Machine Learning - Lecture 7

Statistical Learning Theory

23.05.2016

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de
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Course Outline

e Fundamentals (2 weeks)
~ Bayes Decision Theory
~ Probability Density Estimation

e Discriminative Approaches (5 weeks)
> Linear Discriminant Functions
~ Statistical Learning Theory & SVMs
- Ensemble Methods & Boosting
> Randomized Trees, Forests & Ferns

e Generative Models (4 weeks)
> Bayesian Networks
> Markov Random Fields
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B. Leibe



Topics of This Lecture

e Recap: Generalized Linear Discriminants

e Logistic Regression
~ Probabilistic discriminative models
» Logistic sigmoid (logit function)
» Cross-entropy error
» Gradient descent
~ Iteratively Reweighted Least Squares

e Note on error functions

e Statistical Learning Theory
> Generalization and overfitting
> Empirical and actual risk
> VC dimension
» Empirical Risk Minimization
> Structural Risk Minimization

B. Leibe
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RWTH
Recap: Linear Discriminant Functions

e Basic idea
~ Directly encode decision boundary
> Minimize misclassification probability directly.

e Linear discriminant functions Y — O\
Tx + Wo Yy < 0
/ \ N
weight vector “bias” .
(= threshold) e

- w, w, define a hyperplane in R”,

~ |If a data set can be perfectly classified by a linear discriminant,
then we call it linearly separable.
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Slide adapted from Bernt Schiele B. Leibe



RWTH
Recap: Extension to Nonlinear Basis Fcts.

e Generalization
> Transform vector x with M nonlinear basis functions ¢ (x):

Zwk3¢] + Wko

e Advantages
> Transformation allows non-linear decision boundaries.

> By choosing the right qu, every continuous function can (in
principle) be approximated with arbitrary accuracy.

e Disadvantage

> The error function can in general no longer be minimized in
closed form.

= Minimization with Gradient Descent
B. Leibe
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Recap: Basis Functions

e Generally, we consider models of the following form
T
ur (%) = Y w65 (x) = W p(x)
- where ¢,(x) are known as basis functions.

- In the simplest case, we use linear basis functions: ¢,(x) = .

e Other popular basis functions

1 . .‘ 1

0.75¢ \ | 0.75}

0.5 ¢ 0.5

0.25¢1

0.25/
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Polynomial Gaussian
B. Leibe




Gradient Descent

e |terative minimization
~ Start with an initial guess for the parameter values w,g(;).
> Move towards a (local) minimum by following the gradient.

e Basic strategies

. “Batch learning” ]iTJF ) _ w,(f ) By OE(w)
J J 8wkj

W(T)

(T+1) _ <T> né‘E( )|
K Qwy; w(m)

where FE(w) = Z E,(w
n=1

B. Leibe

> “Sequential updating”
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Recap: Gradient Descent

e Example: Quadratic error function
N

E(w) =) (y(xn;w) — tn)°

n=1

e Sequential updating leads to delta rule (=LMS rule)

(r+1) _ _ (7) :
o ki = Wg,; — 7 (Y (X3 W) — tion) @5 (Xn)
: (7)
: = Wg,; — NOkn®;j (Xn)
Z
= - where
3 5kn — yk(Xn§ W) — tgn
% = Simply feed back the input data point, weighted by the
cE% classification error.

Slide adapted from Bernt Schiele B. Leibe
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Recap: Gradient Descent

o Cases with differentiable, non-linear activation function

yk(x) = glax) =g Zwki¢j (%n)

e Gradient descent (again with quadratic error function)

OE,(w)  Og(ax) (yr(Xn; W) — tien) &5 (%)

8wkj B &wkj
l(;j_‘—i_l) — wl(g;) — 775kn¢j (Xn)
dg(ar) ,
5kn — awkj (yk (Xna W) tkn)

10

Slide adapted from Bernt Schiele B. Leibe



RWNTH
Recap: Classification as Dim. Reduction

bad separation good separation
4 - | ' | 4 | |
T A 3
2 ' S 2
- ik :ﬂ; )
+_+:": % E

2 2 6 2 2 6
e (Classification as dimensionality reduction
» Interpret linear classification as a projection onto a lower-dim.
space. y=w'x

= Learning problem: Try to find the projection vector w that

maximizes class separation. 11
Image source: C.M. Bishop, 2006
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Recap: Fisher’s Linear Discriminant Analysis

Slide adapted from Ales Leonardis

Maximize distance between classes
Minimize distance within a class
wiSpw

Criterion: J(w) = TS
W

Sy ... between-class scatter matrix
S, ... within-class scatter matrix

The optimal solution for w can be
obtained as:

WO(S;V}(mQ —ml)

Classification function:

T Class 1
yx)=w'x+wy 2 0
Class 2
where wgy = —w!lm 12



Topics of This Lecture

e Logistic Regression
~ Probabilistic discriminative models
Logistic sigmoid (logit function)
» Cross-entropy error
Gradient descent
Iteratively Reweighted Least Squares
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B. Leibe
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RWNTH
Probabilistic Discriminative Models

e We have seen that we can write

p(Cilx) = ofa) i
1
T 1+ exp(—a)
e We can obtain the familiar probabilistic model by setting
Y —n p(x|C1)p(C1)
p(x|C2)p(C2)
e Or we can use generalized linear discriminant models
a=wlx
or a =w' ¢d(x)

18
B. Leibe
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RWNTH
Probabilistic Discriminative Models

e In the following, we will consider models of the form
p(Cilg) = y(¢) =o(w' ¢)
with p(Calp) = 1—p(Ci|o)

e This model is called logistic regression.

e Why should we do this? What advantage does such a
model have compared to modeling the probabilities?

B p(¢|C1)p(C1)
e C AT (AT IC A

e Any ideas?

B. Leibe

19



Comparison

e Let’s look at the number of parameters...
» Assume we have an )/-dimensional feature space ¢.

- And assume we represent p(¢ | C,) and p(C,) by Gaussians.

> How many parameters do we need?
- For the means: 2M
- For the covariances: M(M+1)/2
- Together with the class priors, this gives M(M/+5)/2+1 parameters!

How many parameters do we need for logistic regression?

p(Cilp) = y(@) =o(w' ¢)

- Just the values of w = M parameters.

Y

= For large M, logistic regression has clear advantages!
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Logistic Sigmoid RSI
e Properties .
. Definition: o (a)

17 exp(—a)

o)
> Inverse: a=In <1 > “logit” function
— 0

> Symmetry property:
o(—a) =1—o0(a)

. Derivative: da =o0(1 — o)
da
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Logistic Regression

e Let’s consider a data set {¢,,t } withn=1,...,N,
where ¢, = ¢(x,) andt, € {0,1}, t = (t1,...,tn)" .

e Withy = p(Cl|q§ ), we can write the likelihood as

p(t|w) = Hyn {T—ya}' ™

e Define the error function as the negative log-likelihood
E(w) = —Inp(tjw)

= =) {talny,+ (1 —t,)In(l - y,)}

n=1
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» This is the so-called cross-entropy error function.




Gradient of the Error Function— — 755
e Error functlon 2% = Yn(l —yn)®,
W
E(w) Z {tnIny, + (1 —t,)In(1 —yn)}
e Gradient an o d
o aw In (1 Yn)

: VE(w) = —;itndyn + (1 —t,) 4™ = }
3 N
5 R Y tny,%a _ yn)¢n o tn)ynmqbn}
) N
= = {(tn — ol — Yn T trti) b}
FEI, anl
g — Z(yn — tn)¢n

n=1 23
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Gradient of the Error Function

e Gradient for logistic regression
N

VE(w) = Z(yn_tn)¢n

n=1

e Does this look familiar to you?

e This is the same result as for the Delta (=LMS) rule

wii ™ = w — (Y (X W) — tn) 5 (x0)

e We can use this to derive a sequential estimation
algorithm.
~» However, this will be quite slow...

B. Leibe

24
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RWNTH
A More Efficient Iterative Method...

e Second-order Newton-Raphson gradient descent scheme
wi ) = wl™) _H1VE(w)

where H = VVE(w) is the Hessian matrix, i.e. the
matrix of second derivatives.

e Properties
» Local quadratic approximation to the log-likelihood.
> Faster convergence.

25
B. Leibe



RWTH
Newton-Raphson for Least-Squares Estimation

e Let’s first apply Newton-Raphson to the least-squares
error function:

N
1
E(w) = 5 Z (WT¢n — tn)2

anl
. VEw) = Y (whe, —tn) ¢, =2 dw — &t
{ n=1 = -
CEJ N ¢1
= H=VVE(w) = Z qbnqbg —d'P where & — ;
U)— n=1 .T
= | O
% e Resulting update scheme:
o wi = w(™ — (@7 ®)1(dT dw™) — &)
;‘6 — (<I>T<I>)_1<I>Tt Closed-form solution!

26



RWTH
Newton-Raphson for Logistic Regression

* Now, let’s try Newton-Raphson on the cross-entropy
error function:

N
E(w) = =) {talnyn+ (1 —t,)In(1—y,)}
n=1
VEW) = ) (yn —tn)dp, =2 (y — t)
n— 1
H=VVE(w Zyn —yn)b, oL = BTRP

where R is an NxN diagonal matrix with R,,,, = y,,(1 — y,,) -

= The Hessian is no longer constant, but depends on w through
the weighting matrix R..
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RWTH
Iteratively Reweighted Least Squares

e Update equations

wi = w( — (TR®) 1! (y — t)
— (3"R®)" {(I)TR<I>W(T) — 3T (y — t)}
= (®'R®)'®'Rz
with z=®w!?) — R (y —t)

e Again very similar form (normal equations)
-~ But now with non-constant weighing matrix R (depends on w).

> Need to apply normal equations iteratively.
= |teratively Reweighted Least-Squares (IRLS)
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Summary: Logistic Regression

e Properties

- Directly represent posterior distribution p(¢|C,)

Requires fewer parameters than modeling the likelihood + prior.
Very often used in statistics.

~ It can be shown that the cross-entropy error function is concave
- Optimization leads to unique minimum
- But no closed-form solution exists
- Iterative optimization (IRLS)

~ Both online and batch optimizations exist

> There is a multi-class version described in (Bishop Ch.4.3.4).

Y

Y

e Caveat
» Logistic regression tends to systematically overestimate odds
ratios when the sample size is less than ~500.

29
B. Leibe
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Topics of This Lecture

e Recap: Generalized Linear Discriminants

e Logistic Regression
» Probabilistic discriminative models
» Logistic sigmoid (logit function)
> Cross-entropy error
> Gradient descent
> Iteratively Reweighted Least Squares

e Note on error functions

Statistical Learning Theory
- Generalization and overfitting
» Empirical and actual risk
> VC dimension
> Empirical Risk Minimization
> Structural Risk Minimization
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RWNTH
A Note on Error Functions

A
E (Zn) Ideal misclassification error

tn € {—1,1}

Not differentiable! S

=2 y N\ 1 7™ #n = tnl(%n)

e |deal misclassification error function (black)
> This is what we want to approximate,
> Unfortunately, it is not differentiable.
» The gradient is zero for misclassified points.
= We cannot minimize it by gradient descent. 31

Image source: Bishop, 2006
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A Note on Error Functions

tn € {—1,1}

Sensitive to outliers!

A

", #

Ideal misclassification error
Squared error

Penalizes “too correct”
data points!

—2

-1

0

1

2"' Zn = tny(xn)

e Squared error used in Least-Squares Classification
~ Very popular, leads to closed-form solutions.
» However, sensitive to outliers due to squared penalty.
» Penalizes “too correct” data points
= Generally does not lead to good classifiers. 32

Image source: Bishop, 2006



A Note

tn € {—1,1}

Functions

E (Zn) Ideal misclassification error
Squared error

Squared error (sigmoid)

But: Zero gradient here!

Sensitivity to

outliers fixed! “Too correct”

data points

e Squared error with sigmoid activation function (tanh)
> Fixes the problems with outliers and “too correct” data points.
> But: zero gradient for confidently misclassified data points.

= Will give better performance than original squared error, but
still does not fix all problems. 33

Image source: Bishop, 2006
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A Note on Error Functions
A
kE (Zn) Ideal misclassification error
Squared error
Cross-entropy error

tn € {—1,1}

Robust to outliers!

- — 0 — 2 = Ey(%,)

e Cross-Entropy Error
> Minimizer of this error is given by posterior class probabilities.
> Concave error function, unique minimum exists.
~ Robust to outliers, error increases only roughly linearly
» But no closed-form solution, requires iterative estimation. 34

Image source: Bishop, 2006
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Topics of This Lecture

e Statistical Learning Theory
> Generalization and overfitting
> Empirical and actual risk
> VC dimension
» Empirical Risk Minimization
> Structural Risk Minimization

B. Leibe
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Generalization and Overfitting

A

test error

training error

_I —————————————————————————

e Goal: predict class labels of new observations
~ Train classification model on limited training set.

» The further we optimize the model parameters, the more the
training error will decrease.

- However, at some point the test error will go up again.
= Overfitting to the training set!

B. Leibe
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Example: Linearly Separable Data

e Overfitting is often a problem with
linearly separable data

> Which of the many possible decision
boundaries is correct?

> All of them have zero error on the
training set...

- However, they will most likely result in different
predictions on novel test data.
= Different generalization performance

e How to select the classifier with the best generalization
performance?

B. Leibe
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RWTH
A Broader View on Statistical Learning

e Formal treatment: Statistical Learning Theory

e Supervised learning
> Environment: assumed stationary.
> l.e. the data x have an unknown but fixed probability density

px (x)

» Teacher: specifies for each data point x the desired
classification y (where y may be subject to noise).

Y= Q(X, V) with noise v

» Learning machine: represented by class of functions, which
produce for each x an output y:

y=1F (X§ CV) with parameters o

Slide credit: Bernt Schiele B. Leibe

41



Statistical Learning Theory

e Supervised learning (from the learning machine’s view)
. Selection of a specific function f(X; )
N
» Given: training examples {1 (x4, yz‘)}izl

> Goal: the desired response y shall be approximated optimally.

e Measuring the optimality
> Loss function

L(y, f(x;@))
> Example: quadratic loss

Ly, f(x;0)) = (y — f(x;0))°
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Slide credit: Bernt Schiele B. Leibe
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Risk

e Measuring the “optimality”
» Measure the optimality by the risk (= expected loss).
» Difficulty: how should the risk be estimated?

e Practical way
~ Empirical risk (measured on the training/validation set)

© N

: 1

1 Bew@= 52 L flxia)
‘?’, 1=1

= > Example: quadratic loss function

= N

g 1

E Remp () = N Z(yz — f(xi;@))?
S i=1

=

43

Slide adapted from Bernt Schiele B. Leibe
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Risk

e However, what we’re really interested in is
> Actual risk (= Expected risk)

R(a) = / L(y, (x;0))dPx.y (%, y)

. Pxy(X,y) is the probability distribution of (x,y).

. Pxy(x,y) is fixed, but typically unknown.
= In general, we can’t compute the actual risk directly!

> The expected risk is the expectation of the error on all data.

> l.e., it is the expected value of the generalization error.

Slide credit: Bernt Schiele B. Leibe
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Summary: Risk

e Actual risk
~ Advantage: measure for the generalization ability
. Disadvantage: in general, we don’t know Px y (X, y)

e Empirical risk
~ Disadvantage: no direct measure of the generalization ability
. Advantage: does not depend on Px y (X, y)

» We typically know learning algorithms which minimize the
empirical risk.

=> Strong interest in connection between both types of risk
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Statistical Learning Theory

e |Idea

» Compute an upper bound on the actual risk based on the
empirical risk

R(a) - Remp(a) +€(N,p*, h)

> where

N: number of training examples
p": probability that the bound is correct

h: capacity of the learning machine (“VC-dimension”)

e Side note:

> (This idea of specifying a bound that only holds with a certain
probability is explored in a branch of learning theory called
“Probably Approximately Correct” or PAC Learning).

B. Leibe
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VC Dimension

e Vapnik-Chervonenkis dimension
- Measure for the capacity of a learning machine.

e Formal definition:

- If a given set of { points can be labeled in all possible ¢ ways,
and for each labeling, a member of the set { f(«)} can be found

which correctly assigns those labels, we say that the set of
points is shattered by the set of functions.

» The VC dimension for the set of functions { f(«)} is defined as
the maximum number of training points that can be shattered

by {f(a)}.
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VC Dimension

e [Interpretation as a two-player game
> Opponent’s turn: He says a number N.

> Our turn: We specify a set of IV points {x,...,x,}.
~ Opponent’s turn: He gives us a labeling {x ,...,x,}€ {0,1}V

> Our turn: We specify a function f(a«) which correctly
classifies all [V points.

= If we can do that for all 2"V possible labelings, then the VC
dimension is at least /V.
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B. Leibe
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VC Dimension

e Example
», The VC dimension of all oriented lines in R? is 3.
1. Shattering 3 points with an oriented line:

o) L O ®
° 0] o ®

2. More difficult to show: it is not possible to shatter 4 points (XOR)...
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» More general: the VC dimension of all hyperplanes in R" is n+1.

. 51
Slide adapted from Bernt Schiele B. Leibe Image source: C. Burges, 1998




VC Dimension

e Intuitive feeling (unfortunately wrong)

> The VC dimension has a direct connection with the number of
parameters.

e Counterexample

f(z; ) = g(sin(aux))

1, x >0

Tr) = «
g() ISP

\

~ Just a single parameter .

> Infinite VC dimension _
- Proof: Choose x; =107", +=1,....¢

£ i
1+Z(1—gi)1o>

Q=T <
Slide adapted from Bernt Schiele 1=1
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Upper Bound on the Risk

e Important result (Vapnik 1979, 1995)
- With probability (1-n), the following bound holds

R(Q) - Rump(a) + | BN/ + 1) ~ o6/

“VC confidence”

. This bound is independent of Px y(x,y)!
> Typically, we cannot compute the left-hand side (the actual risk)

~ If we know h (the VC dimension), we can however easily
compute the risk bound

R(a) - Remp(a) +€(N,p*, h)

53

Slide adapted from Bernt Schiele B. Leibe
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Upper Bound on the Risk

Guaranteed risk
(bound on generalization

Error

0 VC dimension, h

Slide credit: Bernt Schiele B. Leibe
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Structural Risk Minimization

e How can we implement this?

R(a) - Remp(a) +€(N,p*, h)

e Classic approach
. Keep €(IV,p*, h) constant and minimize Ry, ().

. €(IN,p", h) can be kept constant by controlling the model
parameters.

e Support Vector Machines (SVMs)
. Keep Remp() constant and minimize €(N, p*, h) .
. In fact: Rerp () = 0 for separable data.

. Control (N, p*, h) by adapting the VC dimension
(controlling the “capacity” of the classifier).

Slide credit: Bernt Schiele B. Leibe

56



©©
M
| 59
)
€
€
S
(7]
o)
=
c
S
S
)
1
o
=
c
3)
a
p=
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References and Further Reading

* More information on SVMs can be found in Chapter 7.1
of Bishop’s book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

e Additional information about Statistical Learning Theory
and a more in-depth introduction to SVMs are available
in the following tutorial:

» C. Burges, A Tutorial on Support Vector Machines for Pattern
Recognition, Data Mining and Knowledge Discovery, Vol. 2(2),
pp. 121-167 1998.
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http://research.microsoft.com/~cburges/papers/SVMTutorial.pdf
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