

Machine Learning - Lecture 8

Linear Support Vector Machines

24.05.2016

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

RWTHAACHEN UNIVERSITY

Course Outline

- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation

- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns

- Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields

Recap: Generalization and Overfitting

- Goal: predict class labels of new observations
 - Train classification model on limited training set.
 - The further we optimize the model parameters, the more the training error will decrease.
 - However, at some point the test error will go up again.
 - ⇒ Overfitting to the training set!

Recap: Risk

- Empirical risk
 - Measured on the training/validation set

$$R_{emp}(\alpha) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(\mathbf{x}_i; \alpha))$$

- Actual risk (= Expected risk)
 - Expectation of the error on all data.

$$R(\alpha) = \int L(y_i, f(\mathbf{x}; \alpha)) dP_{X,Y}(\mathbf{x}, y)$$

- $P_{X,Y}(\mathbf{x},y)$ is the probability distribution of (\mathbf{x},y) . It is fixed, but typically unknown.
- ⇒ In general, we can't compute the actual risk directly!

Recap: Statistical Learning Theory

Idea

Compute an upper bound on the actual risk based on the empirical risk

$$R(\alpha) \cdot R_{emp}(\alpha) + \epsilon(N, p^*, h)$$

where

N: number of training examples

 p^* : probability that the bound is correct

h: capacity of the learning machine ("VC-dimension")

RWTHAACHEN UNIVERSITY

Recap: VC Dimension

- Vapnik-Chervonenkis dimension
 - Measure for the capacity of a learning machine.

Formal definition:

- If a given set of ℓ points can be labeled in all possible 2^{ℓ} ways, and for each labeling, a member of the set $\{f(\alpha)\}$ can be found which correctly assigns those labels, we say that the set of points is shattered by the set of functions.
- > The VC dimension for the set of functions $\{f(\alpha)\}$ is defined as the maximum number of training points that can be shattered by $\{f(\alpha)\}$.

VC Dimension

- Interpretation as a two-player game
 - ightarrow Opponent's turn: He says a number N.
 - > Our turn: We specify a set of N points $\{x_1,...,x_N\}$.
 - > Opponent's turn: He gives us a labeling $\{\mathbf{x}_1,...,\mathbf{x}_N\} \in \{0,1\}^N$
 - > Our turn: We specify a function $f(\alpha)$ which correctly classifies all N points.
 - \Rightarrow If we can do that for all 2^N possible labelings, then the VC dimension is at least N.

VC Dimension

- Example
 - \triangleright The VC dimension of all oriented lines in \mathbb{R}^2 is 3.
 - 1. Shattering 3 points with an oriented line:

- 2. More difficult to show: it is not possible to shatter 4 points (XOR)...
- More general: the VC dimension of all hyperplanes in \mathbb{R}^n is $n{+}1.$

VC Dimension

- Intuitive feeling (unfortunately wrong)
 - > The VC dimension has a direct connection with the number of parameters.
- Counterexample

$$f(x; \alpha) = g(\sin(\alpha x))$$
$$g(x) = \begin{cases} 1, & x > 0 \\ -1, & x \cdot 0 \end{cases}$$

- > Just a single parameter α .
- Infinite VC dimension
 - Proof: Choose $x_i = 10^{-i}, \quad i = 1, \dots, \ell$

$$\alpha = \pi \left(1 + \sum_{i=1}^{\ell} \frac{(1 - y_i)10^i}{2} \right)$$

Upper Bound on the Risk

- Important result (Vapnik 1979, 1995)
 - \triangleright With probability (1- η), the following bound holds

$$R(\alpha) \cdot R_{emp}(\alpha) + \sqrt{\frac{h(\log(2N/h) + 1) - \log(\eta/4)}{N}}$$

"VC confidence"

- ho This bound is independent of $P_{X,Y}(\mathbf{x},y)$!
- Typically, we cannot compute the left-hand side (the actual risk)
- > If we know h (the VC dimension), we can however easily compute the risk bound

$$R(\alpha) \cdot R_{emp}(\alpha) + \epsilon(N, p^*, h)$$

Upper Bound on the Risk

Recap: Structural Risk Minimization

How can we implement Structural Risk Minimization?

$$R(\alpha) \cdot R_{emp}(\alpha) + \epsilon(N, p^*, h)$$

- Classic approach
 - ightharpoonup Keep $\epsilon(N,p^*,h)$ constant and minimize $R_{emp}(lpha)$.
 - $\epsilon(N,p^*,h)$ can be kept constant by controlling the model parameters.
- Support Vector Machines (SVMs)
 - ightharpoonup Keep $R_{emp}(lpha)$ constant and minimize $\epsilon(N,p^*,h)$.
 - In fact: $R_{emp}(\alpha) = 0$ for separable data.
 - ightharpoonup Control $\epsilon(N,p^*,h)$ by adapting the VC dimension (controlling the "capacity" of the classifier).

Topics of This Lecture

- Linear Support Vector Machines
 - Lagrangian (primal) formulation
 - Dual formulation
 - Discussion
- Linearly non-separable case
 - Soft-margin classification
 - Updated formulation
- Nonlinear Support Vector Machines
 - Nonlinear basis functions
 - The Kernel trick
 - Mercer's condition
 - Popular kernels
- Applications

Revisiting Our Previous Example...

- How to select the classifier with the best generalization performance?
 - Intuitively, we would like to select the classifier which leaves maximal "safety room" for future data points.

- It can be shown that the larger the margin, the lower the corresponding classifier's VC dimension.
- The SVM takes up this idea
 - It searches for the classifier with maximum margin.
 - Formulation as a convex optimization problem ⇒ Possible to find the globally optimal solution!

- Let's first consider linearly separable data
 - ho N training data points $\left\{ (\mathbf{x}_i, y_i)
 ight\}_{i=1}^N$ $\mathbf{x}_i \in \mathbb{R}^d$
 - > Target values $t_i \in \{-1,1\}$
 - Hyperplane separating the data

B. Leibe

- Margin of the hyperplane: $d_- + d_+$
 - $\rightarrow d_+$: distance to nearest pos. training example

We can always choose ${f w}$, b such that $d_-=d_+=rac{1}{||{f v}|}$

 Since the data is linearly separable, there exists a hyperplane with

$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b \ge +1$$
 for $t_n = +1$
 $\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b \cdot -1$ for $t_n = -1$

Combined in one equation, this can be written as

$$t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b) \ge 1 \quad \forall n$$

- ⇒ Canonical representation of the decision hyperplane.
- The equation will hold exactly for the points on the margin
 The equation will hold exactly for the points on the margin

$$t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b) = 1$$

By definition, there will always be at least one such point.

We can choose w such that

$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b = +1$$
 for one $t_n = +1$
 $\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b = -1$ for one $t_n = -1$

The distance between those two hyperplanes is then the margin

$$d_{-} = d_{+} = \frac{1}{\|\mathbf{w}\|}$$
$$d_{-} + d_{+} = \frac{2}{\|\mathbf{w}\|}$$

 \Rightarrow We can find the hyperplane with maximal margin by minimizing $\|\mathbf{w}\|^2$,

- Optimization problem
 - Find the hyperplane satisfying

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{w}\|^2$$

under the constraints

$$t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b) \ge 1 \quad \forall n$$

- Quadratic programming problem with linear constraints.
- Can be formulated using Lagrange multipliers.
- Who is already familiar with Lagrange multipliers?
 - Let's look at a real-life example...

26

Recap: Lagrange Multipliers

Problem

- > We want to maximize $K(\mathbf{x})$ subject to constraints $f(\mathbf{x}) = 0$.
- Example: we want to get as close as possible, but there is a fence.
- How should we move?

$$f(\mathbf{x}) = 0$$

$$f(\mathbf{x}) > 0$$

But we can only move parallel to the fence, i.e. along

$$\nabla_{\parallel} K = \nabla K + \lambda \nabla f$$

with $\lambda \neq 0$.

Recap: Lagrange Multipliers

Problem

- We want to maximize $K(\mathbf{x})$ subject to constraints $f(\mathbf{x}) = 0$.
- Example: we want to get as close as possible, but there is a fence.
- How should we move?

$$f(\mathbf{x}) = 0$$

⇒ Optimize

 $\max_{\mathbf{x},\lambda} L(\mathbf{x},\lambda) = K(\mathbf{x}) + \lambda f(\mathbf{x})$

$$\frac{\partial L}{\partial \mathbf{x}} = \nabla_{\parallel} K \stackrel{!}{=} 0$$

$$\frac{\partial L}{\partial \lambda} = f(x) \stackrel{!}{=} 0$$

$$\frac{\partial L}{\partial \lambda} = f(x) \stackrel{!}{=} 0$$

Recap: Lagrange Multipliers

Problem

- Now let's look at constraints of the form $f(\mathbf{x}) \geq 0$.
- Example: There might be a hill from which we can see better...
- Optimize $\max L(\mathbf{x}, \lambda) = K(\mathbf{x}) + \lambda f(\mathbf{x})$

$$f(\mathbf{x}) = 0$$

$$\Rightarrow f(\mathbf{x}) = 0$$
 for some $\lambda > 0$

 $f(\mathbf{x}) > 0$

- > Solution lies inside $f(\mathbf{x}) > 0$
 - \Rightarrow Constraint inactive: $\lambda = 0$
- In both cases

$$\Rightarrow \lambda f(\mathbf{x}) = 0$$

Fence f

Recap: Lagrange Multipliers

Problem

- Now let's look at constraints of the form $f(\mathbf{x}) \geq 0$.
- Example: There might be a hill from which we can see better...
- Poptimize $\max_{\mathbf{x}} L(\mathbf{x}, \lambda) = K(\mathbf{x}) + \lambda f(\mathbf{x})$

$$f(\mathbf{x}) = 0$$

- Solution lies on boundary
 - $\Rightarrow f(\mathbf{x}) = 0$ for some $\lambda > 0$
- > Solution lies inside $f(\mathbf{x}) > 0$
 - \Rightarrow Constraint inactive: $\lambda = 0$
- In both cases

$$\Rightarrow \lambda f(\mathbf{x}) = 0$$

$$f(\mathbf{x}) \geq 0$$

$$\lambda f(\mathbf{x}) = 0$$

SVM - Lagrangian Formulation

ullet Find hyperplane minimizing $\|\mathbf{w}\|^2$ under the constraints

$$t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b) - 1 \ge 0 \quad \forall n$$

- Lagrangian formulation
 - > Introduce positive Lagrange multipliers: $a_n \ge 0 \quad \forall n$
 - Minimize Lagrangian ("primal form")

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \{t_n(\mathbf{w}^T \mathbf{x}_n + b) - 1\}$$

> I.e., find w, b, and a such that

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} a_n t_n = 0$$
 $\frac{\partial L}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n$

SVM - Lagrangian Formulation

Lagrangian primal form

$$L_{p} = \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{n=1}^{N} a_{n} \{t_{n}(\mathbf{w}^{T}\mathbf{x}_{n} + b) - 1\}$$

$$= \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{n=1}^{N} a_{n} \{t_{n}y(\mathbf{x}_{n}) - 1\}$$

- The solution of L_p needs to fulfill the KKT conditions
 - Necessary and sufficient conditions

$$a_n \ge 0$$

$$t_n y(\mathbf{x}_n) - 1 \ge 0$$

$$a_n \{t_n y(\mathbf{x}_n) - 1\} = 0$$

KKT:
$$\lambda \geq 0$$

$$f(\mathbf{x}) \geq 0$$

$$\lambda f(\mathbf{x}) = 0$$

$$\lambda f(\mathbf{x}) = 0$$

SVM - Solution (Part 1)

- Solution for the hyperplane
 - Computed as a linear combination of the training examples

$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n$$

Because of the KKT conditions, the following must also hold

$$a_n \left(t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b) - 1 \right) = 0$$

KKT: $\lambda f(\mathbf{x}) = 0$

> This implies that $a_n > 0$ only for training data points for which

$$\left(t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b) - 1\right) = 0$$

⇒ Only some of the data points actually influence the decision boundary!

SVM - Support Vectors

• The training points for which $a_n > 0$ are called "support vectors".

Graphical interpretation:

- The support vectors are the points on the margin.
- They define the margin and thus the hyperplane.
- ⇒ Robustness to "too correct" points!

0

SVM - Solution (Part 2)

- Solution for the hyperplane
 - \triangleright To define the decision boundary, we still need to know b.
 - ightharpoonup Observation: any support vector \mathbf{x}_n satisfies

$$t_n y(\mathbf{x}_n) = t_n \left(\sum_{m \in \mathcal{S}} a_m t_m \mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n + b \right) = 1$$
 KKT: $f(\mathbf{x}) \geq 0$

- Using $t_n^2=1$, we can derive: $b=t_n-\sum_{m\in\mathcal{S}}a_mt_m\mathbf{x}_m^{\mathrm{T}}\mathbf{x}_n$
- > In practice, it is more robust to average over all support vectors:

$$b = \frac{1}{N_{\mathcal{S}}} \sum_{n \in \mathcal{S}} \left(t_n - \sum_{m \in \mathcal{S}} a_m t_m \mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n \right)$$

SVM - Discussion (Part 1)

Linear SVM

- Linear classifier
- Approximative implementation of the SRM principle.
- In case of separable data, the SVM produces an empirical risk of zero with minimal value of the VC confidence (i.e. a classifier minimizing the upper bound on the actual risk).
- > SVMs thus have a "guaranteed" generalization capability.
- Formulation as convex optimization problem.
- ⇒ Globally optimal solution!

Primal form formulation

- ightharpoonup Solution to quadratic prog. problem in M variables is in $\mathcal{O}(M^3)$.
- \rightarrow Here: D variables $\Rightarrow \mathcal{O}(D^3)$
- Problem: scaling with high-dim. data ("curse of dimensionality")

• Improving the scaling behavior: rewrite $L_{\scriptscriptstyle p}$ in a dual form

> Using the constraint $\sum_{n=1}^{\infty}a_{n}t_{n}=0$, we obtain

$$\frac{\partial L_p}{\partial b} = 0$$

$$L_p = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n t_n \mathbf{w}^{\mathrm{T}} \mathbf{x}_n + \sum_{n=1}^{N} a_n$$

$$L_p = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n t_n \mathbf{w}^{\mathrm{T}} \mathbf{x}_n + \sum_{n=1}^{N} a_n$$

ullet Using the constraint $\mathbf{w=}{\sum}\,a_nt_n\mathbf{x}_n$, we obtain

$$\frac{\partial L_p}{\partial \mathbf{w}} = 0$$

$$L_{p} = \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{n=1}^{N} a_{n} t_{n} \sum_{m=1}^{N} a_{m} t_{m} \mathbf{x}_{m}^{T} \mathbf{x}_{n} + \sum_{n=1}^{N} a_{n}$$

$$= \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{m=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m} (\mathbf{x}_{m}^{T} \mathbf{x}_{n}) + \sum_{m=1}^{N} a_{n}$$

$$L = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (\mathbf{x}_m^T \mathbf{x}_n) + \sum_{n=1}^{N} a_n$$

> Applying $\frac{1}{2} \|\mathbf{w}\|^2 = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$ and again using $\mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n$

$$\frac{1}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w} = \frac{1}{2}\sum_{n=1}^{N}\sum_{m=1}^{N}a_{n}a_{m}t_{n}t_{m}(\mathbf{x}_{m}^{\mathrm{T}}\mathbf{x}_{n})$$

Inserting this, we get the Wolfe dual

$$L_d(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m(\mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n)$$

Maximize

$$L_d(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m(\mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n)$$

under the conditions

$$a_n \geq 0 \quad \forall n$$

$$\sum_{n=1}^{N} a_n t_n = 0$$

 $\,\,ullet$ The hyperplane is given by the $N_{\scriptscriptstyle S}$ support vectors:

$$\mathbf{w} = \sum_{n=1}^{N_{\mathcal{S}}} a_n t_n \mathbf{x}_n$$

SVM - Discussion (Part 2)

- Dual form formulation
 - > In going to the dual, we now have a problem in N variables (a_n) .
 - Isn't this worse??? We penalize large training sets!
- However...
 - 1. SVMs have sparse solutions: $a_n \neq 0$ only for support vectors!
 - ⇒ This makes it possible to construct efficient algorithms
 - e.g. Sequential Minimal Optimization (SMO)
 - Effective runtime between $\mathcal{O}(N)$ and $\mathcal{O}(N^2)$.
 - 2. We have avoided the dependency on the dimensionality.
 - \Rightarrow This makes it possible to work with infinite-dimensional feature spaces by using suitable basis functions $\phi(\mathbf{x})$.
 - ⇒ We'll see that in a few minutes...

So Far...

- Only looked at linearly separable case...
 - Current problem formulation has no solution if the data are not linearly separable!
 - Need to introduce some tolerance to outlier data points.

SVM - Non-Separable Data

Non-separable data

I.e. the following inequalities cannot be satisfied for all data points

$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n} + b \ge +1$$
 for $t_{n} = +1$
 $\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n} + b \cdot -1$ for $t_{n} = -1$

Instead use

$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n} + b \ge +1 - \xi_{n}$$
 for $t_{n} = +1$
 $\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n} + b \cdot -1 + \xi_{n}$ for $t_{n} = -1$

with "slack variables" $\xi_n \geq 0 \quad \forall n$

SVM - Soft-Margin Classification

Slack variables

> One slack variable $\xi_n \geq 0$ for each training data point.

Interpretation

- > $\xi_n = 0$ for points that are on the correct side of the margin.
- > $\xi_n = |t_n y(\mathbf{x}_n)|$ for all other points (linear penalty).

Point on decision boundary: $\xi_n = 1$

Misclassified point:

$$\xi_n > 1$$

- We do not have to set the slack variables ourselves!
- \Rightarrow They are jointly optimized together with w.

SVM - Non-Separable Data

- Separable data
 - Minimize
- Non-separable data
 - Minimize

SVM - New Primal Formulation

New SVM Primal: Optimize

$$L_p = \frac{1}{2} \ \|\mathbf{w}\|^2 + C \sum_{n=1}^N \xi_n - \sum_{n=1}^N a_n \left(t_n y(\mathbf{x}_n) - 1 + \xi_n\right) - \sum_{n=1}^N \mu_n \xi_n$$
 Constraint
$$t_n y(\mathbf{x}_n) \geq 1 - \xi_n \qquad \xi_n > 0$$

KKT conditions

$$a_n \geq 0$$
 $\mu_n \geq 0$ $\lambda \geq 0$ $t_n y(\mathbf{x}_n) - 1 + \xi_n \geq 0$ $\xi_n \geq 0$ $f(\mathbf{x}) \geq 0$ $a_n (t_n y(\mathbf{x}_n) - 1 + \xi_n) = 0$ $\mu_n \xi_n = 0$ $\lambda f(\mathbf{x}) = 0$

$$\lambda \geq 0$$

 $\mathbf{x}) > 0$

$$\lambda f(\mathbf{x}) = 0$$

New SVM Dual: Maximize

$$L_d(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m(\mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n)$$

under the conditions

$$\sum_{n=1}^{N} a_n t_n = 0$$

This is all that changed!

- This is again a quadratic programming problem
 - ⇒ Solve as before... (more on that later)

SVM - New Solution

- Solution for the hyperplane
 - Computed as a linear combination of the training examples

$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n$$

- > Again sparse solution: $a_n=0$ for points outside the margin.
- \Rightarrow The slack points with $\xi_n > 0$ are now also support vectors!
- > Compute b by averaging over all $N_{\mathcal{M}}$ points with $0 < a_n < C$:

$$b = \frac{1}{N_{\mathcal{M}}} \sum_{n \in \mathcal{M}} \left(t_n - \sum_{m \in \mathcal{M}} a_m t_m \mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n \right)$$

Interpretation of Support Vectors

- Those are the hard examples!
 - > We can visualize them, e.g. for face detection

References and Further Reading

More information on SVMs can be found in Chapter 7.1
 of Bishop's book. You can also look at Schölkopf & Smola
 (some chapters available online).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

- A more in-depth introduction to SVMs is available in the following tutorial:
 - C. Burges, <u>A Tutorial on Support Vector Machines for Pattern</u> <u>Recognition</u>, Data Mining and Knowledge Discovery, Vol. 2(2), pp. 121-167 1998.