

Machine Learning - Lecture 5

Linear Discriminant Functions

03.05.2016

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

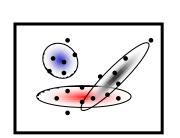
leibe@vision.rwth-aachen.de

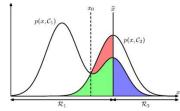
Many slides adapted from B. Schiele

RWTHAACHEN UNIVERSITY

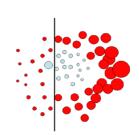
Course Outline

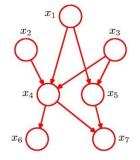
- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation



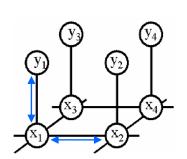


- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns



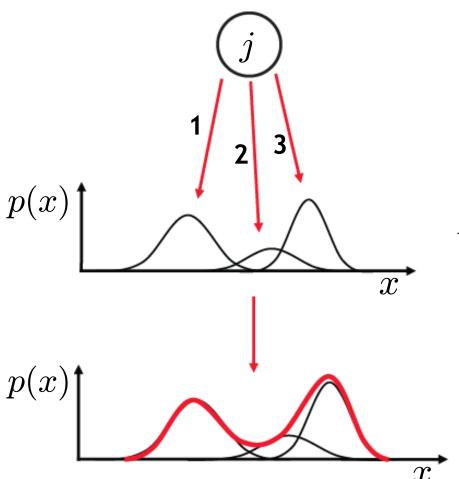


- Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields



Recap: Mixture of Gaussians (MoG)

"Generative model"



$$p(j) = \pi_j \text{ ``Weight'' of mixture component''}$$

 $p(x| heta_j)$ cor

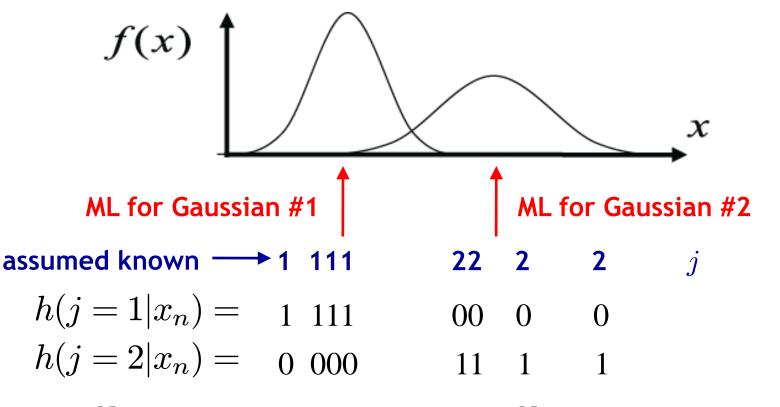
Mixture component

Mixture density

$$p(x|\theta) = \sum_{j=1}^{M} p(x|\theta_j)p(j)$$

Recap: Estimating MoGs - Iterative Strategy

Assuming we knew the values of the hidden variable...

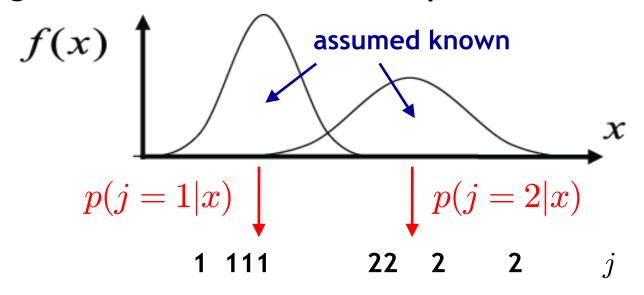


$$\mu_1 = \frac{\sum_{n=1}^{N} h(j=1|x_n)x_n}{\sum_{j=1}^{N} h(j=1|x_n)}$$

$$\mu_1 = \frac{\sum_{n=1}^{N} h(j=1|x_n)x_n}{\sum_{i=1}^{N} h(j=1|x_n)} \quad \mu_2 = \frac{\sum_{n=1}^{N} h(j=2|x_n)x_n}{\sum_{i=1}^{N} h(j=2|x_n)}$$

Recap: Estimating MoGs - Iterative Strategy

Assuming we knew the mixture components...



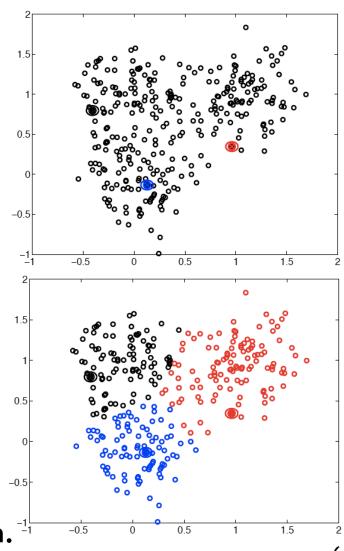
• Bayes decision rule: Decide j = 1 if

$$p(j = 1|x_n) > p(j = 2|x_n)$$

5

Recap: K-Means Clustering

- Iterative procedure
 - 1. Initialization: pick K arbitrary centroids (cluster means)
 - 2. Assign each sample to the closest centroid.
 - 3. Adjust the centroids to be the means of the samples assigned to them.
 - 4. Go to step 2 (until no change)
- Algorithm is guaranteed to converge after finite #iterations.
 - Local optimum
 - > Final result depends on initialization.



B. Leibe

Recap: EM Algorithm

- Expectation-Maximization (EM) Algorithm
 - > E-Step: softly assign samples to mixture components

$$\gamma_j(\mathbf{x}_n) \leftarrow \frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{k=1}^N \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)} \quad \forall j = 1, \dots, K, \quad n = 1, \dots, N$$

M-Step: re-estimate the parameters (separately for each mixture component) based on the soft assignments

$$\hat{N}_{j} \leftarrow \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n})$$
 = soft number of samples labeled j

$$\hat{\pi}_{j}^{\mathrm{new}} \leftarrow \frac{\hat{N}_{j}}{N}$$

$$\hat{\mu}_{j}^{\mathrm{new}} \leftarrow \frac{1}{\hat{N}_{j}} \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) \mathbf{x}_{n}$$

$$\hat{\Sigma}_{j}^{\mathrm{new}} \leftarrow \frac{1}{\hat{N}_{j}} \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) (\mathbf{x}_{n} - \hat{\boldsymbol{\mu}}_{j}^{\mathrm{new}}) (\mathbf{x}_{n} - \hat{\boldsymbol{\mu}}_{j}^{\mathrm{new}})^{\mathrm{T}}$$

/

Topics of This Lecture

- Linear discriminant functions
 - Definition
 - Extension to multiple classes
- Least-squares classification
 - Derivation
 - Shortcomings
- Generalized linear models
 - Connection to neural networks
 - Generalized linear discriminants & gradient descent

Discriminant Functions

Bayesian Decision Theory

$$p(\mathcal{C}_k|x) = \frac{p(x|\mathcal{C}_k)p(\mathcal{C}_k)}{p(x)}$$

- Model conditional probability densities $p(x|\mathcal{C}_k)$ and priors $p(\mathcal{C}_k)$
- Compute posteriors $p(\mathcal{C}_k|x)$ (using Bayes' rule)
- ightarrow Minimize probability of misclassification by maximizing $p(\mathcal{C}|x)$.

New approach

- Directly encode decision boundary
- Without explicit modeling of probability densities
- Minimize misclassification probability directly.

Recap: Discriminant Functions

- Formulate classification in terms of comparisons
 - Discriminant functions

$$y_1(x),\ldots,y_K(x)$$

ightarrow Classify x as class C_k if

$$y_k(x) > y_j(x) \ \forall j \neq k$$

Examples (Bayes Decision Theory)

$$y_k(x) = p(\mathcal{C}_k|x)$$

$$y_k(x) = p(x|\mathcal{C}_k)p(\mathcal{C}_k)$$

$$y_k(x) = \log p(x|\mathcal{C}_k) + \log p(\mathcal{C}_k)$$

10

Discriminant Functions

Example: 2 classes

$$y_1(x) > y_2(x)$$

$$\Leftrightarrow y_1(x) - y_2(x) > 0$$

$$\Leftrightarrow \mathbf{y}(x) > 0$$

Decision functions (from Bayes Decision Theory)

$$y(x) = p(\mathcal{C}_1|x) - p(\mathcal{C}_2|x)$$

$$y(x) = \ln \frac{p(x|\mathcal{C}_1)}{p(x|\mathcal{C}_2)} + \ln \frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)}$$

Learning Discriminant Functions

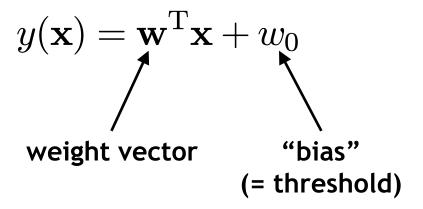
- General classification problem
 - ightharpoonup Goal: take a new input ${f x}$ and assign it to one of K classes C_k .
 - For a Given: training set $\mathbf{X} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$ with target values $\mathbf{T} = \{\mathbf{t}_1, ..., \mathbf{t}_N\}$.
 - \Rightarrow Learn a discriminant function $y(\mathbf{x})$ to perform the classification.
- 2-class problem
 - Binary target values:

$$t_n \in \{0, 1\}$$

- K-class problem
 - > 1-of-K coding scheme, e.g. $\mathbf{t}_n = (0,1,0,0,0)^{\mathrm{T}}$

Linear Discriminant Functions

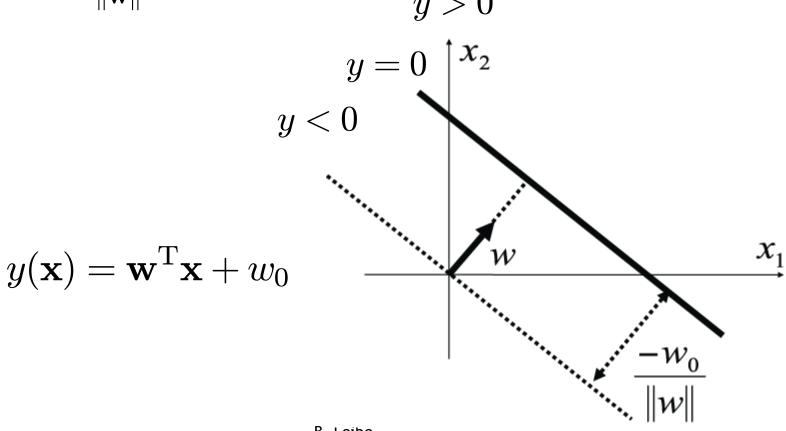
- 2-class problem
 - > y(x) > 0: Decide for class C_1 , else for class C_2
- In the following, we focus on linear discriminant functions



If a data set can be perfectly classified by a linear discriminant, then we call it linearly separable.

Linear Discriminant Functions

- Decision boundary $y(\mathbf{x}) = 0$ defines a hyperplane
 - > Normal vector: w
 - > Offset: $\frac{-w_0}{\|\mathbf{w}\|}$



Slide credit: Bernt Schiele

B. Leibe

Linear Discriminant Functions

Notation

> D: Number of dimensions

$$\mathbf{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_D \end{bmatrix} \quad \mathbf{w} = egin{bmatrix} w_1 \ w_2 \ dots \ w_D \end{bmatrix}$$

$$egin{aligned} y(\mathbf{x}) &= \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0 \ &= \sum_{i=1}^D w_i x_i + w_0 \ &= \sum_{i=0}^D w_i x_i \qquad ext{with} \ x_0 = 1 \ ext{constant} \end{aligned}$$

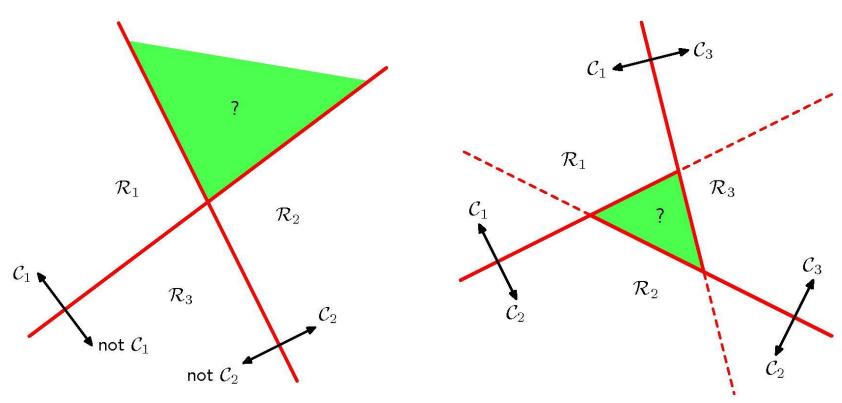
15

Extension to Multiple Classes

Two simple strategies

One-vs-all classifiers

One-vs-one classifiers



- How many classifiers do we need in both cases?
- What difficulties do you see for those strategies?

Extension to Multiple Classes

Problem

- Both strategies result in regions for which the pure classification result $(y_k > 0)$ is ambiguous.
- In the *one-vs-all* case, it is still possible to classify those inputs based on the continuous classifier outputs $y_k > y_j \ \forall j \neq k$.

Solution

> We can avoid those difficulties by taking K linear functions of the form

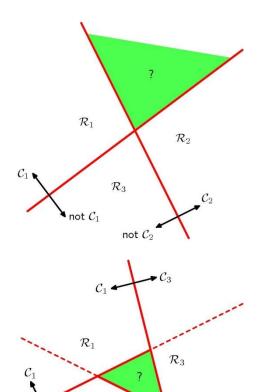
$$y_k(\mathbf{x}) = \mathbf{w}_k^{\mathrm{T}} \mathbf{x} + w_{k0}$$

and defining the decision boundaries directly by deciding for C_k iff $y_k > y_j \ \forall j \neq k$.

This corresponds to a 1-of-K coding scheme

$$\mathbf{t}_n = (0, 1, 0, \dots, 0, 0)^{\mathrm{T}}$$

B. Leibe



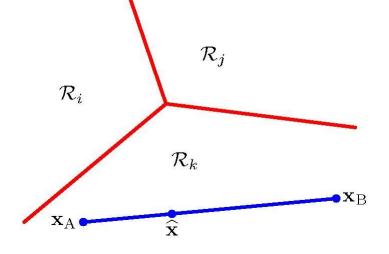
Extension to Multiple Classes

- K-class discriminant
 - Combination of K linear functions

$$y_k(\mathbf{x}) = \mathbf{w}_k^{\mathrm{T}} \mathbf{x} + w_{k0}$$

Resulting decision hyperplanes:

$$(\mathbf{w}_k - \mathbf{w}_j)^{\mathrm{T}} \mathbf{x} + (w_{k0} - w_{j0}) = 0$$



- It can be shown that the decision regions of such a discriminant are always singly connected and convex.
- > This makes linear discriminant models particularly suitable for problems for which the conditional densities $p(\mathbf{x} \mid w_i)$ are unimodal.

Topics of This Lecture

- Linear discriminant functions
 - Definition
 - Extension to multiple classes
- Least-squares classification
 - Derivation
 - > Shortcomings
- Generalized linear models
 - Connection to neural networks
 - Generalized linear discriminants & gradient descent

General Classification Problem

Classification problem

ightharpoonup Let's consider K classes described by linear models

$$y_k(\mathbf{x}) = \mathbf{w}_k^{\mathrm{T}} \mathbf{x} + w_{k0}, \qquad k = 1, \dots, K$$

> We can group those together using vector notation

$$\mathbf{y}(\mathbf{x}) = \widetilde{\mathbf{W}}^{\mathrm{T}} \widetilde{\mathbf{x}}$$

where

$$\widetilde{\mathbf{W}} = [\widetilde{\mathbf{w}}_1, \dots, \widetilde{\mathbf{w}}_K] = \left[egin{array}{cccc} w_{10} & \dots & w_{K0} \ w_{11} & \dots & w_{K1} \ dots & \ddots & dots \ w_{1D} & \dots & w_{KD} \end{array}
ight]$$

- The output will again be in 1-of-K notation.
- \Rightarrow We can directly compare it to the target value $\mathbf{t} = [t_1, \dots, t_k]^{\mathrm{T}}$.

General Classification Problem

- Classification problem
 - > For the entire dataset, we can write

$$\mathbf{Y}(\widetilde{\mathbf{X}}) = \widetilde{\mathbf{X}}\widetilde{\mathbf{W}}$$

and compare this to the target matrix T where

$$egin{array}{lll} \widetilde{\mathbf{W}} &=& [\widetilde{\mathbf{w}}_1, \ldots, \widetilde{\mathbf{w}}_K] \ \widetilde{\mathbf{X}} &=& \begin{bmatrix} \mathbf{x}_1^{\mathrm{T}} \ dots \ \mathbf{x}_N^{\mathrm{T}} \end{bmatrix} & \mathbf{T} &=& \begin{bmatrix} \mathbf{t}_1^{\mathrm{T}} \ dots \ \mathbf{t}_N^{\mathrm{T}} \end{bmatrix} \end{array}$$

Result of the comparison:

$$\widetilde{\mathbf{X}}\widetilde{\mathbf{W}} - \mathbf{T}$$

Goal: Choose W such that this is minimal!

Least-Squares Classification

Simplest approach

- Directly try to minimize the sum-of-squares error
- We could write this as

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn})^2$$
$$= \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (\mathbf{w}_k^T \mathbf{x}_n - t_{kn})^2$$

- But let's stick with the matrix notation for now...
- (The result will be simpler to express and we'll learn some nice matrix algebra rules along the way...)

Least-Squares Classification

using:

using:
$$\sum_{i,j} a_{ij}^2 = \mathrm{Tr}\{\mathbf{A}^{\mathrm{T}}\mathbf{A}\}$$

- Multi-class case
 - Let's formulate the sum-of-squares error in matrix notation

$$E_D(\widetilde{\mathbf{W}}) = \frac{1}{2} \text{Tr} \left\{ (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})^{\text{T}} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T}) \right\}$$

Taking the derivative yields

$$\frac{\partial}{\partial \widetilde{\mathbf{W}}} E_D(\widetilde{\mathbf{W}}) = \frac{1}{2} \frac{\partial}{\partial \widetilde{\mathbf{W}}} \operatorname{Tr} \left\{ (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})^{\mathrm{T}} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T}) \right\} \qquad \frac{\partial \mathbf{Z}}{\partial \mathbf{X}} = \frac{\partial \mathbf{Z}}{\partial \mathbf{Y}} \frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$$

chain rule:

$$\frac{\partial \mathbf{Z}}{\partial \mathbf{X}} = \frac{\partial \mathbf{Z}}{\partial \mathbf{Y}} \frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$$

$$= \frac{1}{2} \frac{\partial}{\partial (\widetilde{\mathbf{X}}\widetilde{\mathbf{W}} - \mathbf{T})^{\mathrm{T}} (\widetilde{\mathbf{X}}\widetilde{\mathbf{W}} - \mathbf{T})} \mathrm{Tr} \left\{ (\widetilde{\mathbf{X}}\widetilde{\mathbf{W}} - \mathbf{T})^{\mathrm{T}} (\widetilde{\mathbf{X}}\widetilde{\mathbf{W}} - \mathbf{T}) \right\}$$

$$\cdot \frac{\partial}{\partial \widetilde{\mathbf{W}}} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})^{\mathrm{T}} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})$$

$$= \widetilde{\mathbf{X}}^{\mathrm{T}} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})$$

$$rac{\partial}{\partial \mathbf{A}} \mathrm{Tr} \left\{ \mathbf{A}
ight\} = \mathbf{I}$$

Least-Squares Classification

Minimizing the sum-of-squares error

$$rac{\partial}{\partial \widetilde{\mathbf{W}}} E_D(\widetilde{\mathbf{W}}) = \widetilde{\mathbf{X}}^{\mathrm{T}} (\widetilde{\mathbf{X}}\widetilde{\mathbf{W}} - \mathbf{T}) \stackrel{!}{=} 0$$

$$\widetilde{\mathbf{X}}\widetilde{\mathbf{W}} = \mathbf{T}$$

$$\widetilde{\mathbf{W}} = (\widetilde{\mathbf{X}}^{\mathrm{T}}\widetilde{\mathbf{X}})^{-1}\widetilde{\mathbf{X}}^{\mathrm{T}}\mathbf{T}$$

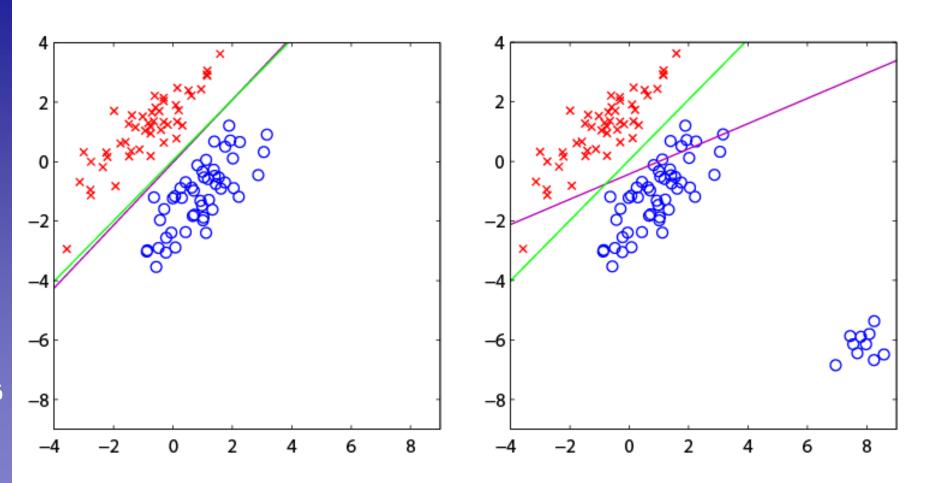
$$= \widetilde{\mathbf{X}}^{\dagger}\mathbf{T} \quad \text{"pseudo-inverse"}$$

We then obtain the discriminant function as

$$\mathbf{y}(\mathbf{x}) = \widetilde{\mathbf{W}}^{\mathrm{T}} \widetilde{\mathbf{x}} = \mathbf{T}^{\mathrm{T}} \left(\widetilde{\mathbf{X}}^{\dagger}\right)^{\mathrm{T}} \widetilde{\mathbf{x}}$$

⇒ Exact, closed-form solution for the discriminant function parameters.

Problems with Least Squares

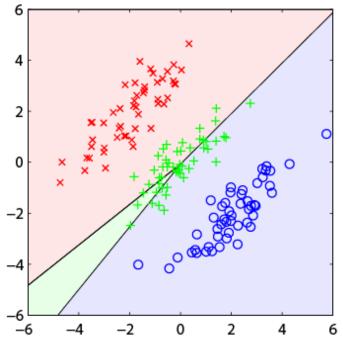


- Least-squares is very sensitive to outliers!
 - > The error function penalizes predictions that are "too correct".

Problems with Least-Squares

Another example:

- 3 classes (red, green, blue)
- Linearly separable problem
- Least-squares solution: Most green points are misclassified!



Deeper reason for the failure

- Least-squares corresponds to Maximum Likelihood under the assumption of a Gaussian conditional distribution.
- However, our binary target vectors have a distribution that is clearly non-Gaussian!
- ⇒ Least-squares is the wrong probabilistic tool in this case!

Topics of This Lecture

- Linear discriminant functions
 - Definition
 - Extension to multiple classes
- Least-squares classification
 - Derivation
 - > Shortcomings
- Generalized linear models
 - Connection to neural networks
 - Generalized linear discriminants & gradient descent

Generalized Linear Models

Linear model

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0$$

Generalized linear model

$$y(\mathbf{x}) = g(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0)$$

- ho $g(\ \cdot\)$ is called an activation function and may be nonlinear.
- > The decision surfaces correspond to

$$y(\mathbf{x}) = const. \Leftrightarrow \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0 = const.$$

If g is monotonous (which is typically the case), the resulting decision boundaries are still linear functions of x.

Generalized Linear Models

Consider 2 classes:

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)}$$

$$= \frac{1}{1 + \frac{p(\mathbf{x}|C_2)p(C_2)}{p(\mathbf{x}|C_1)p(C_1)}}$$

$$= \frac{1}{1 + \exp(-a)} \equiv g(a)$$

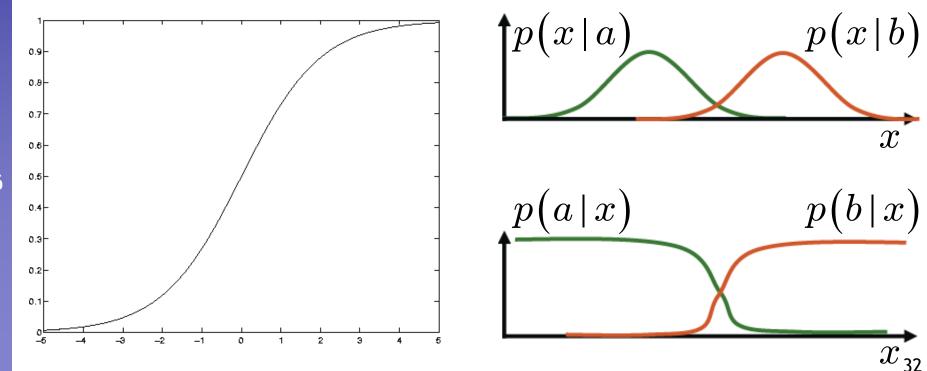
with
$$a = \ln \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$$

RWTHAACHEN UNIVERSITY

Logistic Sigmoid Activation Function

$$g(a) \equiv \frac{1}{1 + \exp(-a)}$$

Example: Normal distributions with identical covariance



Slide credit: Bernt Schiele

B. Leibe

Normalized Exponential

• General case of K>2 classes:

$$p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{\sum_j p(\mathbf{x}|\mathcal{C}_j)p(\mathcal{C}_j)}$$
$$= \frac{\exp(a_k)}{\sum_j \exp(a_j)}$$

with
$$a_k = \ln p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)$$

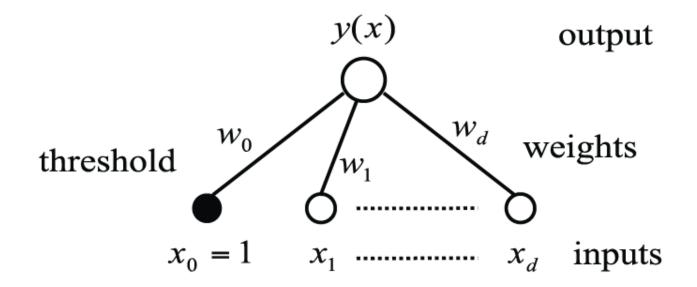
- This is known as the normalized exponential or softmax function
- Can be regarded as a multiclass generalization of the logistic sigmoid.

Relationship to Neural Networks

2-Class case

$$y(\mathbf{x}) = g\left(\sum_{i=0}^D w_i x_i
ight)$$
 with $x_0 = 1$ constant

Neural network ("single-layer perceptron")



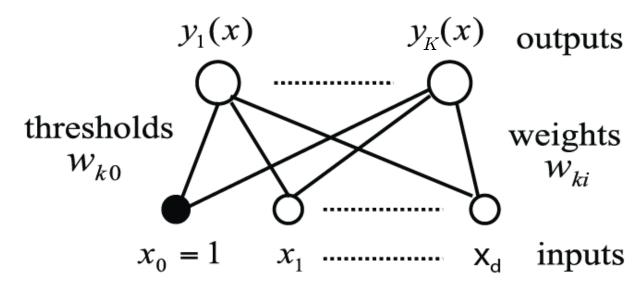
34

Relationship to Neural Networks

Multi-class case

$$y_k(\mathbf{x}) = g\left(\sum_{i=0}^D w_{ki} x_i
ight)$$
 with $x_0 = 1$ constant

Multi-class perceptron



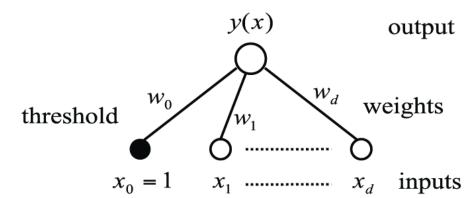
35

Logistic Discrimination

If we use the logistic sigmoid activation function...

$$g(a) \equiv rac{1}{1 + \exp(-a)}$$
 $y(\mathbf{x}) = g(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0)$

$$y(\mathbf{x}) = g(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0)$$



... then we can interpret the y(x) as posterior probabilities!

Other Motivation for Nonlinearity

- Recall least-squares classification
 - One of the problems was that data points that are "too correct" have a strong influence on the decision surface under a squared-error criterion.

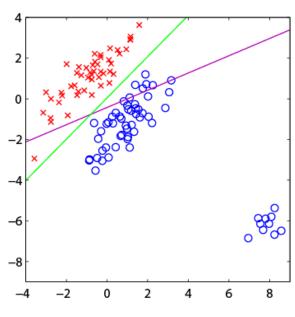
$$E(\mathbf{w}) = \sum_{n=1}^{N} (y(\mathbf{x}_n; \mathbf{w}) - \mathbf{t}_n)^2$$

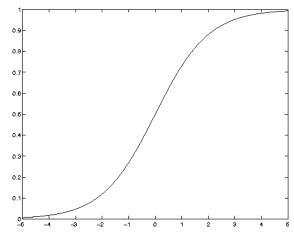
Reason: the output of $y(\mathbf{x}_n; \mathbf{w})$ can grow arbitrarily large for some \mathbf{x}_n :

$$y(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{\mathrm{T}} \mathbf{x} + w_0$$

By choosing a suitable nonlinearity (e.g. a sigmoid), we can limit those influences

$$y(\mathbf{x}; \mathbf{w}) = g(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0)$$





Discussion: Generalized Linear Models

Advantages

- The nonlinearity gives us more flexibility.
- Can be used to limit the effect of outliers.
- > Choice of a sigmoid leads to a nice probabilistic interpretation.

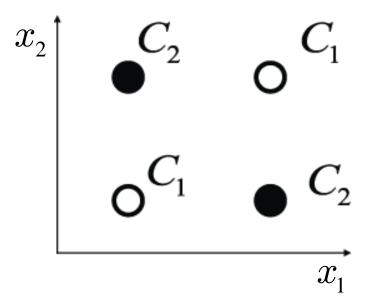
Disadvantage

- Least-squares minimization in general no longer leads to a closed-form analytical solution.
- ⇒ Need to apply iterative methods.
- ⇒ Gradient descent.

Linear Separability

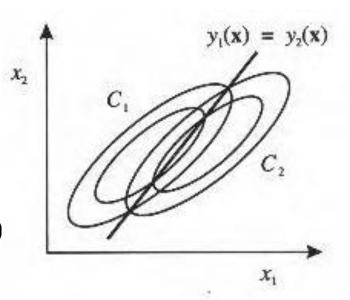
- Up to now: restrictive assumption
 - Only consider linear decision boundaries

Classical counterexample: XOR



Linear Separability

- Even if the data is not linearly separable, a linear decision boundary may still be "optimal".
 - Generalization
 - E.g. in the case of Normal distributed data (with equal covariance matrices)



- Choice of the right discriminant function is important and should be based on
 - Prior knowledge (of the general functional form)
 - Empirical comparison of alternative models
 - Linear discriminants are often used as benchmark.

Generalized Linear Discriminants

Generalization

> Transform vector ${\bf x}$ with M nonlinear basis functions $\phi_i({\bf x})$:

$$y_k(\mathbf{x}) = \sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}) + w_{k0}$$

- Purpose of $\phi_i(\mathbf{x})$: basis functions
- Allow non-linear decision boundaries.
- > By choosing the right ϕ_j , every continuous function can (in principle) be approximated with arbitrary accuracy.

Notation

$$y_k(\mathbf{x}) = \sum_{j=0}^M w_{kj} \phi_j(\mathbf{x})$$
 with $\phi_0(\mathbf{x}) = 1$

Generalized Linear Discriminants

Model

$$y_k(\mathbf{x}) = \sum_{j=0}^{M} w_{kj} \phi_j(\mathbf{x}) = y_k(\mathbf{x}; \mathbf{w})$$

- ightharpoonup K functions (outputs) $y_k(\mathbf{x};\mathbf{w})$
- Learning in Neural Networks
 - > Single-layer networks: ϕ_i are fixed, only weights ${\bf w}$ are learned.
 - Multi-layer networks: both the ${\bf w}$ and the ϕ_i are learned.
 - In the following, we will not go into details about neural networks in particular, but consider generalized linear discriminants in general...

B. Leibe

 $\mathbf{X} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$

Gradient Descent

- Learning the weights w:
 - \triangleright N training data points:
 - > K outputs of decision functions: $y_k(\mathbf{x}_n; \mathbf{w})$
 - > Target vector for each data point: $\mathbf{T} = \{\mathbf{t}_1, ..., \mathbf{t}_N\}$
 - Error function (least-squares error) of linear model

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn})^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn} \right)^2$$

Problem

The error function can in general no longer be minimized in closed form.

Idea (Gradient Descent)

- Iterative minimization
- ightarrow Start with an initial guess for the parameter values $w_{kj}^{(0)}.$
- Move towards a (local) minimum by following the gradient.

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

 η : Learning rate

This simple scheme corresponds to a 1st-order Taylor expansion (There are more complex procedures available).

Gradient Descent - Basic Strategies

"Batch learning"

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

 η : Learning rate

Compute the gradient based on all training data:

$$\frac{\partial E(\mathbf{w})}{\partial w_{kj}}$$

Gradient Descent - Basic Strategies

"Sequential updating"

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w})$$

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

 η : Learning rate

Compute the gradient based on a single data point at a time:

$$\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}}$$

Machine Learning, Summer '16

Error function

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn} \right)^2$$

$$E_n(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn} \right)^2$$

$$\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} = \left(\sum_{\tilde{j}=1}^{M} w_{k\tilde{j}} \phi_{\tilde{j}}(\mathbf{x}_n) - t_{kn} \right) \phi_j(\mathbf{x}_n)$$

$$= (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}) \phi_j(\mathbf{x}_n)$$

Delta rule (=LMS rule)

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn} \right) \phi_j(\mathbf{x}_n)$$
$$= w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(\mathbf{x}_n)$$

where

$$\delta_{kn} = y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}$$

⇒ Simply feed back the input data point, weighted by the classification error.

· Cases with differentiable, non-linear activation function

$$y_k(\mathbf{x}) = g(a_k) = g\left(\sum_{j=0}^M w_{ki}\phi_j(\mathbf{x}_n)\right)$$

Gradient descent

$$\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}) \phi_j(\mathbf{x}_n)$$

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(\mathbf{x}_n)$$

$$\delta_{kn} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn})$$

Summary: Generalized Linear Discriminants

Properties

- General class of decision functions.
- > Nonlinearity $g(\cdot)$ and basis functions ϕ_j allow us to address linearly non-separable problems.
- Shown simple sequential learning approach for parameter estimation using gradient descent.
- Better 2nd order gradient descent approaches available (e.g. Newton-Raphson).

Limitations / Caveats

- Flexibility of model is limited by curse of dimensionality
 - $g(\cdot)$ and ϕ_i often introduce additional parameters.
 - Models are either limited to lower-dimensional input space or need to share parameters.
- Linearly separable case often leads to overfitting.
 - Several possible parameter choices minimize training error.

References and Further Reading

 More information on Linear Discriminant Functions can be found in Chapter 4 of Bishop's book (in particular Chapter 4.1).

> Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

