)
conditions: A > 0
e Two cases f(x) >0
> Solution lies on boundary Af(x) = 0

= f(x) =0 for some A >0
~ Solution lies inside f(x) >0

= Constraint inactive;: A= 0

> In both cases
= A f(x)=0
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SVM - Lagrangian Formulation

e Find hyperplane minimizingHwH2under the constraints
th(W X, +b)—1>0 Vn

e Lagrangian formulation

> Introduce positive Lagrange multipliers:

> Minimize Lagrangian (“primal form”)

N
1
L(w,b,a) = > wl® = " an {tn(w"x, +b) — 1}
n=1

> l.e., find w, b, and a such that

N

oL

=0 = Zantn:O
n=1

B. Leibe

OL
gw )T

a, >0 Vn

N
W = g AntnXn
n—=1

30



SVM - Lagrangian Formulation
e Lagrangian primal form

N
1
L, = 5 [w]|* — Zan {t,(W'x, +b) — 1}
n=1

N
1
— 2_ ||WH2 o Zan {tny(xn) o 1}
n=1

e The solution of L, needs to fulfill the KKT conditions

» Necessary and sufficient conditions

KKT:
thy(x,) =1 = 0 f(x) >
A, {tny(xn)_l} = 0 AM(x) =
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SVM - Solution (Part 1)

e Solution for the hyperplane
~» Computed as a linear combination of the training examples

N
W = E antnXy,
n=1

~ Because of the KKT conditions, the following must also hold

a., (tn(WTXn +b) — 1) =0 KKT:

Af(x) =

0

- This implies that a, > 0 only for training data points for which

=> Only some of the data points actually influence the decision
boundary!
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SVM - Support Vectors

e The training points for which a, > 0 are called “support
vectors”.

e Graphical interpretation:

~ The support vectors are the
points on the margin.

» They define the margin
and thus the hyperplane. o

= Robustness to “too correct”
points!

o I/I\4/Iargin

33

Image source: C. Burges, 1998
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SVM - Solution (Part 2)

e Solution for the hyperplane
> To define the decision boundary, we still need to know b.
~ Observation: any support vector x  satisfies

KKT:
by (Xn) =ty Z GmtmXo X, +b ] =1 | f(x)=0
meS
> Using t% = 1, we can derive: b=1t, — Z amthTTnxn

meS
> In practice, it is more robust to average over all support vectors:

— Nis Z by — Z amtmxﬁxn

nes meS
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SVM - Discussion (Part 1)

e Linear SVM

> Linear classifier
~ Approximative implementation of the SRM principle.

> In case of separable data, the SVM produces an empirical risk of
zero with minimal value of the VC confidence
(i.e. a classifier minimizing the upper bound on the actual risk).

> SVMs thus have a “guaranteed” generalization capability.
> Formulation as convex optimization problem.
= Globally optimal solution!

e Primal form formulation
- Solution to quadratic prog. problem in M variables is in O(M3).
- Here: D variables = O(D?)
» Problem: scaling with high-dim. data (“curse of dimensionality”)
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RWNTH
SVM - Dual Formulation

 Improving the scaling behavior: rewrite L in a dual form

> Using the constraint Z a,t, = 0, we obtain R p—

n=1

! N N
L, = 5 [w]|? — Z antn W X, + Z ap,
n=1 n=1

36

Slide adapted from Bernt Schiele B. Leibe
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SVM - Dual Formulation

| N N
L, = 5 [w]|* — Z antnW X, + Z anp,
n=1 n=1

N
OL
> Using the constraint w = E antnX, , we obtain (9—p 0
W
n=1

Slide adapted from Bernt Schiele B. Leibe
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SVM - Dual Formulation

L:%HWHZ ZZanamt ton (X- X, —I—Zan

n=1m=1

N
1 1
- Applying 5 [w||?= inw and again using w :7; AntnXn
1 1 N N
2—WTW =3 S: S: UnGmtntm (X X,)
n=1m=1

> Inserting this, we get the Wolfe dual

N 1 N N
= Z Ap — 5 Z Z anamtntm(xgzxn)
n=1

n=1m=1

Slide adapted from Bernt Schiele B. Leibe
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SVM - Dual Formulation

¢ Maximize

N | NN
Lgy(a) = Z an — 5 Sj Sj UnGmtntm (X X,,)
n=1

n=1m=1

under the conditions

IV
-

Vn

Qn,

N
E antn
n=1

~ The hyperplane is given by the N support vectors:

Ns
W = E AntnXn
n=1

B. Leibe
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Slide adapted from Bernt Schiele
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SVM - Discussion (Part 2)

e Dual form formulation
> In going to the dual, we now have a problem in /N variables (a ).
~ Isn’t this worse??? We penalize large training sets!

e However...
1. SVMs have sparse solutions: a, # 0 only for support vectors!

= This makes it possible to construct efficient algorithms
- e.g. Sequential Minimal Optimization (SMO)
- Effective runtime between O(N) and O(N?).

2. We have avoided the dependency on the dimensionality.

= This makes it possible to work with infinite-dimensional feature
spaces by using suitable basis functions ¢(x).

= We'll see that in a few minutes...
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So Far...

> Current problem formulation has no
solution if the data are not linearly
separable!

> Need to introduce some tolerance to
outlier data points.

(o]
M
S
Q
S
S
S
7]
o)
=
c
| -
@®©
(D)
—
(b)
=
<
3)
©
=

43

B. Leibe



©©
M
| 59
)
€
€
S
(7]
o)
=
c
S
S
)
1
o
=
c
3)
a
p=

SVM - Non-Separable Data

e Non-separable data

~ l.e. the following inequalities cannot be satisfied for all data
points

wix, +b>+1 for t, =+1

wix, +b- —1 for t, =-—1

> Instead use
wix, +b>+1— &, for t, =—+1
wix, +b- —1+ &, for t, =-—1

with “slack variables” &, > 0 Vn

B. Leibe
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SVM - Soft-Margin Classification

e Slack variables
- One slack variable ¢, > 0 for each training data point.

e Interpretation
> & =0 for points that are on the correct side of the margin.
- & =|t, — y(x,)| for all other points (linear penalty).

Point on decision
boundary: £, =1

Misclassified point:
&n > 1

® o
> We do not have to set the slack variables ourselves!

= They are jointly optimized together with w.
45
B. Leibe
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SVM - Non-Separable Data

e Separable data 1

> Minimize —

2
* Non-separable data §
> Minimize 5

5 Trade-off
[w| parameter!

N
Iwl? +C)S ",
o n=1

B. Leibe
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SVM - New Primal Formulation

e New SVM Primal: Optimize

N
L, = _||w||2+025n Zan tny (%) — 1+ &) — Zunﬁn
Const?amt Constraint

w tny(Xn) Z 1 o fn fn Z O
?, e KKT conditions
£ KKT:
7 an = 0 pn = 0 A >0
g tny(Xn)_1+£n > 0 gn > 0 (X) > 0
L atyG) 146 = 0 e = 0 (MG = 0
-

47
B. Leibe
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SVM - New Dual Formulation

e New SVM Dual: Maximize

N | NN
Lgy(a) = Z an — 5 Sj Sj UnGmtntm (X X,,)
n=1

n=1m=1

under the conditions
0 a, -

N
Zantn = 0
n=1

e This is again a quadratic programming problem
= Solve as before... (more on that later)

O This is all
that changed!

Slide adapted from Bernt Schiele B. Leibe
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SVM - New Solution

e Solution for the hyperplane
~» Computed as a linear combination of the training examples

N
W = E antnXy,
n=1

- Again sparse solution: a, = 0 for points outside the margin.
= The slack points with £, > 0 are now also support vectors!

- Compute b by averaging over all V,, points with0 < a,, < C:

1 T
TR Sl [ pravaeces
neM meM

B. Leibe
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RWTH
Interpretation of Support Vectors

e Those are the hard examples!
> We can visualize them, e.g. for face detection

NON-FACES
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Image source: E. Osuna, F. Girosi, 1997
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RWTH
References and Further Reading

* More information on SVMs can be found in Chapter 7.1
of Bishop’s book. You can also look at Scholkopf & Smola
(some chapters available online).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Learning with Kernels Springer, 2006

B. Scholkopf, A. Smola

Learning with Kernels

MIT Press, 2002
http://www.learning-with-kernels.org/

e A more in-depth introduction to SVMs is available in the
following tutorial:
> C. Burges, A Tutorial on Support Vector Machines for Pattern

Recognition, Data Mining and Knowledge Discovery, Vol. 2(2),
pp. 121-167 1998.

87
B. Leibe
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