

Recap: EM Algorithm

- · Expectation-Maximization (EM) Algorithm
 - E-Step: softly assign samples to mixture components

$$\gamma_{j}(\mathbf{x}_{n}) \leftarrow \frac{\pi_{j} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})}{\sum_{k=1}^{N} \pi_{k} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})} \quad \forall j = 1, \dots, K, \quad n = 1, \dots, N$$

M-Step: re-estimate the parameters (separately for each mixture component) based on the soft assignments

$$\begin{split} \hat{N}_j \leftarrow \sum_{n=1}^N \gamma_j(\mathbf{x}_n) &= \text{soft number of samples labeled } j \\ \hat{\pi}_j^{\text{new}} \leftarrow \frac{\hat{N}_j}{N} \\ \hat{\mu}_j^{\text{new}} \leftarrow \frac{1}{\hat{N}_j} \sum_{n=1}^N \gamma_j(\mathbf{x}_n) \mathbf{x}_n \\ \hat{\Sigma}_j^{\text{new}} \leftarrow \frac{1}{\hat{N}_j} \sum_{n=1}^N \gamma_j(\mathbf{x}_n) (\mathbf{x}_n - \hat{\boldsymbol{\mu}}_j^{\text{new}}) (\mathbf{x}_n - \hat{\boldsymbol{\mu}}_j^{\text{new}})^{\text{T}} \\ &= \text{B. Leibe} \end{split}$$

Topics of This Lecture

- · Linear discriminant functions
 - Definition
 - Extension to multiple classes
- Least-squares classification
 - Derivation
 - Shortcomings
- · Generalized linear models
 - Connection to neural networks
 - Generalized linear discriminants & gradient descent

Discriminant Functions

- $p(\mathcal{C}_k|x) = \frac{p(x|\mathcal{C}_k)p(\mathcal{C}_k)}{p(x)}$ · Bayesian Decision Theory
 - > Model conditional probability densities $p(x|\mathcal{C}_k)$ and priors $p(\mathcal{C}_k)$
 - > Compute posteriors $p(C_k|x)$ (using Bayes' rule)
 - > Minimize probability of misclassification by maximizing $p(\mathcal{C}|x)$.

New approach

- > Directly encode decision boundary
- > Without explicit modeling of probability densities
- > Minimize misclassification probability directly.

Recap: Discriminant Functions

- · Formulate classification in terms of comparisons
 - > Discriminant functions

$$y_1(x),\ldots,y_K(x)$$

ightarrow Classify x as class C_k if

$$y_k(x) > y_j(x) \ \forall j \neq k$$

• Examples (Bayes Decision Theory)

$$y_k(x) = p(\mathcal{C}_k|x)$$

$$y_k(x) = p(x|\mathcal{C}_k)p(\mathcal{C}_k)$$

$$y_k(x) = \log p(x|\mathcal{C}_k) + \log p(\mathcal{C}_k)$$

Discriminant Functions

Example: 2 classes

$$y_1(x) > y_2(x)$$

$$\Leftrightarrow y_1(x) - y_2(x) > 0$$

 $\mathbf{y}(x) > 0$

• Decision functions (from Bayes Decision Theory)

$$y(x) = p(\mathcal{C}_1|x) - p(\mathcal{C}_2|x)$$

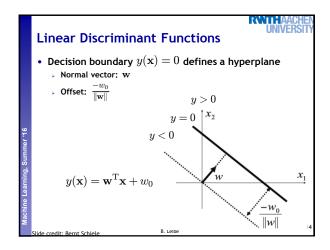
$$y(x) = \ln \frac{p(x|\mathcal{C}_1)}{p(x|\mathcal{C}_2)} + \ln \frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)}$$

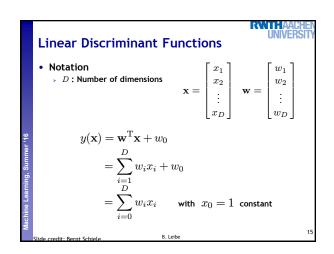
Learning Discriminant Functions

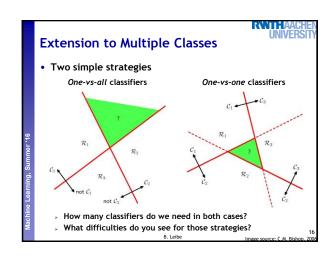
- · General classification problem
 - Fig. Goal; take a new input x and assign it to one of K classes C_k .
 - \blacktriangleright Given: training set $\mathbf{X} = \{\mathbf{x}_{_1}, \, ..., \, \mathbf{x}_{_N}\}$ with target values $T = \{t_1, ..., t_N\}$.
 - \Rightarrow Learn a discriminant function $y(\mathbf{x})$ to perform the classification.
- · 2-class problem
 - Binary target values: $t_n \in \{0, 1\}$
- K-class problem
 - > 1-of-K coding scheme, e.g. $\mathbf{t}_n = (0,1,0,0,0)^{\mathrm{T}}$

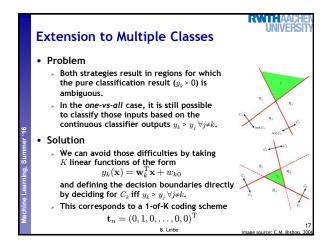
Linear Discriminant Functions • 2-class problem • y(x) > 0: Decide for class C_1 , else for class C_2 • In the following, we focus on linear discriminant functions $y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0$ weight vector "bias" (= threshold) • If a data set can be perfectly classified by a linear discriminant,

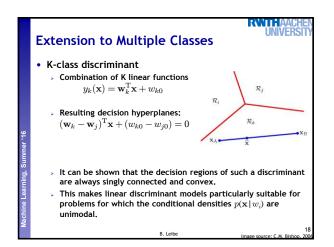
then we call it linearly separable.











Topics of This Lecture

- · Linear discriminant functions
 - Definition
 - Extension to multiple classes
- · Least-squares classification
 - Derivation
 - Shortcomings
- Generalized linear models
 - > Connection to neural networks
 - > Generalized linear discriminants & gradient descent

-

General Classification Problem

Classification problem

Let's consider K classes described by linear models

$$y_k(\mathbf{x}) = \mathbf{w}_k^{\mathrm{T}} \mathbf{x} + w_{k0}, \qquad k = 1, \dots, K$$

> We can group those together using vector notation

$$\mathbf{y}(\mathbf{x}) = \widetilde{\mathbf{W}}^{\mathrm{T}} \widetilde{\mathbf{x}}$$

where

$$\widetilde{\mathbf{W}} = [\widetilde{\mathbf{w}}_1, \dots, \widetilde{\mathbf{w}}_K] = \begin{bmatrix} w_{10} & \dots & w_{K0} \\ w_{11} & \dots & w_{K1} \\ \vdots & \ddots & \vdots \\ w_{1D} & \dots & w_{KD} \end{bmatrix}$$

- > The output will again be in 1-of-K notation.
- \Rightarrow We can directly compare it to the target value $\mathbf{t} = [t_1, \dots, t_k]^{\mathrm{T}}$.

R Leibe

General Classification Problem

· Classification problem

> For the entire dataset, we can write

$$Y(\widetilde{X}) = \widetilde{X}\widetilde{W}$$

and compare this to the target matrix $\boldsymbol{\mathrm{T}}$ where

$$\begin{split} \widetilde{\mathbf{W}} &= \left[\widetilde{\mathbf{w}}_1, \dots, \widetilde{\mathbf{w}}_K\right] \\ \widetilde{\mathbf{X}} &= \begin{bmatrix} \mathbf{x}_1^{\mathrm{T}} \\ \vdots \\ \mathbf{x}_N^{\mathrm{T}} \end{bmatrix} \quad \mathbf{T} &= \begin{bmatrix} \mathbf{t}_1^{\mathrm{T}} \\ \vdots \\ \mathbf{t}_N^{\mathrm{T}} \end{bmatrix} \end{split}$$

> Result of the comparison:

$$\widetilde{\mathbf{X}}\widetilde{\mathbf{W}}-\mathbf{T}$$

Goal: Choose $\widetilde{\mathbf{W}}$ such that this is minimal!

B. Leibe

Least-Squares Classification

- Simplest approach
 - > Directly try to minimize the sum-of-squares error
 - We could write this as

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn})^2$$
$$= \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (\mathbf{w}_k^T \mathbf{x}_n - t_{kn})^2$$

- > But let's stick with the matrix notation for now...
- (The result will be simpler to express and we'll learn some nice matrix algebra rules along the way...)

Leibe

Least-Squares Classification

• Multi-class case

$$\frac{\text{using:}}{\sum\limits_{i,j}a_{ij}^2=\operatorname{Tr}\!\left\{\!\mathbf{A}^{\!\mathrm{T}}\!\mathbf{A}\!\right\}}$$

> Let's formulate the sum-of-squares error in matrix notation

$$E_D(\widetilde{\mathbf{W}}) = \frac{1}{2} \mathrm{Tr} \left\{ (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})^{\mathrm{T}} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T}) \right\}$$

$$\begin{split} \text{ Taking the derivative yields} & \qquad \qquad \frac{\partial}{\partial \widetilde{\mathbf{W}}} E_D(\widetilde{\mathbf{W}}) \ = \ \frac{1}{2} \frac{\partial}{\partial \widetilde{\mathbf{W}}} \mathrm{Tr} \left\{ (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})^T (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T}) \right\} & \qquad \qquad \frac{\partial \mathbf{Z}}{\partial \mathbf{Z}} = \frac{\partial \mathbf{Z}}{\partial \mathbf{Z}} \frac{\partial \mathbf{Y}}{\partial \mathbf{X}} \\ & = \ \frac{1}{2} \frac{\partial}{\partial (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})^T (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})} \mathrm{Tr} \left\{ (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})^T (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T}) \right\} \\ & \qquad \qquad \cdot \frac{\partial}{\partial \widetilde{\mathbf{W}}} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})^T (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T}) \\ & = \ \widetilde{\mathbf{X}}^T (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T}) & \qquad \qquad \qquad \frac{\partial}{\partial \mathbf{A}} \mathrm{Tr} \left\{ \mathbf{A} \right\} = \mathbf{I} \end{split}$$

B. Leibe

Least-Squares Classification

· Minimizing the sum-of-squares error

$$\frac{\partial}{\partial \widetilde{\mathbf{W}}} E_D(\widetilde{\mathbf{W}}) = \widetilde{\mathbf{X}}^{\mathrm{T}} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T}) \stackrel{!}{=} 0$$

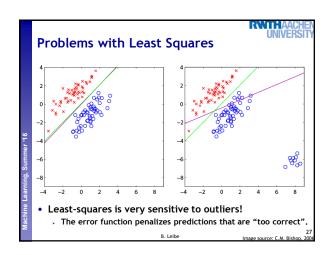
 $egin{aligned} \widetilde{\mathbf{W}} &= (\widetilde{\mathbf{X}}^{\mathrm{T}}\widetilde{\mathbf{X}})^{-1}\widetilde{\mathbf{X}}^{\mathrm{T}}\mathbf{T} \\ &= \widetilde{\mathbf{X}}^{\dagger}\mathbf{T} \end{aligned}$ "pseudo-inverse"

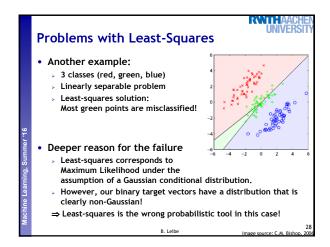
> We then obtain the discriminant function as

$$\mathbf{y}(\mathbf{x}) = \widetilde{\mathbf{W}}^T \widetilde{\mathbf{x}} = \mathbf{T}^T \! \! \left(\widetilde{\mathbf{X}}^\dagger \right)^{\!\! T} \! \widetilde{\mathbf{x}}$$

 \Rightarrow Exact, closed-form solution for the discriminant function parameters.

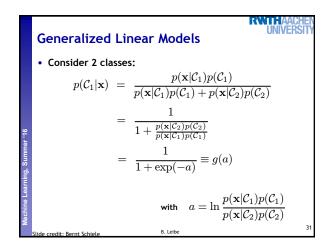
. Leibe

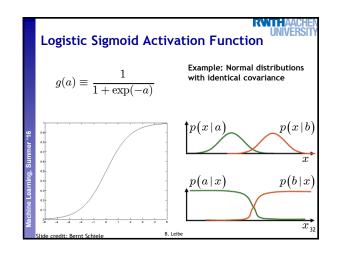




Topics of This Lecture Linear discriminant functions Definition Extension to multiple classes Least-squares classification Derivation Shortcomings Generalized linear models Generalized linear discriminants & gradient descent







Normalized Exponential

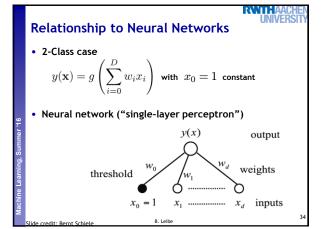
• General case of K > 2 classes:

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{\sum_j p(\mathbf{x}|C_j)p(C_j)}$$
$$= \frac{\exp(a_k)}{\sum_j \exp(a_j)}$$

with
$$a_k = \ln p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)$$

- > This is known as the normalized exponential or softmax function
- $\,\,$ Can be regarded as a multiclass generalization of the logistic sigmoid.

Clide credit: Bornt Schiole B. Leibe

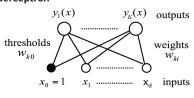


Relationship to Neural Networks

· Multi-class case

$$y_k(\mathbf{x}) = g\left(\sum_{i=0}^D w_{ki} x_i\right)$$
 with $x_0 = 1$ constant

• Multi-class perceptron



Logistic Discrimination

· If we use the logistic sigmoid activation function...

$$g(a) \equiv \frac{1}{1 + \exp(-a)}$$

$$y(\mathbf{x}) = g(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0)$$
threshold
$$x_0 = 1$$

$$x_1 = x_1$$

$$x_2 = 1$$

$$x_3 = 1$$

$$x_4 = 1$$
weights
$$x_4 = 1$$
inputs

... then we can interpret the y(x) as posterior probabilities!

Gida advandána Bana Cabiala B. Leibe

Other Motivation for Nonlinearity

· Recall least-squares classification

One of the problems was that data points that are "too correct" have a strong influence on the decision surface under a squared-error criterion. N

$$E(\mathbf{w}) = \sum_{n=1}^{N} (y(\mathbf{x}_n; \mathbf{w}) - \mathbf{t}_n)^2$$

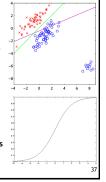
Reason: the output of $y(\mathbf{x}_n; \mathbf{w})$ can grow arbitrarily large for some \mathbf{x}_n :

$$y(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{\mathrm{T}} \mathbf{x} + w_0$$

By choosing a suitable nonlinearity (e.g. a sigmoid), we can limit those influences

$$y(\mathbf{x}; \mathbf{w}) = g(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0)$$

B. Leibe



Disaveriant Consulting d Linear Madele

Discussion: Generalized Linear Models

- Advantages
 - > The nonlinearity gives us more flexibility.
 - > Can be used to limit the effect of outliers.
 - > Choice of a sigmoid leads to a nice probabilistic interpretation.
- Disadvantage
 - Least-squares minimization in general no longer leads to a closed-form analytical solution.
 - ⇒ Need to apply iterative methods.
 - \Rightarrow Gradient descent.

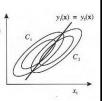
B. Leibe

Linear Separability

- · Up to now: restrictive assumption
 - > Only consider linear decision boundaries
- Classical counterexample: XOR

Linear Separability

- Even if the data is not linearly separable, a linear decision boundary may still be "optimal".
 - Generalization
 - E.g. in the case of Normal distributed data (with equal covariance matrices)



- Choice of the right discriminant function is important and should be based on
- Prior knowledge (of the general functional form)
- Empirical comparison of alternative models
- Linear discriminants are often used as benchmark.

Generalized Linear Discriminants

Generalization

 $\,\,\,$ Transform vector ${\bf x}$ with M nonlinear basis functions $\phi_j({\bf x})$:

$$y_k(\mathbf{x}) = \sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}) + w_{k0}$$

- > Purpose of $\phi_i(\mathbf{x})$: basis functions
- > Allow non-linear decision boundaries.
- $\,\,$ By choosing the right $\phi_{\it j}$, every continuous function can (in principle) be approximated with arbitrary accuracy.
- Notation

 $y_k(\mathbf{x}) = \sum_{j=0}^M w_{kj} \phi_j(\mathbf{x})$ with $\phi_0(\mathbf{x}) = 1$

Generalized Linear Discriminants

Model

$$y_k(\mathbf{x}) = \sum_{j=0}^{M} w_{kj} \phi_j(\mathbf{x}) = y_k(\mathbf{x}; \mathbf{w})$$

- > K functions (outputs) $y_k(\mathbf{x}; \mathbf{w})$
- · Learning in Neural Networks
 - > Single-layer networks: ϕ_i are fixed, only weights ${\bf w}$ are learned.
 - » Multi-layer networks: both the ${\bf w}$ and the ϕ_i are learned.
 - > In the following, we will not go into details about neural networks in particular, but consider generalized linear discriminants in general...

Gradient Descent

- · Learning the weights w:
 - $\succ N$ training data points: $\mathbf{X} = {\mathbf{x}_1, ..., \mathbf{x}_N}$

 $\succ K$ outputs of decision functions:

 $y_k(\mathbf{x}_n; \mathbf{w})$

> Target vector for each data point: $\mathbf{T} = \{\mathbf{t}_{\scriptscriptstyle 1},\,...,\,\mathbf{t}_{\scriptscriptstyle N}\}$

$$\begin{split} \text{Error function (least-squares error) of linear model} \\ E(\mathbf{w}) &= \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}\right)^2 \\ &= \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn}\right)^2 \end{split}$$

Gradient Descent

- Problem
 - The error function can in general no longer be minimized in closed form.
- Idea (Gradient Descent)
 - Iterative minimization
 - Start with an initial guess for the parameter values $\boldsymbol{w}_{ki}^{(0)}$
 - Move towards a (local) minimum by following the gradient.

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

n: Learning rate

This simple scheme corresponds to a 1st-order Taylor expansion (There are more complex procedures available).

RWTHAACHE IINIVERSIT

Gradient Descent - Basic Strategies

"Batch learning"

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

 η : Learning rate

> Compute the gradient based on all training data:

$$\frac{\partial E(\mathbf{w})}{\partial w_{kj}}$$

Slide credit: Bernt Schiele

R Leibe

Gradient Descent - Basic Strategies

· "Sequential updating"

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w})$$

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

 η : Learning rate

> Compute the gradient based on a single data point at a time:

$$\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}}$$

Slide credit: Bernt Schiele

R Loibo

Gradient Descent

Error function

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn} \right)^2$$

$$E_n(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn} \right)^2$$

$$\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} = \left(\sum_{\tilde{j}=1}^{M} w_{k\tilde{j}} \phi_{\tilde{j}}(\mathbf{x}_n) - t_{kn} \right) \phi_j(\mathbf{x}_n)$$

$$= (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}) \phi_j(\mathbf{x}_n)$$

Gradient Descent

• Delta rule (=LMS rule)

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn} \right) \phi_j(\mathbf{x}_n)$$
$$= w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(\mathbf{x}_n)$$

where

$$\delta_{kn} = y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}$$

 \Rightarrow Simply feed back the input data point, weighted by the classification error.

Slide credit: Bernt Schiele

B. Leibe

Gradient Descent

· Cases with differentiable, non-linear activation function

$$y_k(\mathbf{x}) = g(a_k) = g\left(\sum_{j=0}^M w_{ki}\phi_j(\mathbf{x}_n)\right)$$

• Gradient descent

$$\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}) \phi_j(\mathbf{x}_n)$$

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(\mathbf{x}_n)$$

$$\delta_{kn} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn})$$

Slide credit: Bernt Schiele

chine Lear

Summary: Generalized Linear Discriminants

- Properties
 - > General class of decision functions.
 - Nonlinearity $g(\cdot)$ and basis functions ϕ_j allow us to address linearly non-separable problems.
 - Shown simple sequential learning approach for parameter estimation using gradient descent.
 - Better 2nd order gradient descent approaches available (e.g. Newton-Raphson).
- Limitations / Caveats
 - \succ Flexibility of model is limited by curse of dimensionality
 - $g(\cdot)$ and ϕ_j often introduce additional parameters.
 - Models are either limited to lower-dimensional input space or need to share parameters,
 - Linearly separable case often leads to overfitting.
 - $\hbox{-} \ \ {\bf Several \ possible \ parameter \ choices \ minimize \ training \ error.}$

8

References and Further Reading • More information on Linear Discriminant Functions can be found in Chapter 4 of Bishop's book (in particular Chapter 4.1). Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006