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Topics of This Lecture

¢ Recap: Generalized Linear Discriminants

¢ Logistic Regression
» Probabilistic discriminative models
» Logistic sigmoid (logit function)
» Cross-entropy error
» Gradient descent
Iteratively Reweighted Least Squares

v

¢ Note on error functions

« Statistical Learning Theory
» Generalization and overfitting
» Empirical and actual risk
» VC dimension
» Empirical Risk Minimization
» Structural Risk Minimization

B. Leibe
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RWTH/ACHEN
Recap: Extension to Nonlinear Basis Fcts.

¢ Generalization
» Transform vector x with M nonlinear basis functions ¢,(x):

M
(%) = D wiy (%) + wio
j=1

¢ Advantages
» Transformation allows non-linear decision boundaries.

~ By choosing the right ¢;, every continuous function can (in
principle) be approximated with arbitrary accuracy.

¢ Disadvantage

» The error function can in general no longer be minimized in
closed form.

= Minimization with Gradient Descent
B. Leibe
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Course Outline

¢ Fundamentals (2 weeks)
~ Bayes Decision Theory
» Probability Density Estimation

¢ Discriminative Approaches (5 weeks)
» Linear Discriminant Functions
» Statistical Learning Theory & SVMs

» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

¢ Generative Models (4 weeks)
» Bayesian Networks
» Markov Random Fields

B. Leibe
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Recap: Linear Discriminant Functions
¢ Basic idea

» Directly encode decision boundary
» Minimize misclassification probability directly.

o Linear discriminant functions ¥ =0 %

y(x) = wIx +wyp

weight vector “bias”

(= threshold)
» W, w, define a hyperplane in RP.

» If a data set can be perfectly classified by a linear discriminant,
then we call it linearly separable.

ide adated from Bernt Schiele B. Leibe
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Recap: Basis Functions

¢ Generally, we consider models of the following form

M
ye(x) = Zwkj@j(x) =w'o(x)
=0
» where ¢;(x) are known as basis functions.
» In the simplest case, we use linear basis functions: ¢,(x) = z,.

e Other popular basis functions

YV

1 =1 0 1 -1 §
Gaussian
B. Leibe
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Gradient Descent

¢ |terative minimization
» Start with an initial guess for the parameter values w,(c(;).
» Move towards a (local) minimum by following the gradient.

¢ Basic strategies

- “Batch learning” w’(C;H) = 1(5) —

OE(w)

8wk]-

wi(m)

(1) _ (0 _ 3En(W)’
! g gptr)

> “Sequential updating” Wi

N
where E(w)= Z E,(w)
n=1

Machine Learning, Summer ‘16
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Recap: Gradient Descent

¢ Cases with differentiable, non-linear activation function

yr(x) = glar) = g | D wrid;(xn)

Jj=0

4« Gradient descent (again with quadratic error function)
£ OE.(w)  dglar)
E W) _ 9% Xn; W) — tin) 05 (X
H Fuwr; Duwr,; (Y (Xn; W) — tin) 5 (Xn)
5
g +1
E ’Uj]i; ) = wl(g‘?*n(sknd)](xn)
3
.E 6 ag
g Okn = g;—}w)(yk(xn;W)—tkn)

lide adaoted from Bernt Schiele B. Leibe "
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Recap: Fisher’s Linear Discriminant Analysis

* Maximize distance between classes
Minimize distance within a class

wlSpw

Criterion: J(W) = —per—o
(w) wlSyw

S; ... between-class scatter matrix

Sy ... within-class scatter matrix

* The optimal solution for w can be
obtained as:

w o Sy (mp — my)

* Classification function:
Class 1

yx)=wix+wy z 0

Class 2
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where wy = —w'm 12

Slide adapted from Ales Leonardi:
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Recap: Gradient Descent
¢ Example: Quadr}etic error function
B(w) = (y(xn;w) — t,)°
¢ Sequential udeilng leads to delta rule (=LMS rule)
wir™ = ) = (s W) — ) 5 (x2)

= w](g‘;) - nékn¢] (xn)
» where
Okn = Ye(Xn; W) — tin

= Simply feed back the input data point, weighted by the
classification error.

Slide adapted from Bernt Schiele B. Leibe
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Recap: Classification as Dim. Reduction

bad separation

good separation

o

\\.',' 7 C .
o,
:[,,...

-2 2 6 -2 2 6

¢ Classification as dimensionality reduction
» Interpret linear classification as a projection onto a lower-dim.
space. y=wrx
= Learning problem: Try to find the projection vector w that
maximizes class separation. 11

Image source; C,M, Bishop,
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Topics of This Lecture

¢ Logistic Regression
» Probabilistic discriminative models
» Logistic sigmoid (logit function)
» Cross-entropy error
» Gradient descent
» lteratively Reweighted Least Squares

B. Leibe
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Probabilistic Discriminative Models

¢ We have seen that we can write
p(Cilx) = o(a)

logistic sigmoid

function
1
1+exp(—a)
¢ We can obtain the familiar probabilistic model by setting
_ 1p PICLP(C1)
p(x|C2)p(Cz2)
¢ Or we can use generalized linear discriminant models
a=w'x
or a=wlp(x)
B. Leibe 18
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Comparison

¢ Let’s look at the number of parameters...
» Assume we have an )M-dimensional feature space ¢.
» And assume we represent p(¢|C,) and p(C,) by Gaussians.
» How many parameters do we need?
- For the means: 2M
M(M+1)/2
- Together with the class priors, this gives M(M/+5)/2+1 parameters!

- For the covariances:

» How many parameters do we need for logistic regression?

p(Cild) = y(d) =o(w'¢)

- Just the values of w = M parameters.

= For large M, logistic regression has clear advantages!

20

B. Leibe
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RWTH ACHET
Logistic Regression

* Let’s consider a data set {¢,,t,} withn=1,...,N,
where ¢,, = ¢(x,) and t,, € {0,1}, t = (t1,...,tn)" .

o With y,, = p(Cy|¢,), we can write the likelihood as

N
p(tlw) = T vl {1 v} ™"
n=1

¢ Define the error function as the negative log-likelihood
E(w) = —Inp(tlw)

= =) {talnyn + (1 —t,) In(1—y,)}

» This is the so-called cross-entropy error function.

Machine Learning, Summer ‘16
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TWTH/ZCEN
Probabilistic Discriminative Models

¢ In the following, we will consider models of the form
p(Cil¢) = y(¢) =o(w' )
with p(Colgp) = 1—p(Ci|®)

¢ This model is called logistic regression.

Why should we do this? What advantage does such a
model have compared to modeling the probabilities?
p(Cilp) = p(#|C1)p(C1)
p(@[C1)p(C1) + p(BIC2)p(C2)

¢ Any ideas?

B. Leibe

Logistic Sigmoid
¢ Properties 1

- Definition: o(a) = ———
1+ exp(—a)

a=1n< g >
1—0

» Symmetry property:
o(—a) =1—o0(a)

» Inverse: “logit” function
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- Derivative: Z—Z =o(l-o0)
ibe z
RWTH ACHET
Gradient of the Error Function, — 74
* Error function C;LV: = Yn(1 = yn)o,
E(w) = = {taInyn + (1 —t) In(1—ya)}
e Gradient n;1 , i :
w) = — awin o yawld =Y
VE(w) ; {tn et (1) S5 }
N
_ %(1 —Yn) (1 ynm
> {2 e, (-, |
N
= - Z{(tn 7*’!'4&1 —Yn J"M)an}
n=1
N

= Z(yn - tn)¢n

n=1

B. Leibe
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Gradient of the Error Function A More Efficient Iterative Method...

¢ Gradient for logistic regression
N

VE<W) = Z(yn 7tn)¢n

n=1

« Second-order Newton-Raphson gradient descent scheme
w(TD) = w( _ H'VE(w)

where H = VVE(w) is the Hessian matrix, i.e. the
matrix of second derivatives.

. . - »
Does this look familiar to you? « Properties

» Local quadratic approximation to the log-likelihood.
» Faster convergence.

¢ This is the same result as for the Delta (=LMS) rule
(r+1) (m) .
W5 = Wy — "7(3/16 (Xn; W) — tkn)¢j (%n)
* We can use this to derive a sequential estimation
algorithm.
» However, this will be quite slow...

Machine Learning, Summer ‘16
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Newton-Raphson for Least-Squares Estimation Newton-Raphson for Logistic Regression
¢ Let’s first apply Newton-Raphson to the least-squares ¢ Now, let’s try Newton-Raphson on the cross-entropy
error function: error function:
N N
1 2
Bw) = 33" (w'e, ~t.) E(w) = =" {talnga +(1— ) In(1 - )}
n=1 n=1
dyn
VBw) = 3 (o, 1) 6, = 9T Bw T N T
w) = W Qp —ln) Py = W= ©
e ot . e VEW) = > (40 —ta), = " (y —t)
£ N - . Lo g n=1
S H=VVE(w) = 0,90, =2 @ where § — : E N
e ) g o 2 H=VVEW) = Y y(l-y)b,¢, = 'R
2 N 2 n=1
s Resultlr(\g ul;’date(s‘):heme; S - 8 where R is an Nx N diagonal matrix with R,,;, = y,(1 — ) -
- T+1) _ T) _ -1 T) _ =
% w =w (Q <I>) ({> Bw ® t) E = The Hessian is no longer constant, but depends on w through
g = (@T@)_IQTt Closed-form solution! g the weighting matrix R.
26 27
B. Leibe
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Iteratively Reweighted Least Squares Summary: Logistic Regression

¢ Update equations

w) — w() _ (8TR®) &7 (y —t)

¢ Properties
» Directly represent posterior distribution p(¢|C;)
» Requires fewer parameters than modeling the likelihood + prior.
_ (‘I’TR{))*l {(I,TR(I)W(T) o <I>T(y o t)} . Very often used in statistics.
» It can be shown that the cross-entropy error function is concave
- Optimization leads to unique minimum
- But no closed-form solution exists
- lterative optimization (IRLS)
» Both online and batch optimizations exist
» There is a multi-class version described in (Bishop Ch.4.3.4).

= (#"R®) 9" Rz
with z=®w) — R} (y —t)
¢ Again very similar form (normal equations)
» But now with non-constant weighing matrix R. (depends on w).

» Need to apply normal equations iteratively.
= Iteratively Reweighted Least-Squares (IRLS)

¢ Caveat

~ Logistic regression tends to systematically overestimate odds
ratios when the sample size is less than ~500.
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Topics of This Lecture A Note on Error Functions
t, { 1: 1} E[‘z.,,) Ideal misclassification error]
2 2
5 X 5 Not differentiablel ———
E * Note on error functions E
é ? -2 - N 1 7" n = tny(%n)
o [=
£ =| « Ideal misclassification error function (black)
E E » This is what we want to approximate,
2 2 » Unfortunately, it is not differentiable.
= =
é é » The gradient is zero for misclassified points.
5. Leibe 30 = We cannot minimize it by gradient descent.
- el Lmage source: Bishop, 200

TWTHTCIEN TWTHTCIEN
A Note on Error Functions A Notelon Error Functions
t,, e { 1: 1} ‘ E[:Zn) ;1i~zlrr:;s::225:fication error| t,, c { 1: 1} E[::”) Ideal misclassification error]

Squared error

Squared error (sigmoid)

Sensitive to outliers! But: Zero gradient here!
Sensitivity to

i ”
Penalizes “too correct outliers fixed!

“Too correct”

data points! data points
fixed!
-2 - 0 3 = tny(Xn) ) - [ EANG 7" o =ty (%n)

e Squared error used in Least-Squares Classification
» Very popular, leads to closed-form solutions.
» However, sensitive to outliers due to squared penalty.
» Penalizes “too correct” data points

e Squared error with sigmoid activation function (tanh)
» Fixes the problems with outliers and “too correct” data points.
» But: zero gradient for confidently misclassified data points.
= Will give better performance than original squared error, but

Machine Learning, Summer ‘16
Machine Learning, Summer ‘16

= Generally does not lead to good classifiers. 32 still does not fix all problems. 33
lmage source; Bishop, 200¢ lmage source; Bishop, 200¢

A Note on Error Functions
Elz,)

Topics of This Lecture

Ideal misclassification error]
Squared error
Cross-entropy error

) 7 0 T > Zn = tny(xn)

t,C{ 1.1}

Robust to outliers!

¢ Statistical Learning Theory
Generalization and overfitting
Empirical and actual risk

VC dimension

Empirical Risk Minimization
Structural Risk Minimization

B. Leibe

e Cross-Entropy Error
» Minimizer of this error is given by posterior class probabilities.
» Concave error function, unique minimum exists.
> Robust to outliers, error increases only roughly linearly

» But no closed-form solution, requires iterative estimation. 34
lmage source: Bishop, 2004
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Generalization and Overfitting Example: Linearly Separable Data
¢ Overfitting is often a problem with
linearly separable data
» Which of the many possible decision
boundaries is correct?
» All of them have zero error on the
training set...
» However, they will most likely result in different
predictions on novel test data.
= Different generalization performance

test error

training error

¢ Goal: predict class labels of new observations
» Train classification model on limited training set.

» The further we optimize the model parameters, the more the
training error will decrease.

» However, at some point the test error will go up again.
= Overfitting to the training set!

B. Leibe

¢ How to select the classifier with the best generalization
performance?

Machine Learning, Summer ‘16
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Image source; B, Schiely

B. Leibe
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A Broader View on Statistical Learning

RWTH CHE
Statistical Learning Theory

¢ Formal treatment: Statistical Learning Theory ¢ Supervised learning (from the learning machine’s view)

¢ Supervised learning
> Environment: assumed stationary.
» l.e. the data x have an unknown but fixed probability density
px(x)
» Teacher: specifies for each data point x the desired
classification y (where y may be subject to noise).

Y= g(X, V) with noise v

» Selection of a specific function f(x;a)
N
» Given: training examples {(xi, yi)}izl
» Goal: the desired response y shall be approximated optimally.

¢ Measuring the optimality
» Loss function

L(y, f(x; )
» Example: quadratic loss

Ly, f(x;0)) = (y — f(x;2))?

» Learning machine: represented by class of functions, which
produce for each x an output y:

y= f(x; a) with parameters o

Machine Learning, Summer ‘16
Machine Learning, Summer ‘16
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lide credit: Bernt Schiele B. Leibe ide credit: Bernt Schiele B. Leibe
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Risk Risk
¢ Measuring the “optimality”
» Measure the optimality by the risk (= expected loss).
» Difficulty: how should the risk be estimated?

* However, what we’re really interested in is
» Actual risk (= Expected risk)

Re) = [ Ly S5 )Py (x,0)
¢ Practical way
» Empirical risk (measured on the training/validation set)

N . Px,y(x,y) is the probability distribution of (x,y).
1
Remp (@) = N ZL(?M f(xs;a))
i=1

. Pxy(x,%) is fixed, but typically unknown.
= In general, we can’t compute the actual risk directly!

» Example: quadratic loss function

1 N
Remp(a) = N Z(yz — f(xi; 0‘))2

» The expected risk is the expectation of the error on all data.

» l.e., it is the expected value of the generalization error.
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Slide adapted from Bernt Schiele B. Leibe ide credit: Rernt Schiele B. Leibe




Machine Learning, Summer ‘16

Machine Learning, Summer ‘16

)
ke
I}
=
E
=
2
=
=5
=
3
o
4
)
5
=
S
]
=

Summary: Risk

¢ Actual risk
» Advantage: measure for the generalization ability
- Disadvantage: in general, we don’t know Px y (X, y)

¢ Empirical risk
» Disadvantage: no direct measure of the generalization ability
~ Advantage: does not depend on Px y (x,y)

» We typically know learning algorithms which minimize the
empirical risk.

= Strong interest in connection between both types of risk

45
Slide credit: Bernt Schiele B. Leibe

VC Dimension

¢ Vapnik-Chervonenkis dimension
» Measure for the capacity of a learning machine.

¢ Formal definition:

» If a given set of { points can be labeled in all possible 2¢ ways,
and for each labeling, a member of the set {f(c)} can be found
which correctly assigns those labels, we say that the set of
points is shattered by the set of functions.

» The VC dimension for the set of functions {f(«)} is defined as
the maximum number of training points that can be shattered

by {f(c)}.

. 49
B. Leibe

VC Dimension

¢ Example
» The VC dimension of all oriented lines in R is 3.
1. Shattering 3 points with an oriented line:

o . o L]
o o .
hd e
. o o .

. -]
. o =] .
o L
[+] L]
2. More difficult to show: it is not possible to shatter 4 points (XOR)...

» More general: the VC dimension of all hyperplanes in R” is n+1.
51

Slide adapted from Bernt Schiele B. Leibe Image source: C, Burges, 1908
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Statistical Learning Theory

¢ Idea

» Compute an upper bound on the actual risk based on the
empirical risk

R(a) -

» where

Remp () +€(N,p*, h)

N: number of training examples
p’: probability that the bound is correct
h: capacity of the learning machine (“VC-dimension”)

¢ Side note:

» (This idea of specifying a bound that only holds with a certain
probability is explored in a branch of learning theory called
“Probably Approximately Correct” or PAC Learning).

48
Slide adapted from Bernt Schiele B. Leibe

VC Dimension

¢ Interpretation as a two-player game
» Opponent’s turn: He says a number N.
> Our turn: We specify a set of N points {x,,...,xy}.

» Opponent’s turn: He gives us a labeling {x,....x}€ {0,1}"

» Our turn: We specify a function f(c)) which correctly

classifies all N points.

= If we can do that for all 2" possible labelings, then the VC
dimension is at least V.

B. Leibe
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VC Dimension

¢ Intuitive feeling (unfortunately wrong)

» The VC dimension has a direct connection with the number of
parameters.

¢ Counterexample
f(@;a) = g(sin(ox))
1, z>0
xr) =
g(z) e 0

» Just a single parameter «.
» Infinite VC dimension

- Proof: Choose z;=10"% i=1,...,0
VA .
(1 —ga)10°
a=m|1 ~ -7
( * Z 2 52
ide adapted from Bernt Schiele i=1




Upper Bound on the Risk

¢ Important result (Vapnik 1979, 1995)
~ With probability (1-7), the following bound holds

R(a) - Romp(a) + \/ Pes ) 1)~ gt/

“VC confidence”

~ This bound is independent of Px y (x,y)!

» Typically, we cannot compute the left-hand side (the actual risk)

» If we know h (the VC dimension), we can however easily
compute the risk bound

R(a): Remp(a) +€(N,p*, h)

Slide adapted from Bernt Schiele 8. Leibe

Machine Learning, Summer ‘16

Structural Risk Minimization

¢ How can we implement this?

R(a) © Remp(a) +€(N,p*, h)

¢ Classic approach
. Keep €(IV, p*, h) constant and minimize Repmp (@) .

. €(N,p*, h) can be kept constant by controlling the model
parameters.

¢ Support Vector Machines (SVMs)
. Keep Remp() constant and minimize e(N,p*, h) .
» In fact: Repp () = 0 for separable data.
. Control €(V, p*, h) by adapting the VC dimension
(controlling the “capacity” of the classifier).
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Slide credit: Bernt Schiele B. Leibe
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Upper Bound on the Risk
Guaranteed risk
(bound on generalization
I\ error)
0 VC dimension, h
D@
54
ide credit: Bernt Schiele B. Leibe
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References and Further Reading

¢ More information on SVMs can be found in Chapter 7.1
of Bishop’s book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

¢ Additional information about Statistical Learning Theory
and a more in-depth introduction to SVMs are available
in the following tutorial:
» C. Burges, A Tutorial on Support Vector Machines for Pattern

Recognition, Data Mining and Knowledge Discovery, Vol. 2(2),
pp. 121-167 1998.

B. Leibe



http://research.microsoft.com/~cburges/papers/SVMTutorial.pdf
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