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Linear Discriminants Il
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Course Outline

e Fundamentals (2 weeks)
~ Bayes Decision Theory
~ Probability Density Estimation

e Discriminative Approaches (5 weeks)
> Linear Discriminant Functions
~ Support Vector Machines
- Ensemble Methods & Boosting
> Randomized Trees, Forests & Ferns

e Generative Models (4 weeks)
> Bayesian Networks
> Markov Random Fields

©
M
S
@
€
€
S
/)
o]
=
<
S
®
)
-
)
IE
=
)
®
=

B. Leibe



RWTH
Recap: Linear Discriminant Functions

e Basic idea
~ Directly encode decision boundary
> Minimize misclassification probability directly.

e Linear discriminant functions Y — O\
/ \ N
weight vector “bias” |
(= threshold) e

- w, w, define a hyperplane in R”,

~ |If a data set can be perfectly classified by a linear discriminant,
then we call it linearly separable.
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Slide adapted from Bernt Schiele B. Leibe



RWTH
Recap: Least-Squares Classification

e Simplest approach

> Directly try to minimize the sum-of-squares error
N

E(w) =Y (y(xn;w) — t,)°
Ep(W) = ;Tr [XW - 1)’ XW - T)}

~ Setting the derivative to zero yields

—~—

W = (XTX)"'XTT = XI'T = (XTX)"'X'T
> We then obtain the discriminant function as

—~ ~ T
y(x) = W% = TT(XT) %

= Exact, closed-form solution for the discriminant function
parameters.
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Recap: Problems with Least Squares

-6 -6}
-8} | -8}
-4 -2 0 2 4 6 8 -4 -2 0 2 4 6 8

e Least-squares is very sensitive to outliers!

> The error function penalizes predictions that are “too correct”.

5
Image source: C.M. Bishop, 2006
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RWTH
Recap: Generalized Linear Models

e Generalized linear model
y(x) = g(Ww' x4 wp)

> ¢( - ) is called an activation function and may be nonlinear.

~ The decision surfaces correspond to

T

y(x) = const. < W X+ wy = const.

> If g is monotonous (which is typically the case), the resulting
decision boundaries are still linear functions of x.

e Advantages of the non-linearity

> Can be used to bound the influence of outliers
and “too correct” data points.

- When using a sigmoid for g(-), we can interpret IR i ?
the y(x) as posterior probabilities. g(a) =
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Recap: Linear Separability

e Up to now: restrictive assumption
> Only consider linear decision boundaries

e (Classical counterexample: XOR

Ly

C
O

o &

Slide credit: Bernt Schiele

Ly

B. Leibe



Linear Separability

e Even if the data is not linearly 4 M%) = y(x)
separable, a linear decision X,
boundary may still be “optimal”.

> Generalization

» E.g. in the case of Normal distributed
data (with equal covariance matrices)

e Choice of the right discriminant function is important
and should be based on
» Prior knowledge (of the general functional form)
» Empirical comparison of alternative models
» Linear discriminants are often used as benchmark.
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RWNTH
Generalized Linear Discriminants

e Generalization
> Transform vector x with M nonlinear basis functions ¢ (x):

Zwk3¢] + Wko

» Purpose of gbj(x): basis functions
> Allow non-linear decision boundaries.

> By choosing the right qu, every continuous function can (in
principle) be approximated with arbitrary accuracy.

e Notation Iy
Yk (X) — Zwqubj (X) with qbQ(X) =1
7=0

Slide credit: Bernt Schiele B. Leibe
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RWNTH
Generalized Linear Discriminants

e Model
y(X) = ) wr;d; (%) = yr(x; W)

> K functions (outputs) y,.(x;w)

e Learning in Neural Networks
- Single-layer networks: ¢; are fixed, only weights w are learned.
- Multi-layer networks: both the w and the ¢, are learned.

> In the following, we will not go into details about neural
networks in particular, but consider generalized linear
discriminants in general...

. 11
Slide credit: Bernt Schiele B. Leibe
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Gradient Descent

e Learning the weights w:
> IN training data points:
> K outputs of decision functions:
» Target vector for each data point:

X={x,...., Xy}

T={t, ..t}

> Error function (least squares error) of linear model

S‘S‘ (yk (303 W

nlkl

tkn)Q

) 3 Ml DTS

n=1 k=1 j:].

Slide credit: Bernt Schiele B. Leibe
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Gradient Descent

e Problem

> The error function can in general no longer be minimized in
closed form.

e |dea (Gradient Descent)
> lterative minimization
~ Start with an initial guess for the parameter values w,(;;-).
> Move towards a (local) minimum by following the gradient.

(++1) _ (r) _ OFE(w)

w(”')

7. Learning rate

~ This simple scheme corresponds to a 1st-order Taylor expansion
(There are more complex procedures available).
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RWNTH
Gradient Descent - Basic Strategies

e “Batch learning”

S _ ) OE(W)
kj kj 77 8wkj

w(7'>

7. Learning rate

» Compute the gradient based on all training data:
OF (w)
8wkj

Slide credit: Bernt Schiele B. Leibe
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RWNTH
Gradient Descent - Basic Strategies

e “Sequential updating”
N
n=1

OF,(w)
7+1 T n

Owy; w(m)

7. Learning rate

» Compute the gradient based on a single data point at a time:
OFE, (w)
8wkj
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Slide credit: Bernt Schiele B. Leibe



Gradient Descent

e Error function

E(w) =) En(w) = %ZZ Zwk;jqﬁj(xn)—tkn

| K M 2
© E,(w) = 52 Zwkj¢g(xn) tkn
e k=1 \j=1
: M
n OF,,(w
5 A D Wi ®5(%n) = trn | (%)
= (‘9wa <
5 i=1
.é = (Yr(Xn; W) — tkn) oy (%n)

2

. 19
Slide credit: Bernt Schiele B. Leibe
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Gradient Descent

e Delta rule (=LMS rule)

wi ™ = wl) = (%0 W) — tn) 65(%n)
— w](;;) — n(sknqu (Xn)
> where
5kn — yk(Xn; W) — Tkn

= Simply feed back the input data point, weighted by the
classification error.

Slide credit: Bernt Schiele B. Leibe
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Gradient Descent

o Cases with differentiable, non-linear activation function

yk(x) = glax) =g Zwki¢j (%n)

e Gradient descent
OE,(w)  Og(ax)

8wkj B 8wkj
l(;]_—H) — wl(g;) — 775kn¢j (Xn)
dg(ar) ,
5kn — awkj (yk (Xna W) tkn)

. 21
Slide credit: Bernt Schiele B. Leibe
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RWTH
Summary: Generalized Linear Discriminants

e Properties
> General class of decision functions.

- Nonlinearity g(-) and basis functions ¢ allow us to address
linearly non-separable problems.

> Shown simple sequential learning approach for parameter
estimation using gradient descent.

- Better 2"d order gradient descent approaches available
(e.g. Newton-Raphson).

e Limitations / Caveats
> Flexibility of model is limited by curse of dimensionality

- ¢(-) and gbj often introduce additional parameters.

- Models are either limited to lower-dimensional input space
or need to share parameters.

» Linearly separable case often leads to overfitting.
- Several possible parameter choices minimize training error. 22
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Topics of This Lecture

e Fisher’s linear discriminant (FLD)
~ Classification as dimensionality reduction
» Linear discriminant analysis
> Multiple discriminant analysis
~ Applications

e Logistic Regression
» Probabilistic discriminative models
> Logistic sigmoid (logit function)
> Cross-entropy error
» Gradient descent
~ lIteratively Reweighted Least Squares

e Note on Error Functions

B. Leibe

23
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RWTH
Classification as Dimensionality Reduction

e Classification as dimensionality reduction

- We can interpret the linear classification model as a projection
onto a lower-dimensional space.

- E.g., take the D-dimensional input vector x and project it down
to one dimension by applying the function

Y = wix
- |If we now place a threshold at y > —w_, we obtain our standard
two-class linear classifier.

» The classifier will have a lower error the better this projection
separates the two classes.

= New interpretation of the learning problem

> Try to find the projection vector w that maximizes the class
separation.

24
B. Leibe
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Classification as Dimensionality Reduction

bad separation

4r -
. v e *
RS RS
2 h R
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good separation

e Two questions

- How to measure class separation?
» How to find the best projection (with maximal class separation)?

B. Leibe
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Image source: C.M. Bishop, 2006



RWTH
Classification as Dimensionality Reduction

e Measuring class separation

» We could simply measure the
separation of the class means. 2|

= Choose w so as to maximize
(Mg —my) = w* (my —my)

 Problems with this approach
1. This expression can be made arbitrarily large by increasingHWH.
= Need to enforce additional constraint|[w||= 1.
= This constrained minimization results in W X (mg — ml)

2. The criterion may result in bad separation if the clusters have
elongated shapes.
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Image source: C.M. Bishop, 2006
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Fisher’s Linear Discriminant Analysis (FLD)

e Better idea:

> Find a projection that maximizes the ratio of the between-class
variance to the within-class variance:

(ma —my)?

J(w) =

> Usually, this is written as

with
s% -+ S%
wiSgpw
J(VV):: fPS
4% W W

> where

SB — (m2 — ml)(mg — I

Sw = ZZ

k=1 neCy

B. Leibe

)T

S}

)T

— Z (yn — mk)2

neCy

between-class
scatter matrix

within-class
scatter matrix

27
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Fisher’s Linear Discriminant Analysis (FLD)

Slide adapted from Ales Leonardis

Maximize distance between classes
Minimize distance within a class
wiSpw

Criterion: J(w) = TS
W

Sy ... between-class scatter matrix
S, ... within-class scatter matrix

The optimal solution for w can be
obtained as:

WO(S;V}(mQ —ml)

Classification function:

T Class 1
yx)=w'x+wy 2 0
Class 2
28
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Multiple Discriminant Analysis

e Generalization to K classes

'WTS;W|
J(W) =
W)= wrs,w
- Where
1 N
W = [Wla 7WK] m = an::lxn
K
SB = ZNk(mk — m)(mk — m)T
k=1
K
Sw = Z Z (xn, — my)(x, —my) "
k=1 neCy

B. Leibe

29



Maximizing J(W)
e "Rayleigh quotient” = Generalized eigenvalue problem
_ |[WiSpW,
W) = wTs,, W]

» The columns of the optimal W are the eigenvectors correspon-
ding to the largest eigenvalues of

SpwW; = AiSww;
1
- Defining V. = SJQBW , we get

1 1
2Q—1Q2,,
SESy, SEv = Av
which is a regular eigenvalue problem.
= Solve to get eigenvectors of v, then from that of w.

e For the K-class case we obtain (at most) k-1 projections.
» (i.e. eigenvectors corresponding to non-zero eigenvalues.)

B. Leibe

©
M
15
@
€
€
S
/)
o]
=
<
S
®
@
-
)
IE
=
)
®
=

30



What Does It Mean?

e What does it mean to apply a linear classifier?

y(x) =w'x

7N

Weight vector Input vector

e (Classifier interpretation
» The weight vector has the same dimensionality as x.
- Positive contributions where sign(x;) = sign(w,).

= The weight vector identifies which input dimensions are
important for positive or negative classification (large |w,|)
and which ones are irrelevant (near-zero w;).

= If the inputs x are normalized, we can interpret w as a

“template” vector that the classifier tries to match.

wix =||w]|||x]|| cos @

W,

0/x
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RWNTH
Example Application: Fisherfaces

e Visual discrimination task
~ Training data:

29909 292999
09290 89290

> lest:

mm

B — glasses?

Take each image as a vector
of pixel values and apply FLD...
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Image source: Yale Face Database
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RWTHAACHEN
. .. UNIVERSITY
Fisherfaces: Interpretability

e Resulting weight vector for “Glasses/NoGlasses“
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Slide credit: Peter Belhumeur B. Leibe [Belhumeur et.al. 1997]
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RWTH
Summary: Fisher’s Linear Discriminant

e Properties

~ Simple method for dimensionality reduction, preserves class
discriminability.

~ Can use parametric methods in reduced-dim. space that might
not be feasible in original higher-dim. space.

~ Widely used in practical applications.

e Restrictions / Caveats
» Not possible to get more than K-1 projections.

> FLD reduces the computation to class means and covariances.

= Implicit assumption that class distributions are unimodal and
well-approximated by a Gaussian/hyperellipsoid.

B. Leibe
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Topics of This Lecture

e Logistic Regression
» Probabilistic discriminative models
> Logistic sigmoid (logit function)
> Cross-entropy error
» Gradient descent
~ lIteratively Reweighted Least Squares

B. Leibe

35
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RWNTH
Probabilistic Discriminative Models

e We have seen that we can write

p(Cilx) = ofa) i
1
T 1+ exp(—a)
e We can obtain the familiar probabilistic model by setting
Y —n p(x|C1)p(C1)
p(x|C2)p(C2)
e Or we can use generalized linear discriminant models
a=wlx
or a =w' ¢d(x)

, 36
B. Leibe



RWNTH
Probabilistic Discriminative Models

e In the following, we will consider models of the form
p(Cilg) = y(¢) =o(w' ¢)
with p(Calp) = 1—p(Ci|o)

e This model is called logistic regression.

e Why should we do this? What advantage does such a
model have compared to modeling the probabilities?

B p(¢|C1)p(C1)
e C AT (AT IC A
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e Any ideas?

37
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Comparison

e Let’s look at the number of parameters...
» Assume we have an )/-dimensional feature space ¢.

- And assume we represent p(¢ | C,) and p(C,) by Gaussians.

> How many parameters do we need?
- For the means: 2M
- For the covariances: M(M+1)/2
- Together with the class priors, this gives M(M/+5)/2+1 parameters!

How many parameters do we need for logistic regression?

p(Cilp) = y(@) =o(w' ¢)

- Just the values of w = M parameters.

Y

= For large M, logistic regression has clear advantages!
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Logistic Sigmoid

e Properties 1

> Definition: a(a) =
1 4+ exp(—a)

O
> Inverse: a = In < >
l—0

> Symmetry property:
o(—a) =1—o0(a)

do
> Derivative: — =0(1 —
- o(l—o)

B. Leibe

“logit” function

39



Logistic Regression

e Let’s consider a data set {¢,,t } withn=1,...,N,
where ¢, = ¢(x,) andt, € {0,1}, t = (t1,...,tn)" .

e Withy = p(Cl|q§ ), we can write the likelihood as

p(t|w) = Hyn {T—ya}' ™

e Define the error function as the negative log-likelihood
E(w) = —Inp(tjw)

= =) {talny,+ (1 —t,)In(l - y,)}

n=1
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» This is the so-called cross-entropy error function.

40



Gradient of the Error Function— — 755
e Error functlon 2% = Yn(1 = yn)®,
W
E(w) Z {tnIny, + (1 —t,)In(1 —yn)}
e Gradient an o d
o aw In (1 Yn)

. VE(w) = —;itndyn + (1 —t,) 4™ = }
5 N
5 R Y tny,%a _ yn)¢n o tn)ynmqbn}
5 N
.§ - = Z{(tn —tnlln — Yn +M)¢n}
E, anl
E — Z(yn — tn)¢n

n=1 41
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Gradient of the Error Function

e Gradient for logistic regression
N

VE(w) = Z(yn_tn)¢n

n=1

e Does this look familiar to you?

e This is the same result as for the Delta (=LMS) rule

wii ™ = w — (Y (X W) — tn) 5 (x0)

e We can use this to derive a sequential estimation
algorithm.
~» However, this will be quite slow...

B. Leibe

42
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RWNTH
A More Efficient Iterative Method...

e Second-order Newton-Raphson gradient descent scheme
wi ) = wl™) _H1VE(w)

where H = VVE(w) is the Hessian matrix, i.e. the
matrix of second derivatives.

e Properties
» Local quadratic approximation to the log-likelihood.
> Faster convergence.

43
B. Leibe



RWTH
Newton-Raphson for Least-Squares Estimation

e Let’s first apply Newton-Raphson to the least-squares
error function:

N
1
E(w) = 5 Z (WT¢n — tn)2

anl
. VEw) = Y (whe, —tn) ¢, =2 dw — &t
A= n=1 — -
'g N ¢1
= H=VVE(w) = Z ¢, Pt =P where & — .
CI)“ n=1 .T
2 L PN
§ e Resulting update scheme:
2 wi = w(™ — (@7 ®)1(dT dw™) — &)
g - (<I>T<I>)_1<I>Tt Closed-form solution!

44
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RWTH
Newton-Raphson for Logistic Regression

* Now, let’s try Newton-Raphson on the cross-entropy
error function:

N
E(w) = =) {talnyn+ (1 —t,)In(1—y,)}
n=1
VEW) = ) (yn —tn)dp, =2 (y — t)
n— 1
H=VVE(w Zyn —yn)b, oL = BTRP

where R is an NxN diagonal matrix with R,,,, = y,,(1 — y,,) -

= The Hessian is no longer constant, but depends on w through

the weighting matrix R..

45
B. Leibe
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RWTH
Iteratively Reweighted Least Squares

e Update equations

wi = w( — (TR®) 1! (y — t)
— (3"R®)" {(I)TR<I>W(T) — 3T (y — t)}
= (®'R®)'®'Rz
with z=®w!?) — R (y —t)

e Again very similar form (normal equations)
-~ But now with non-constant weighing matrix R (depends on w).

> Need to apply normal equations iteratively.

= Iteratively Reweighted Least-Squares (IRLS) 46
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Summary: Logistic Regression

e Properties

- Directly represent posterior distribution p(¢|C,)

Requires fewer parameters than modeling the likelihood + prior.
Very often used in statistics.

~ It can be shown that the cross-entropy error function is concave
- Optimization leads to unique minimum
- But no closed-form solution exists
- Iterative optimization (IRLS)

~ Both online and batch optimizations exist

> There is a multi-class version described in (Bishop Ch.4.3.4).

Y

Y

e Caveat
» Logistic regression tends to systematically overestimate odds
ratios when the sample size is less than ~500.

47
B. Leibe



Topics of This Lecture

e Fisher’s linear discriminant (FLD)
» Classification as dimensionality reduction
> Linear discriminant analysis
Multiple discriminant analysis
Applications

\

\

e Logistic Regression
» Probabilistic discriminative models
» Logistic sigmoid (logit function)
> Cross-entropy error
» Gradient descent
» Iteratively Reweighted Least Squares

e Note on Error Functions
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B. Leibe

CHEN
UNIVERSITY
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RWNTH
Note on Error Functions

tE(z,) Ideal misclassif
Z eal misclassification error

Not differentiable! S

=2 y N\ 1 7™ #n = tnl(%n)

e |deal misclassification error function (black)
> This is what we want to approximate,
> Unfortunately, it is not differentiable.
» The gradient is zero for misclassified points.
= We cannot minimize it by gradient descent. 49

Image source: Bishop, 2006

©
M
S
@
£
€
S
/)
o]
=
<
S
®
)
-
)
IE
=
o
®
=




©
M
S
@
£
€
S
/)
o]
=
<
S
®
)
-
)
IE
=
o
®
=

Note on Error Functions

tn € {—1,1}

Sensitive to outliers!

E (Zn) Ideal misclassification error
Squared error

Penalizes “too correct”
data points!

", #

—2

-1

0

e Squared error used in Least-Squares Classification
~ Very popular, leads to closed-form solutions.
» However, sensitive to outliers due to squared penalty.
» Penalizes “too correct” data points
= Generally does not lead to good classifiers. 50

Image source: Bishop, 2006
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Comparing Error Functions (Loss Functions)
A
E (Zn) Ideal misclassification error
Squared error
Cross-entropy error

tn € {—1,1}

Robust to outliers!

- — 0 — 2 = Ey(%,)

e Cross-Entropy Error
> Minimizer of this error is given by posterior class probabilities.
> Concave error function, unique minimum exists.
~ Robust to outliers, error increases only roughly linearly
» But no closed-form solution, requires iterative estimation. 51

Image source: Bishop, 2006



Overview: Error Functions

JLE (2)

e |deal Misclassification Error
> This is what we would like to optimize.
~ But cannot compute gradients here.

e Quadratic Error

~ Easy to optimize, closed-form solutions exist.
> But not robust to outliers.

1 . 1 >

e Cross-Entropy Error

~ Minimizer of this error is given by posterior class probabilities.
> Concave error function, unique minimum exists.
» But no closed-form solution, requires iterative estimation.

=> Analysis tool to compare classification approaches

©
M
S
@
€
€
S
/)
o]
=
<
S
®
)
-
)
IE
=
)
®
=

52

B. Leibe



©
M
S
@
£
=
=
7))
o
=
c
|
®
)
|
)
-E
=
o
®
=

RO INVERSITY
References and Further Reading

e More information on Linear Discriminant Functions can
be found in Chapter 4 of Bishop’s book (in particular
Chapter 4.1 - 4.3).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006
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