

Machine Learning - Lecture 6

Linear Discriminants II

09.05.2016

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

RWTHAACHEN UNIVERSITY

Course Outline

- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation

- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns

- Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields

Recap: Linear Discriminant Functions

- Basic idea
 - Directly encode decision boundary
 - Minimize misclassification probability directly.
- Linear discriminant functions

- $oldsymbol{\mathrm{w}}$, w_{o} define a hyperplane in \mathbb{R}^{D} .
- If a data set can be perfectly classified by a linear discriminant, then we call it linearly separable.

Recap: Least-Squares Classification

- Simplest approach
 - Directly try to minimize the sum-of-squares error

$$E(\mathbf{w}) = \sum_{n=1}^{N} (y(\mathbf{x}_n; \mathbf{w}) - \mathbf{t}_n)^2$$

$$E_D(\widetilde{\mathbf{W}}) = \frac{1}{2} \text{Tr} \left\{ (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})^{\mathrm{T}} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T}) \right\}$$

Setting the derivative to zero yields

$$\widetilde{\mathbf{W}} \, = \, (\widetilde{\mathbf{X}}^{\mathrm{T}}\widetilde{\mathbf{X}})^{-1}\widetilde{\mathbf{X}}^{\mathrm{T}}\mathbf{T} = \widetilde{\mathbf{X}}^{\dagger}\mathbf{T} = (\widetilde{\mathbf{X}}^{\mathrm{T}}\widetilde{\mathbf{X}})^{-1}\widetilde{\mathbf{X}}^{\mathrm{T}}\mathbf{T}$$

We then obtain the discriminant function as

$$\mathbf{y}(\mathbf{x}) = \widetilde{\mathbf{W}}^{\mathrm{T}} \widetilde{\mathbf{x}} = \mathbf{T}^{\mathrm{T}} \left(\widetilde{\mathbf{X}}^{\dagger}\right)^{\mathrm{T}} \widetilde{\mathbf{x}}$$

⇒ Exact, closed-form solution for the discriminant function parameters.

Recap: Problems with Least Squares

- Least-squares is very sensitive to outliers!
 - The error function penalizes predictions that are "too correct".

Recap: Generalized Linear Models

Generalized linear model

$$y(\mathbf{x}) = g(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0)$$

- $ightarrow g(\ \cdot\)$ is called an activation function and may be nonlinear.
- > The decision surfaces correspond to

$$y(\mathbf{x}) = const. \Leftrightarrow \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0 = const.$$

- If g is monotonous (which is typically the case), the resulting decision boundaries are still linear functions of x.
- Advantages of the non-linearity
 - Can be used to bound the influence of outliers and "too correct" data points.
 - When using a sigmoid for $g(\cdot)$, we can interpret the $y(\mathbf{x})$ as posterior probabilities.

Recap: Linear Separability

- Up to now: restrictive assumption
 - Only consider linear decision boundaries

Classical counterexample: XOR

7

Linear Separability

- Even if the data is not linearly separable, a linear decision boundary may still be "optimal".
 - Generalization
 - E.g. in the case of Normal distributed data (with equal covariance matrices)

- Choice of the right discriminant function is important and should be based on
 - Prior knowledge (of the general functional form)
 - Empirical comparison of alternative models
 - Linear discriminants are often used as benchmark.

Generalized Linear Discriminants

Generalization

> Transform vector ${\bf x}$ with M nonlinear basis functions $\phi_i({\bf x})$:

$$y_k(\mathbf{x}) = \sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}) + w_{k0}$$

- Purpose of $\phi_i(\mathbf{x})$: basis functions
- > Allow non-linear decision boundaries.
- By choosing the right ϕ_j , every continuous function can (in principle) be approximated with arbitrary accuracy.

Notation

$$y_k(\mathbf{x}) = \sum_{j=0}^M w_{kj} \phi_j(\mathbf{x})$$
 with $\phi_0(\mathbf{x}) = 1$

10

Generalized Linear Discriminants

Model

$$y_k(\mathbf{x}) = \sum_{j=0}^{M} w_{kj} \phi_j(\mathbf{x}) = y_k(\mathbf{x}; \mathbf{w})$$

- ightharpoonup K functions (outputs) $y_k(\mathbf{x};\mathbf{w})$
- Learning in Neural Networks
 - > Single-layer networks: ϕ_j are fixed, only weights ${f w}$ are learned.
 - » Multi-layer networks: both the ${f w}$ and the ϕ_j are learned.
 - In the following, we will not go into details about neural networks in particular, but consider generalized linear discriminants in general...

 $\mathbf{X} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$

Gradient Descent

- Learning the weights w:
 - \triangleright N training data points:
 - > K outputs of decision functions: $y_k(\mathbf{x}_n; \mathbf{w})$
 - > Target vector for each data point: $\mathbf{T} = \{\mathbf{t}_1, ..., \mathbf{t}_N\}$
 - Error function (least-squares error) of linear model

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn})^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn} \right)^2$$

Problem

The error function can in general no longer be minimized in closed form.

Idea (Gradient Descent)

- Iterative minimization
- ightarrow Start with an initial guess for the parameter values $w_{kj}^{(0)}.$
- Move towards a (local) minimum by following the gradient.

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

 η : Learning rate

This simple scheme corresponds to a 1st-order Taylor expansion (There are more complex procedures available).

Gradient Descent - Basic Strategies

"Batch learning"

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

 η : Learning rate

Compute the gradient based on all training data:

$$\frac{\partial E(\mathbf{w})}{\partial w_{kj}}$$

Gradient Descent - Basic Strategies

"Sequential updating"

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w})$$

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

 η : Learning rate

Compute the gradient based on a single data point at a time:

$$\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}}$$

Machine Learning, Summer '16

Error function

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn} \right)^2$$

$$E_n(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn} \right)^2$$

$$\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} = \left(\sum_{\tilde{j}=1}^{M} w_{k\tilde{j}} \phi_{\tilde{j}}(\mathbf{x}_n) - t_{kn} \right) \phi_j(\mathbf{x}_n)$$

$$= (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}) \phi_j(\mathbf{x}_n)$$

19

Delta rule (=LMS rule)

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn} \right) \phi_j(\mathbf{x}_n)$$
$$= w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(\mathbf{x}_n)$$

where

$$\delta_{kn} = y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}$$

⇒ Simply feed back the input data point, weighted by the classification error.

· Cases with differentiable, non-linear activation function

$$y_k(\mathbf{x}) = g(a_k) = g\left(\sum_{j=0}^M w_{ki}\phi_j(\mathbf{x}_n)\right)$$

Gradient descent

$$\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}) \phi_j(\mathbf{x}_n)$$

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(\mathbf{x}_n)$$

$$\delta_{kn} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn})$$

21

Summary: Generalized Linear Discriminants

Properties

- General class of decision functions.
- > Nonlinearity $g(\cdot)$ and basis functions ϕ_j allow us to address linearly non-separable problems.
- Shown simple sequential learning approach for parameter estimation using gradient descent.
- Better 2nd order gradient descent approaches available (e.g. Newton-Raphson).

Limitations / Caveats

- Flexibility of model is limited by curse of dimensionality
 - $g(\cdot)$ and ϕ_i often introduce additional parameters.
 - Models are either limited to lower-dimensional input space or need to share parameters.
- Linearly separable case often leads to overfitting.
 - Several possible parameter choices minimize training error.

Topics of This Lecture

- Fisher's linear discriminant (FLD)
 - Classification as dimensionality reduction
 - Linear discriminant analysis
 - Multiple discriminant analysis
 - Applications
- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Gradient descent
 - Iteratively Reweighted Least Squares
- Note on Error Functions

RWTHAACHEN UNIVERSITY

Classification as Dimensionality Reduction

- Classification as dimensionality reduction
 - We can interpret the linear classification model as a projection onto a lower-dimensional space.
 - ightharpoonup E.g., take the D-dimensional input vector ${\bf x}$ and project it down to one dimension by applying the function

$$y = \mathbf{w}^{\mathrm{T}} \mathbf{x}$$

- > If we now place a threshold at $y \ge -w_{\rm o}$, we obtain our standard two-class linear classifier.
- The classifier will have a lower error the better this projection separates the two classes.
- ⇒ New interpretation of the learning problem
 - Try to find the projection vector w that maximizes the class separation.

Classification as Dimensionality Reduction

- Two questions
 - How to measure class separation?
 - How to find the best projection (with maximal class separation)?

RWTHAACHEN UNIVERSITY

Classification as Dimensionality Reduction

- Measuring class separation
 - We could simply measure the separation of the class means.
 - \Rightarrow Choose w so as to maximize

$$(m_2 - m_1) = \mathbf{w}^{\mathrm{T}}(\mathbf{m}_2 - \mathbf{m}_1)$$

- Problems with this approach
 - 1. This expression can be made arbitrarily large by increasing $\|\mathbf{w}\|$.
 - \Rightarrow Need to enforce additional constraint $\|\mathbf{w}\| = 1$.
 - \Rightarrow This constrained minimization results in $\mathbf{w} \propto (\mathbf{m}_2 \mathbf{m}_1)$
 - 2. The criterion may result in bad separation if the clusters have elongated shapes.

RWTHAACHEN UNIVERSITY

Fisher's Linear Discriminant Analysis (FLD)

Better idea:

Find a projection that maximizes the ratio of the between-class variance to the within-class variance:

$$J(\mathbf{w}) = rac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$
 with $s_k^2 = \sum_{n \in \mathcal{C}_k} (y_n - m_k)^2$

Usually, this is written as

$$J(\mathbf{w}) = \frac{\mathbf{w}^{\mathrm{T}} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{\mathrm{T}} \mathbf{S}_{W} \mathbf{w}}$$

where

$$\mathbf{S}_B = (\mathbf{m}_2 - \mathbf{m}_1)(\mathbf{m}_2 - \mathbf{m}_1)^{\mathrm{T}}$$

$$\mathbf{S}_W = \sum_{k=1}^{2} \sum_{n \in \mathcal{C}_k} (\mathbf{x}_n - \mathbf{m}_k) (\mathbf{x}_n - \mathbf{m}_k)^{\mathrm{T}}$$

between-class scatter matrix

within-class scatter matrix

Fisher's Linear Discriminant Analysis (FLD)

- Maximize distance between classes
- Minimize distance within a class

• Criterion:
$$J(\mathbf{w}) = \frac{\mathbf{w}^{\mathrm{T}} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{\mathrm{T}} \mathbf{S}_{W} \mathbf{w}}$$

 S_B ... between-class scatter matrix S_W ... within-class scatter matrix

The optimal solution for w can be obtained as:

$$\mathbf{w} \propto \mathbf{S}_W^{-1} (\mathbf{m}_2 - \mathbf{m}_1)$$

Classification function:

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 \mathop{\gtrsim}\limits_{\text{Class 2}}^{\text{Class 1}} 0$$

Multiple Discriminant Analysis

Generalization to K classes

$$J(\mathbf{W}) = rac{|\mathbf{W}^{\mathrm{T}}\mathbf{S}_{B}\mathbf{W}|}{|\mathbf{W}^{\mathrm{T}}\mathbf{S}_{W}\mathbf{W}|}$$

where

$$\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_K]$$
 $\mathbf{m} = \frac{1}{N} \sum_{n=1}^N \mathbf{x}_n = \frac{1}{N} \sum_{k=1}^K N_k \mathbf{m}_k$

$$\mathbf{S}_B = \sum_{k=1}^K N_k (\mathbf{m}_k - \mathbf{m}) (\mathbf{m}_k - \mathbf{m})^{\mathrm{T}}$$

$$\mathbf{S}_W = \sum_{k=1}^K \sum_{n \in \mathcal{C}_k} (\mathbf{x}_n - \mathbf{m}_k) (\mathbf{x}_n - \mathbf{m}_k)^{\mathrm{T}}$$

Maximizing J(W)

"Rayleigh quotient" ⇒ Generalized eigenvalue problem

$$J(\mathbf{W}) = rac{|\mathbf{W}^{\mathrm{T}}\mathbf{S}_{B}\mathbf{W}|}{|\mathbf{W}^{\mathrm{T}}\mathbf{S}_{W}\mathbf{W}|}$$

> The columns of the optimal ${\bf W}$ are the eigenvectors corresponding to the largest eigenvalues of

$$\mathbf{S}_B \mathbf{w}_i = \lambda_i \mathbf{S}_W \mathbf{w}_i$$

 ${f v}={f S}_B^{rac{1}{2}}{f w}$, we get

$$\mathbf{S}_{B}^{\frac{1}{2}}\mathbf{S}_{W}^{-1}\mathbf{S}_{B}^{\frac{1}{2}}\mathbf{v} = \lambda\mathbf{v}$$

which is a regular eigenvalue problem.

- \Rightarrow Solve to get eigenvectors of v, then from that of w.
- For the K-class case we obtain (at most) K-1 projections.
 - (i.e. eigenvectors corresponding to non-zero eigenvalues.)

What Does It Mean?

What does it mean to apply a linear classifier?

- Classifier interpretation
 - ightarrow The weight vector has the same dimensionality as ${f x}.$
 - Positive contributions where $sign(x_i) = sign(w_i)$.
 - \Rightarrow The weight vector identifies which input dimensions are important for positive or negative classification (large $|w_i|$) and which ones are irrelevant (near-zero w_i).
 - \Rightarrow If the inputs x are normalized, we can interpret x as a "template" vector that the classifier tries to match.

$$\mathbf{w}^{\mathrm{T}}\mathbf{x} = ||\mathbf{w}|| ||\mathbf{x}|| \cos \theta$$

Example Application: Fisherfaces

- Visual discrimination task
 - Training data:

 C_1 : Subjects with glasses

 C_2 : Subjects without glasses

Test:

- glasses?

Take each image as a vector of pixel values and apply FLD...

Fisherfaces: Interpretability

Resulting weight vector for "Glasses/NoGlasses"

Summary: Fisher's Linear Discriminant

Properties

- Simple method for dimensionality reduction, preserves class discriminability.
- Can use parametric methods in reduced-dim. space that might not be feasible in original higher-dim. space.
- Widely used in practical applications.

Restrictions / Caveats

- \succ Not possible to get more than $K ext{-}1$ projections.
- FLD reduces the computation to class means and covariances.
- ⇒ Implicit assumption that class distributions are unimodal and well-approximated by a Gaussian/hyperellipsoid.

Topics of This Lecture

- Fisher's linear discriminant (FLD)
 - Classification as dimensionality reduction
 - Linear discriminant analysis
 - Multiple discriminant analysis
 - Applications

Logistic Regression

- Probabilistic discriminative models
- Logistic sigmoid (logit function)
- Cross-entropy error
- Gradient descent
- Iteratively Reweighted Least Squares
- Note on Error Functions

Probabilistic Discriminative Models

We have seen that we can write

$$p(C_1|\mathbf{x}) = \sigma(a)$$

$$= \frac{1}{1 + \exp(-a)}$$

logistic sigmoid function

We can obtain the familiar probabilistic model by setting

$$a = \ln \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$$

Or we can use generalized linear discriminant models

$$a = \mathbf{w}^T \mathbf{x}$$
 $a = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x})$

or

Probabilistic Discriminative Models

In the following, we will consider models of the form

$$p(\mathcal{C}_1|\boldsymbol{\phi}) = y(\boldsymbol{\phi}) = \sigma(\mathbf{w}^T \boldsymbol{\phi})$$
$$p(\mathcal{C}_2|\boldsymbol{\phi}) = 1 - p(\mathcal{C}_1|\boldsymbol{\phi})$$

- This model is called logistic regression.
- Why should we do this? What advantage does such a model have compared to modeling the probabilities?

$$p(\mathcal{C}_1|\boldsymbol{\phi}) = \frac{p(\boldsymbol{\phi}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\boldsymbol{\phi}|\mathcal{C}_1)p(\mathcal{C}_1) + p(\boldsymbol{\phi}|\mathcal{C}_2)p(\mathcal{C}_2)}$$

Any ideas?

with

Comparison

- Let's look at the number of parameters...
 - Assume we have an M-dimensional feature space ϕ .
 - And assume we represent $p(\phi \mid C_k)$ and $p(C_k)$ by Gaussians.
 - How many parameters do we need?

- For the means: 2M

- For the covariances: M(M+1)/2

- Together with the class priors, this gives M(M+5)/2+1 parameters!
- How many parameters do we need for logistic regression?

$$p(\mathcal{C}_1|\boldsymbol{\phi}) = y(\boldsymbol{\phi}) = \sigma(\mathbf{w}^T\boldsymbol{\phi})$$

- Just the values of $\mathbf{w}\Rightarrow M$ parameters.
- \Rightarrow For large M, logistic regression has clear advantages!

Logistic Sigmoid

Properties

Period
$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

Inverse:

$$a = \ln\left(\frac{\sigma}{1 - \sigma}\right)$$

"logit" function

Symmetry property:

$$\sigma(-a) = 1 - \sigma(a)$$

> Derivative:
$$\frac{d\sigma}{da} = \sigma(1-\sigma)$$

Logistic Regression

- Let's consider a data set $\{m{\phi}_n,t_n\}$ with $n=1,\dots,N$, where $m{\phi}_n=m{\phi}(\mathbf{x}_n)$ and $t_n\in\{0,1\}$, $\mathbf{t}=(t_1,\dots,t_N)^T$.
- With $y_n = p(\mathcal{C}_1 | \phi_n)$, we can write the likelihood as

$$p(\mathbf{t}|\mathbf{w}) = \prod_{n=1}^{N} y_n^{t_n} \{1 - y_n\}^{1 - t_n}$$

Define the error function as the negative log-likelihood

$$E(\mathbf{w}) = -\ln p(\mathbf{t}|\mathbf{w})$$

$$= -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$

This is the so-called cross-entropy error function.

Gradient of the Error Function

 $y_n = \sigma(\mathbf{w}^T \boldsymbol{\phi}_n)$ $\frac{dy_n}{d\mathbf{w}} = y_n (1 - y_n) \boldsymbol{\phi}_n$

Error function

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$

Gradient

$$\nabla E(\mathbf{w}) = -\sum_{n=1}^{N} \left\{ t_n \frac{\frac{d}{d\mathbf{w}} y_n}{y_n} + (1 - t_n) \frac{\frac{d}{d\mathbf{w}} (1 - y_n)}{(1 - y_n)} \right\}$$

$$= -\sum_{n=1}^{N} \left\{ t_n \frac{y_n (1 - y_n)}{y_n} \phi_n - (1 - t_n) \frac{y_n (1 - y_n)}{(1 - y_n)} \phi_n \right\}$$

$$= -\sum_{n=1}^{N} \left\{ (t_n - t_n y_n - y_n + t_n y_n) \phi_n \right\}$$

$$= \sum_{n=1}^{N} (y_n - t_n) \phi_n$$

Gradient of the Error Function

Gradient for logistic regression

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \boldsymbol{\phi}_n$$

- Does this look familiar to you?
- This is the same result as for the Delta (=LMS) rule

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn})\phi_j(\mathbf{x}_n)$$

- We can use this to derive a sequential estimation algorithm.
 - However, this will be quite slow...

A More Efficient Iterative Method...

Second-order Newton-Raphson gradient descent scheme

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \mathbf{H}^{-1} \nabla E(\mathbf{w})$$

where $\mathbf{H} = \nabla \nabla E(\mathbf{w})$ is the Hessian matrix, i.e. the matrix of second derivatives.

- Properties
 - Local quadratic approximation to the log-likelihood.
 - > Faster convergence.

Newton-Raphson for Least-Squares Estimation

 Let's first apply Newton-Raphson to the least-squares error function:

$$E(\mathbf{w}) \ = \ rac{1}{2} \sum_{n=1}^{N} \left(\mathbf{w}^{T} \boldsymbol{\phi}_{n} - t_{n}
ight)^{2}$$
 $abla E(\mathbf{w}) \ = \ \sum_{n=1}^{N} \left(\mathbf{w}^{T} \boldsymbol{\phi}_{n} - t_{n}
ight) \boldsymbol{\phi}_{n} = \mathbf{\Phi}^{T} \mathbf{\Phi} \mathbf{w} - \mathbf{\Phi}^{T} \mathbf{t}$ $\mathbf{H} =
abla \nabla E(\mathbf{w}) \ = \ \sum_{n=1}^{N} \boldsymbol{\phi}_{n} \boldsymbol{\phi}_{n}^{T} = \mathbf{\Phi}^{T} \mathbf{\Phi}$ where $\mathbf{\Phi} = \begin{bmatrix} \boldsymbol{\phi}_{1}^{T} \\ \vdots \\ \boldsymbol{\phi}_{N}^{T} \end{bmatrix}$

Resulting update scheme:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} (\mathbf{\Phi}^T \mathbf{\Phi} \mathbf{w}^{(\tau)} - \mathbf{\Phi}^T \mathbf{t})$$

$$= (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t} \qquad \text{Closed-form solution!}$$

Newton-Raphson for Logistic Regression

Now, let's try Newton-Raphson on the cross-entropy error function:

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$

$$\frac{dy_n}{d\mathbf{w}} = y_n (1 - y_n) \phi_n$$

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \phi_n = \mathbf{\Phi}^T(\mathbf{y} - \mathbf{t})$$

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \boldsymbol{\phi}_n = \boldsymbol{\Phi}^T (\mathbf{y} - \mathbf{t})$$

$$\mathbf{H} = \nabla \nabla E(\mathbf{w}) = \sum_{n=1}^{T} y_n (1 - y_n) \boldsymbol{\phi}_n \boldsymbol{\phi}_n^T = \mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi}$$

where ${f R}$ is an $N\!\! imes\!N$ diagonal matrix with $R_{nn}=y_n(1-y_n)$.

 \Rightarrow The Hessian is no longer constant, but depends on w through the weighting matrix ${f R}$.

Iteratively Reweighted Least Squares

Update equations

$$\begin{split} \mathbf{w}^{(\tau+1)} &= \mathbf{w}^{(\tau)} - (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^T (\mathbf{y} - \mathbf{t}) \\ &= (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \left\{ \mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi} \mathbf{w}^{(\tau)} - \mathbf{\Phi}^T (\mathbf{y} - \mathbf{t}) \right\} \\ &= (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{R} \mathbf{z} \\ &\qquad \qquad \text{with} \quad \mathbf{z} = \mathbf{\Phi} \mathbf{w}^{(\tau)} - \mathbf{R}^{-1} (\mathbf{y} - \mathbf{t}) \end{split}$$

- Again very similar form (normal equations)
 - > But now with non-constant weighing matrix ${f R}$ (depends on ${f w}$).
 - Need to apply normal equations iteratively.
 - ⇒ Iteratively Reweighted Least-Squares (IRLS)

Summary: Logistic Regression

Properties

- > Directly represent posterior distribution $p(oldsymbol{\phi} \,|\, \mathcal{C}_k)$
- > Requires fewer parameters than modeling the likelihood + prior.
- Very often used in statistics.
- > It can be shown that the cross-entropy error function is concave
 - Optimization leads to unique minimum
 - But no closed-form solution exists
 - Iterative optimization (IRLS)
- Both online and batch optimizations exist
- There is a multi-class version described in (Bishop Ch.4.3.4).

Caveat

Logistic regression tends to systematically overestimate odds ratios when the sample size is less than ~500.

Topics of This Lecture

- Fisher's linear discriminant (FLD)
 - Classification as dimensionality reduction
 - Linear discriminant analysis
 - Multiple discriminant analysis
 - Applications
- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Gradient descent
 - Iteratively Reweighted Least Squares
- Note on Error Functions

Note on Error Functions

- Ideal misclassification error function (black)
 - This is what we want to approximate,
 - Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - ⇒ We cannot minimize it by gradient descent.

49

Note on Error Functions

- Squared error used in Least-Squares Classification
 - Very popular, leads to closed-form solutions.
 - However, sensitive to outliers due to squared penalty.
 - Penalizes "too correct" data points
 - ⇒ Generally does not lead to good classifiers.

50

Comparing Error Functions (Loss Functions)

Cross-Entropy Error

- > Minimizer of this error is given by posterior class probabilities.
- Concave error function, unique minimum exists.
- Robust to outliers, error increases only roughly linearly
- > But no closed-form solution, requires iterative estimation.

Overview: Error Functions

Ideal Misclassification Error

- This is what we would like to optimize.
- But cannot compute gradients here.

Quadratic Error

- Easy to optimize, closed-form solutions exist.
- But not robust to outliers.

Cross-Entropy Error

- Minimizer of this error is given by posterior class probabilities.
- Concave error function, unique minimum exists.
- But no closed-form solution, requires iterative estimation.

⇒ Analysis tool to compare classification approaches

`E (z)

References and Further Reading

 More information on Linear Discriminant Functions can be found in Chapter 4 of Bishop's book (in particular Chapter 4.1 - 4.3).

> Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

