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Recap: Generalization and Overfitting

test error

training error

¢ Goal: predict class labels of new observations
» Train classification model on limited training set.

» The further we optimize the model parameters, the more the
training error will decrease.

» However, at some point the test error will go up again.
=> Overfitting to the training set!

B. Leibe
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Recap: Statistical Learning Theory

¢ |dea

» Compute an upper bound on the actual risk based on the
empirical risk

R(&) © Remp() +€(N,p*, h)

» where
N: number of training examples
p": probability that the bound is correct

h: capacity of the learning machine (“VC-dimension”)
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Slide adanted from Rernt Schiele. B. Leibe

Course Outline

¢ Fundamentals (2 weeks)
. Bayes Decision Theory @ §7'
» Probability Density Estimation '

¢ Discriminative Approaches (5 weeks)
» Linear Discriminant Functions
» Statistical Learning Theory & SVMs

» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

¢ Generative Models (4 weeks)
» Bayesian Networks
» Markov Random Fields

Machine Learning, Summer ‘16
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Recap: Risk

¢ Empirical risk
» Measured on the training/validation set

Romp @) = 5 3 Dlys (x3500)

e Actual risk (= Expected risk)
» Expectation of the error on all data.

R(a) = / Ly, f(x; 0))dPyx y (x,3)

- Px,y(x,y) is the probability distribution of (x,y).
It is fixed, but typically unknown.
= In general, we can’t compute the actual risk directly!

Machine Learning, Summer ‘16
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Recap: VC Dimension
¢ Vapnik-Chervonenkis dimension Exe,:,?;zz
-3

» Measure for the capacity of a learning machine.

¢ Formal definition:

» If a given set of { points can be labeled in all possible 2t ways,
and for each labeling, a member of the set {f(c)} can be found
which correctly assigns those labels, we say that the set of
points is shattered by the set of functions.

» The VC dimension for the set of functions {f(c)} is defined as
the maximum number of training points that can be shattered

by {f()}
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VC Dimension

¢ Interpretation as a two-player game
» Opponent’s turn: He says a number N.
> Our turn: We specify a set of N points {x,,...,xy}.

» Opponent’s turn: He gives us a labeling {x,,....x,}€ {0,1}"

» Our turn: We specify a function f(a) which correctly

classifies all IV points.

= If we can do that for all 2" possible labelings, then the VC
dimension is at least V.

Machine Learning, Summer ‘16
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VC Dimension

¢ Intuitive feeling (unfortunately wrong)

» The VC dimension has a direct connection with the number of
parameters.

+ Counterexample

f(@; ) = g(sin(ax))
1, z>0
x) =
g(z) e 0

» Just a single parameter a.
» Infinite VC dimension )
- Proof: Choose z;=10"" i=1,...,¢

(1 —y;)10°
= 1 E N7 b
a=T ( =+ ) )
lide adapted from Bernt Schiele i=1
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Upper Bound on the Risk
Guaranteed risk
(boundoncn;;)g-mliuﬁon

VC Dimension
¢ Example

» The VC dimension of all oriented lines in R is 3.

1. Shattering 3 points with an oriented line:

o . o L]
o o .
hd e
. o o .

B o A

2. More difficult to show: it is not possible to shatter 4 points (XOR)...

Machine Learning, Summer ‘16

» More general: the VC dimension of all hyperplanes in R" is n+1.

Slide adapted from Bernt Schiele B. Leibe Image source: C, Burges, 199

Upper Bound on the Risk

¢ Important result (Vapnik 1979, 1995)
» With probability (1-7), the following bound holds

R(a) - Rempla) + ¢ R(log(2N/h) - 1) — log(n/4)

“VC confidence”

» This bound is independent of Px y(x,y)!

» Typically, we cannot compute the left-hand side (the actual risk)

» If we know h (the VC dimension), we can however easily
compute the risk bound

R() © Remp(e) +€(N,p*, h)

Machine Learning, Summer ‘16
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Recap: Structural Risk Minimization

¢ How can we implement Structural Risk Minimization?
R(&) © Remp() +€(N,p*, h)

¢ Classic approach
. Keep €(NV,p*, h) constant and minimize Remp(cv) .

. €(N,p*, h) can be kept constant by controlling the model
parameters.

¢ Support Vector Machines (SVMs)
. Keep Remp (@) constant and minimize e(N,p*, h) .
» In fact: Repyp () = 0 for separable data.

. Control €(IV, p*, h) by adapting the VC dimension
(controlling the “capacity” of the classifier).
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Topics of This Lecture

¢ Linear Support Vector Machines
» Lagrangian (primal) formulation
» Dual formulation
~ Discussion

¢ Linearly non-separable case
» Soft-margin classification
» Updated formulation

* Nonlinear Support Vector Machines
> Nonlinear basis functions
» The Kernel trick
> Mercer’s condition
» Popular kernels

¢ Applications

Machine Learning, Summer ‘16
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Support Vector Machine (SVM)

¢ Let’s first consider linearly separable data
» N training data points {(mei)}fil x; € R?

. Target values t; € {-1,1}

X

» Hyperplane separating the data

Machine Learning, Summer ‘16
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Support Vector Machine (SVM)
¢ Since the data is linearly separable, there exists a
hyperplane with
wix, +b>+1 for t,=+1
wix, +b- —1 for ¢,=—1

¢ Combined in one equation, this can be written as
ta(Wix, +0)>1 Vn

= Canonical representation of the decision hyperplane.
» The equation will hold exactly for the points

on the margin
ty(wrx, +0) =1

» By definition, there will always be at least
one such point.

o ® ‘Margin
° °
)
® e
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Revisiting Our Previous Example...

* How to select the classifier with o ©® Margin

the best generalization performance? ® °® ®
» Intuitively, we would like to select

the classifier which leaves maximal

“safety room” for future data points.

This can be obtained by maximizing the

margin between positive and negative

data points.

It can be shown that the larger the margin, the lower the

corresponding classifier’s VC dimension.

v

v

¢ The SVM takes up this idea
» It searches for the classifier with maximum margin.

» Formulation as a convex optimization problem
= Possible to find the globally optimal solution!

B. Leibe
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Support Vector Machine (SVM)
 Margin of the hyperplane: d_ +d
» d,: distance to nearest pos. “ » .
training example .
» d_: distance to nearest neg. . .

training example
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Support Vector Machine (SVM)

¢ We can choose w such that

w x, +b=+41 forone t,=+1
wix, +b=—1 forone t,=—1
¢ The distance between those two hyperplanes is then the
margin d d 1
_=dy= —
[[wll
2
d_+d, = —
[[wll

= We can find the hyperplane with maximal margin by
minimizing ||w]|

ide credit: Bernt Schiele B. Leibe




Support Vector Machine (SVM)

¢ Optimization problem
» Find the hyperplane satisfying
in 2 w]?
arg min —||w
%v,b 2
under the constraints

to(wTx, +b) >1 Vn

» Quadratic programming problem with linear constraints.
» Can be formulated using Lagrange multipliers.

o Who is already familiar with Lagrange multipliers?
» Let’s look at a real-life example...

Machine Learning, Summer ‘16
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Recap: Lagrange Multipliers

¢ Problem
» We want to maximize K(x) subject to constraints f(x) = 0.

» Example: we want to get as close as
possible, but there is a fence.

» How should we move?

= Optimize
rlrla;f(L(x7 A) = K(x)+Af(x

Machine Learning, Summer ‘16

OL |
e ViK=0
oL |
B f(z)=0
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Recap: Lagrange Multipliers

e Problem
> Now let’s look at constraints of the form f(x) > 0.

» Example: There might be a hill from
which we can see better...

Optimize max L(x,)\) = K(x) + M f(x)

f(x) =082 Karush-Kuhn-Tucker (KKT)
conditions: A > 0

fx) =0
Af(x) 0

v

¢ Two cases
» Solution lies on boundary

= f(x) =0 for some A\ >0 3

Solution lies inside f(x) >0 “r‘% i

= Constraint inactive: A = 0

In both cases

= \f(x)=0

v

v
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Recap: Lagrange Multipliers

¢ Problem
» We want to maximize K(x) subject to constraints f(x) = 0.

» Example: we want to get as close as
possible, but there is a fence.
» How should we move?

fx)=0

. We want to maximize VK .

» But we can only move parallel
to the fence, i.e. along

VK = VK + \Vf %%6 -
with A = 0. gk,

Slide adapted from Mariq Frit. B. Leibe

Recap: Lagrange Multipliers

¢ Problem
» Now let’s look at constraints of the form f(x) > 0.

» Example: There might be a hill from
which we can see better...

Optimize max L(x,\) = K(x) + Af(x)
X,

v

e Twocases />0

» Solution lies on boundary
= f(x) =0 for some A >0
Solution lies inside f(x) >0
= Constraint inactive: \ =

v

In both cases
= \(x)=0

v

B. Leibe
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SVM - Lagrangian Formulation

« Find hyperplane minimizing||w]|” under the constraints
ta(Wwix, +0)—1>0 Vn

¢ Lagrangian formulation

» Introduce positive Lagrange multipliers: a, >0 Vn

» Minimize Lagrangian (“primal form”)

N
1
L(w,b,a) = 5 [Iw]|? — Z an, {tn(wan +b) -1}

n=1
» l.e., find w, b, and a such that

N N
oL oL
5 = 0 = n§:1antn: 0 p 0 =|w :nEZlantnxn

30
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SVM - Lagrangian Formulation
¢ Lagrangian primal form

N
1
L, = 5 IIw||? — Zan {tn(wan +0b) — 1}
n=1

1 N
= FIwl* = an {tay(xn) 1}
n=1

* The solution of L, needs to fulfill the KKT conditions
» Necessary and sufficient conditions

KKT:
ap > 0 A >0
bay(xa) 1 = 0 6 2 0
an {tny(xn) —1} = 0 Af(x) = 0
B. Leibe 31
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SVM - Support Vectors

¢ The training points for which a, > 0 are called “support
vectors”.

¢ Graphical interpretation:

» The support vectors are the * *
points on the margin.
» They define the margin A .
and thus the hyperplane. o w
: ]
= Robustness to “too correct” %
points! .
®,
Origin N
14 @“ /
o Margin
; 33
lide adapted from Bernt Schiele B. Leibe Image source: C, Burges, 1999

SVM - Discussion (Part 1)

e Linear SVM

» Linear classifier

» Approximative implementation of the SRM principle.

» In case of separable data, the SVM produces an empirical risk of
zero with minimal value of the VC confidence
(i.e. a classifier minimizing the upper bound on the actual risk).

» SVMs thus have a “guaranteed” generalization capability.

» Formulation as convex optimization problem.

= Globally optimal solution!

¢ Primal form formulation
» Solution to quadratic prog. problem in )M variables is in O(M?).
~ Here: D variables = O(D?)
» Problem: scaling with high-dim. data (“curse of dimensionality”)

35
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SVM - Solution (Part 1)

¢ Solution for the hyperplane
» Computed as a linear combination of the training examples

N
w = E AntnXy
n=1

» Because of the KKT conditions, the following must also hold

an (tn(wix, +0) —1) =0 /\f(K)ST:: 0

» This implies that a,, > 0 only for training data points for which
(tn(W'x, +0) —1) =0

= Only some of the data points actually influence the decision
boundary!

Slide adapted from Bernt Schiele B. Leibe

SVM - Solution (Part 2)

¢ Solution for the hyperplane
» To define the decision boundary, we still need to know b.
» Observation: any support vector x,, satisfies

KKT:
fx) =20

thy(Xpn) =ty Z amtmernxn +b] =1
meS

» Using ti =1, we can derive: b=t, — Z amtmxaxn
meS

» In practice, it is more robust to average over all support vectors:

1
b= — tn — g amtmx%xn
Ns
nes meS
; 34
B. Leibe
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SVM - Dual Formulation

* Improving the scaling behavior: rewrite L, in a dual form

N
1
Ly= 5 IWl* = 3" an {ta(wx, +1) — 1}
n=1

N N 0 N

1 2 T
= 5 HWH - Z a'thTLW X‘IL - b ‘ILtTL + Z a’7L
n=1 =1 n=1
N
» Using the constraint Z apt, = 0, we obtain 68[;)]0 =0
n=1

1 N N
L,= 3 lw||? — Zant"wan + Zan
n=1 n=1

ide adapted from Berpt Schiele B. Leibe
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SVM - Dual Formulation

1 N N
Ly=3 IWll? =" antnw %0 + 3 an
n=1 n=1

N

RWTHAACHE
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» Using the constraint w :Z aptpX, , we obtain —L2 =90
= ow
1 N N N
L,= 3 HwH2 — Zantn Z amtmxﬁxn + Zan
n=1 m=1 n=1
1 N N N
= I =30 antntatnlxh) + S
n=1m=1 n=1
37
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SVM - Dual Formulation
e Maximize
N 1 N N
Ly(a) = Z ap — 3 Z Z anamtntm(x?nxn)
n=1 n=1m=1
under the conditions
a, > 0 Vn
N
Z ant, = 0
n=1
» The hyperplane is given by the Ng support vectors:
Ns
w :Z antnXn
n=1 ) 39
lide adapted from Bernt Schiele B. Leibe
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So Far...

» Current problem formulation has no
solution if the data are not linearly
separable!

» Need to introduce some tolerance to
outlier data points.

B. Leibe
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SVM - Dual Formulation

1 , N N - N
L= g I = 32 32 antmtutnochixn) + 3 an

n=1m=1
1 1 Al
» Applying 3 Iw||?= §wTw and again using w :221 AntnXp
n=
1 TR
T, _ T
FWW =5 Z Z UG tntm (X Xn)

n=1m=1

» Inserting this, we get the Wolfe dual

N 1 N N
Ld(a) = Z Ay — 5 Z Z anamtntm(x;rnxn)
n=1

n=1m=1

Slide adapted from Bernt Schiele B. Leibe

SVM - Discussion (Part 2)

¢ Dual form formulation
» In going to the dual, we now have a problem in NN variables (a,).
» Isn’t this worse??? We penalize large training sets!

e However...
1. SVMs have sparse solutions: a,, # 0 only for support vectors!
= This makes it possible to construct efficient algorithms
- e.g. Sequential Minimal Optimization (SMO)
- Effective runtime between O(N) and O(N?).

2. We have avoided the dependency on the dimensionality.

= This makes it possible to work with infinite-dimensional feature
spaces by using suitable basis functions ¢(x).

= We’ll see that in a few minutes...

. 40
B. Leibe
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SVM - Non-Separable Data

¢ Non-separable data

» l.e. the following inequalities cannot be satisfied for all data
points

wix, +b>+1 for t,=+1

wix, +b- —1 for t,=-1
» Instead use

wlix, +b>+1—-¢, for t,=-+1

wix, +b- —1+&, for t,=-1

with “slack variables” &, >0 Vn

44
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SVM - Soft-Margin Classification

* Slack variables
» One slack variable &, > 0 for each training data point.

¢ Interpretation
» &, = 0 for points that are on the correct side of the margin.
> &, = |t, — y(x,)| for all other points (linear penalty).

Point on decision
boundary: ¢, = 1

Misclassified point:
&>1

> We do not have to set the slack variables ourselves!
= They are jointly optimized together with w.

o 0,
B. Leibe
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SVM - New Solution

¢ Solution for the hyperplane
» Computed as a linear combination of the training examples

N
w = E antnXy
n=1

~ Again sparse solution: a, = 0 for points outside the margin.
= The slack points with £, > 0 are now also support vectors!

» Compute b by averaging over all N, points with 0 < a, < C:

1 T
b= N Z ty — Z At X Xn,
nem meM
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SVM - New Primal Formulation
¢ New SVM Primal: Optimize
1 N N N
L, = 5 ”WHZ +CZ£H - Zan (try(xn) —1+&) — Zﬂngn
n=1 n=1 n=1
Constraint Constraint
© tny(xn) 2 1- gn §n Z 0
!;6 * KKT conditions
E KKT:
3 a, > 0 Hn 2> A >0
g tny(xn) -1 +€n 2 0 £n 2 f(x) Z 0
4 an (tay(Xn) =14 &) = 0 pn& = 0 [Af(x) = 0
E
= i 47
B. Leibe
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SVM - Non-Separable Data
¢ Separable data 1 ) Trade-off
» Minimize 5 HW” parameter!
* Non-separable data | ) N
, Minimize 5 [[wll D &
L]
L]
B. Leibe 46
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SVM - New Dual Formulation

¢ New SVM Dual: Maximize

N 1 N N
Ly(a) = Z an — 3 Z Z anamtntm(x?nxn)
n=1

n=1m=1

under the conditions
0- ap-

N
Zantn =0
n=1

¢ This is again a quadratic programming problem
= Solve as before... (more on that later)

C This is all
g that changed!

48
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Interpretation of Support Vectors

¢ Those are the hard examples!
» We can visualize them, e.g. for face detection

NON-FACES
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References and Further Reading

¢ More information on SVMs can be found in Chapter 7.1
of Bishop’s book. You can also look at Scholkopf & Smola
(some chapters available online).

Christopher M. Bishop :1ﬁ

Pattern Recognition and Machine Learning NG
Springer, 2006

B. Scholkopf, A. Smola
Learning with Kernels
MIT Press, 2002 3
. http://www.learning-with-kernels.org/ N 2

¢ A more in-depth introduction to SVMs is available in the
following tutorial:

» C. Burges, A Tutorial on Support Vector Machines for Pattern
Recognition, Data Mining and Knowledge Discovery, Vol. 2(2),
pp. 121-167 1998.
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