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Machine Learning, Summer ‘16

Machine Learning - Lecture 5

Linear Discriminant Functions

03.05.2016

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Manvy slides adapted from B. Schiele
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Recap: Mixture of Gaussians (MoG)

s “Generative model”

“Weight” of mixture

@ p(j) =m; component
plx ) Mixture
( ) /\{A p(x\ej) component
T
I Mlxture density
p(z)
Jj=1
T
; 3
lide credit: Bernt Schiele B. Leibe
RWTH ACHET

Recap: Estimating MoGs - Iterative Strategy

¢ Assuming we knew the mixture components...

p(j = 1]z)

1 111 22 2 2 ki

p(j = 2|x)

¢ Bayes decision rule: Decide j = 1 if

p(j = 1zn) > p(j = 2|zn)

Slide credit: Bernt Schiele LA
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Course Outline

¢ Fundamentals (2 weeks)
~ Bayes Decision Theory
» Probability Density Estimation

¢ Discriminative Approaches (5 weeks)
» Linear Discriminant Functions
» Support Vector Machines

» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

¢ Generative Models (4 weeks)
» Bayesian Networks
» Markov Random Fields

B. Leibe

TWTHACHE
Recap: Estimating MoGs - Iterative Strategy

* Assuming we knew the values of the hidden variable...

J(x)

X

T ML for Gaussian #2
22 2 2 i

ML for Gaussian #1 I

assumed known —>1 111
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h(j=1z,)= 1111 0 0 O
h(j =2lz,) = 0 000 11 1
= Yoo b = L)z, s — Yooy b = 2lzn)Tn
- N . - N .
Zi:l h(] = 1|xn) Zi:l h(] = 2|In)
ide credit: Bernt Schiele B. Leibe ¢
RWTHAACHER

Recap: K-Means Clustering

¢ Iterative procedure

1. Initialization: pick K arbitrary
centroids (cluster means) 1

2. Assign each sample to the closest
centroid.

3. Adjust the centroids to be the
means of the samples assigned
to them.

4. Go to step 2 (until no change)

« Algorithm is guaranteed to
converge after finite #iterations. |
> Local optimum
. Final result depends on initialization. "

ide credit: Bernt Schiele B. Leibe




Recap: EM Algorithm

¢ Expectation-Maximization (EM) Algorithm
» E-Step: softly assign samples to mixture components
NGl 3)
D=1 TN (g Zi)
» M-Step: re-estimate the parameters (separately for each mixture
component) based on the soft assignments

i (Xn) vj=1,....,K, n=1,...,N

N
1\7]. — Z 7;(%n) = soft number of samples labeled j

n=1

~new
j —

==

n
A~ new 1
;7 = -*—Z’Yj(xn)xn

J n=1
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snew 1 A~ New ~ new
e () (6 — 37 (3¢ — )T

J n=1 7
Slide adapted from Bernt Schiele B. Leibe
RWTH CHE
Discriminant Functions
z|Ci)p(C
* Bayesian Decision Theory p(Cilz) = w
» Model conditional probability densities (I)

p(x|Cx) and priors p(Cr)
» Compute posteriorsp(Ci|z) (using Bayes’ rule)
» Minimize probability of misclassification by maximizing p(C|x) .

¢ New approach
» Directly encode decision boundary
» Without explicit modeling of probability densities
» Minimize misclassification probability directly.

Machine Learning, Summer ‘16

lide credit: Bernt Schiele B. Leibe

Discriminant Functions

e Example: 2 classes
y1(z) > ya(2)
& @) —ya(e) >0
& y(z) >0

¢ Decision functions (from Bayes Decision Theory)
y(@) = p(Cilz) — p(Calz)
p(@lC) . p(C1)

y(z):lnm—‘rlnm
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Slide credit: Bernt Schiele LA

Topics of This Lecture

¢ Linear discriminant functions
» Definition
» Extension to multiple classes

¢ Least-squares classification
» Derivation
» Shortcomings

¢ Generalized linear models
» Connection to neural networks
» Generalized linear discriminants & gradient descent

Machine Learning, Summer ‘16

B. Leibe
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Recap: Discriminant Functions

¢ Formulate classification in terms of comparisons
» Discriminant functions

yi(2),...,yx(x)

» Classify = as class C,, if

yr() > y;(x) Vi#k

* Examples (Bayes Decision Theory)
ye(z) = p(Cklz)
ye(z) = p(z|Ch)p(Ck)

ye(z) = logp(x|Ck) + log p(Ck)

Machine Learning, Summer ‘16

ide credit: Bernt Schiele B. Leibe
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Learning Discriminant Functions

¢ General classification problem
» Goal: take a new input x and assign it to one of K classes C,.
» Given: training set X = {x, ..., Xy}
with target values T ={t , ..., t,}.
= Learn a discriminant function y(x) to perform the classification.

2-class problem
. Binary target values: t, € {0,1}

¢ K-class problem
. 1-of-K coding scheme, e.g. t, = (0,1,0,0,0)"
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Linear Discriminant Functions

¢ 2-class problem
» y(x) >0 : Decide for class C, else for class C,

¢ In the following, we focus on linear discriminant
functions

y(x) = wx + wp
weight vector “bias”

(= threshold)

~ If a data set can be perfectly classified by a linear discriminant,
then we call it linearly separable.

Machine Learning, Summer ‘16

Slide credit: Bernt Schiele B. Leibe

y(x) = wix +wp
D
= Z WiT; + Wo
i=1

D
= E Wiy with g = 1 constant
=0

Machine Learning, Summer ‘16

RWTH/CHEN
Linear Discriminant Functions
* Notation T w1
» D : Number of dimensions To wo
X = W =
Ip wp

lide credit: Bernt Schiele B. Leibe

Extension to Multiple Classes

e Problem
» Both strategies result in regions for which
the pure classification result (y, > 0) is
ambiguous.
> In the one-vs-all case, it is still possible
to classify those inputs based on the
continuous classifier outputs y, > y; Vj=k.

e Solution

» We can avoid those difficulties by taking

K linear functions of the form
Yk (X) = Wi X + wio

and defining the decision boundaries directly
by deciding for G, iff y, > y, Vj=k.

» This corresponds to a 1-of-K coding scheme

t, =(0,1,0,...,0,0)"

B. Leibe
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Image source: C.M, Bishop, 200d

Machine Learning, Summer ‘16

Machine Learning, Summer ‘16

RWTH ACHEN

Linear Discriminant Functions

¢ Decision boundary y(x) = 0 defines a hyperplane
» Normal vector: w

—wg
» Offset: +—r
[Iwll

y(x) = wrx + wp

14

Slide credit: Bernt Schiele B. Lewe

Extension to Multiple Classes

¢ Two simple strategies

One-vs-all classifiers One-vs-one classifiers

» How many classifiers do we need in both cases?

» What difficulties do you see for those strategies?
B. Leibe

Image source; C,M, Bishop,
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Extension to Multiple Classes

¢ K-class discriminant
» Combination of K linear functions
T
Yr(X) = WX + wo

Resulting decision hyperplanes:
(Wi — w;)Tx + (wro — wjo) =0

v

It can be shown that the decision regions of such a discriminant
are always singly connected and convex.

This makes linear discriminant models particularly suitable for
problems for which the conditional densities p(x|w,) are
unimodal.

v

v

18
Image source: C.M, Bishop, 200

B. Leibe
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Topics of This Lecture

¢ Least-squares classification
» Derivation
> Shortcomings

B. Leibe

General Classification Problem

e Classification problem
» For the entire dataset, we can write

Y(X) = XW
and compare this to the target matrix T where
W = [Wi,...,Wk]
xif t;r
X = T =
Xy ty
» Result of the comparison:
XW-T
B. Leibe

Goal: Choosew such
that this is minimal!
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Least-Squares Classification

¢ Multi-class case

> aZ =Tr{A"A}
i,J

using:

» Let’s formulate the sum-of-squares error in matrix notation

Ep(W) = %Tr {(ﬁ”v —T)T(XW — T)}

» Taking the derivative yields

o o~ 198 e e
S (W) = 551&{(XW—T) (xwa)}
= L — o — Tr{(f(\ﬂﬁf

29(XW - T)T(XW - T)

O %W omTRW
BW(XW T)T(XW - T)
= XTXW-T)

B. Leibe

chain rule:
0Z 07 0Y
X ~ Y X

T)T(XW — T)}

using:

o
FaTr (A} =1

25
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General Classification Problem

¢ Classification problem
» Let’s consider K classes described by linear models
T
Ye(x) =wpx+wp, k=1... K

» We can group those together using vector notation
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y(x) = WTx
where w10 WKO
—~ - - w11 WK1
W= [Wl,...,WK] =
wW1D WKD
» The output will again be in 1-of-K notation.
= We can directly compare it to the target valuet = [y, ... 7tk]T .
B. Leibe 0
RWTH CHE
Least-Squares Classification
¢ Simplest approach
» Directly try to minimize the sum-of-squares error
> We could write this as
1 N K
2
B(w) = 5303 (r(xniw) — tn)
n=1k=1
1 N K )
— Ty _
= 5 Z (w},: X ti-‘u)
n=1 k=1
» But let’s stick with the matrix notation for now...
» (The result will be simpler to express and we’ll learn some
nice matrix algebra rules along the way...)
’ 2
B. Leibe
RWTH ACHET

Least-Squares Classification

¢ Minimizing the sum-of-squares error

9 By (W)=XTXW-T) £ 0
oW ~
XW =T
W = (XTX)"IXTT
= X'T “pseudo-inverse”

» We then obtain the discriminant function as
— ~ T
y(x) = WTx = TT(XT) %

= Exact, closed-form solution for the discriminant function
parameters.

B. Leibe
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Problems with Least Squares

x
/ o
-4
-6
-8 -8
-4 2 o 2 4 6 8 -4 2 o2 4 6 8

¢ Least-squares is very sensitive to outliers!
» The error function penalizes predictions that are “too correct”.

B. Leibe Image source: C.M, Bishop, 200

Topics of This Lecture

¢ Generalized linear models
» Connection to neural networks
» Generalized linear discriminants & gradient descent

B. Leibe

RWTHAACHER
Generalized Linear Models
¢ Consider 2 classes:
p(x|C1)p(Cr)
p(Ci|x) =
e IR AT
_ 1
p(x]C2)p(C2)
1+ e
1
= Trew(a 9@
p(x|C1)p(Cy)
ith a=Iln————— <
" PXIC2)p(C2)
31

Machine Learning, Summer ‘16

Machine Learning, Summer ‘16

Problems with Least-Squares

¢ Another example:
» 3 classes (red, green, blue)
» Linearly separable problem

» Least-squares solution:
Most green points are misclassified!

* Deeper reason for the failure ok
» Least-squares corresponds to
Maximum Likelihood under the
assumption of a Gaussian conditional distribution.
» However, our binary target vectors have a distribution that is
clearly non-Gaussian!
= Least-squares is the wrong probabilistic tool in this case!

B. Leibe Image source; C.M, Bishop,

Generalized Linear Models

¢ Linear model

y(x) = wrx + wp

¢ Generalized linear model

y(x) = g(wTx +wp)

» g(-)is called an activation function and may be nonlinear.
» The decision surfaces correspond to

y(x) = const. <  WIX+wp = const.

» If g is monotonous (which is typically the case), the resulting
decision boundaries are still linear functions of x.

B. Leibe
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RWTH/ACHEN
Logistic Sigmoid Activation Function

Example: Normal distributions
g(a) = 1 with identical covariance
1+ exp(—a)
J O T p(m | a) p(a: | b)
: plalz) p(b]z)

x}Z

ide credit: Bernt Schiele B. Leibe




Normalized Exponential

¢ General case of K > 2 classes:
p(x|Cr)p(Cr)
p C X)) = —mem
R S AT
exp(ay)

> exp(ag)

with ar = Inp(x|Cr)p(Ck)

» Can be regarded as a multiclass generalization of the logistic
sigmoid.

Machine Learning, Summer ‘16

Slide credit: Bernt Schiele B. Leibe

» This is known as the normalized exponential or softmax function

¢ Multi-class perceptron

RWTH CHE
Relationship to Neural Networks
e Multi-class case
D
y(x)=g Z WiiT; | with g = 1 constant
i=0

Other Motivation for Nonlinearity

©

§ n) Ye(X)  outputs

o ()

>

7]

g thresholds weights

£ Wio Wii

@

- W () e

o

£ .

§ X = 1 b — X4 inputs

= ) 35
lide credit: Bernt Schiele B. Leibe

arbitrarily large for some x o -

y(x;w) = wrx +wp

v

By choosing a suitable nonlinearity (e.g.
a sigmoid), we can limit those influences
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B. Leibe

¢ Recall least-squares classification ¢
» One of the problems was that data 2
points that are “too correct” have a of X
strong influence on the decision
surface under a squared-error criterion.
N -
2
Bw) =Y (ylxniw) —ta)* = K2
n=1 -
. Reason: the output of y(x,;w) can grow e

y(x7w):g(WTx+w0) e

Machine Learning, Summer ‘16
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RWTH/CET
Relationship to Neural Networks

¢ 2-Class case

D
yx)=g Z w;T; | with g =1 constant
i=0

¢ Neural network (“single-layer perceptron”)

y(x) output
threshold weights
xo =1 b — X, inputs
34
Slide credit: Bernt Schiele 8. Leibe
RWTH CHE

Logistic Discrimination
« If we use the logistic sigmoid activation function...

1 (x)
9la) = 1+ exp(—a)

output

threshold weights

y(x) = g(wa + wp)

Xp=1 b A— x, inputs

... then we can interpret the y(z) as posterior probabilities!

ide adated from Bernt Schiele B. Leibe
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RWTHAACHER
Discussion: Generalized Linear Models

¢ Advantages
» The nonlinearity gives us more flexibility.
» Can be used to limit the effect of outliers.
» Choice of a sigmoid leads to a nice probabilistic interpretation.

¢ Disadvantage

» Least-squares minimization in general no longer leads to a
closed-form analytical solution.

= Need to apply iterative methods.

= Gradient descent.

B. Leibe




Linear Separability

¢ Up to now: restrictive assumption
~ Only consider linear decision boundaries

¢ Classical counterexample: XOR

Machine Learning, Summer ‘16

Slide credit: Bernt Schiele B. Leibe

Generalized Linear Discriminants

¢ Generalization
» Transform vector x with M nonlinear basis functions ¢ (x):

M
k(%) = Y wi;d;(x) + wio
=1

» Purpose of ¢,(x): basis functions
> Allow non-linear decision boundaries.

- By choosing the right ¢;, every continuous function can (in
principle) be approximated with arbitrary accuracy.

¢ Notation

yr(x) = Zwk]-d)j (x) with ¢p(x) =1

Machine Learning, Summer ‘16

lide credit: Bernt Schiele B. Leibe

RWTHACHEN

4

» Error function (least-squares error) of linear model

Bw) = 233 (e w) — i)’

n=1k=1
2
N K M
1
= 5 E E wkj¢j(xn) - tkn
n=1k=1 \j=1
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Slide credit: Bernt Schiele LA

RWTH ACHET
Gradient Descent
¢ Learning the weights w:
» N training data points: X ={x,, ..., Xy}
» K outputs of decision functions: Yu(x, W)
» Target vector for each data point: T ={t, ...t}

43

RWTH/CET
Linear Separability

¢ Even if the data is not linearly W) = 3:(x)
separable, a linear decision
boundary may still be “optimal”.
» Generalization

» E.g. in the case of Normal distributed
data (with equal covariance matrices)

¢ Choice of the right discriminant function is important
and should be based on
» Prior knowledge (of the general functional form)
» Empirical comparison of alternative models
» Linear discriminants are often used as benchmark.

Machine Learning, Summer ‘16

40

Slide credit: Bernt Schiele B. Leibe

RWTHACHE
Generalized Linear Discriminants
e Model M
k(%) = > wiid;(x) = yr(x; W)
7=0

» K functions (outputs) y,,(x;w)

¢ Learning in Neural Networks
» Single-layer networks: ¢; are fixed, only weights w are learned.
» Multi-layer networks: both the w and the ¢, are learned.

» In the following, we will not go into details about neural
networks in particular, but consider generalized linear
discriminants in general...

Machine Learning, Summer ‘16

42

ide credit: Bernt Schiele B. Leibe

RWTH ACHET
Gradient Descent
¢ Problem
» The error function can in general no longer be minimized in

closed form.

¢ |dea (Gradient Descent)
» lterative minimization
» Start with an initial guess for the parameter values w,(c(;»).
» Move towards a (local) minimum by following the gradient.

W) _ ™ OEW)

ki T Wk Fur;

7: Learning rate

wi(T)

» This simple scheme corresponds to a 1st-order Taylor expansion
(There are more complex procedures available).
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RWTHACHE
Gradient Descent - Basic Strategies

¢ “Batch learning”

(7+1) (1)

OE(w)
ki = Wiy TN —m——

w
aH)k] w()

n: Learning rate

» Compute the gradient based on all training data:
OE(w)
8wk j

45
Slide credit: Bernt Schiele B. Leibe
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Gradient Descent
¢ Error function
N LN K [ 2
w) = Z E,(w) = iz Z Zwkj¢j(xn) — tin
n=1 n=1k=1 \j=1
x 2
1
Ey(w) = 5 Z (Z Wi (%xn) —
OE,(w) M
wg Z}%;(ﬁ;(xn) —trn | 05 (%n)
5=
= (yk (xn; W) - tkn) lor (xn)
i 47
lide credit: Bernt Schiele B. Leibe
RWTHAACHEN

Gradient Descent

e Cases with differentiable, non-linear activation function

M
Ye(x) = glar) = g | > wkioh;(xn)
=0

¢ Gradient descent

OB, (w) _ 9g(ax) oy ,
3Tkj = 8wkj (Yk(xn; W) tkn)¢](xn)
wi ™ = ) — mnd;(xa)

9g(ar)

Okn = \Xnj —tkn
K Dun; (Y& (%n; W) — trn)

49
Slide credit: Bernt Schiele LA
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RWTHACHE
Gradient Descent - Basic Strategies

¢ “Sequential updating”
N

= ZEn(w
n=1

OE, (W)
8wk]’

(r+1) _ (1)
Wej = = Wey —

wi(m)
7: Learning rate

» Compute the gradient based on a single data point at a time:

OF,(w)
Owy;

slide credit: Bernt Schiele B. Leibe 46
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Gradient Descent
¢ Delta rule (=LMS rule)

W = ) (g (603 W) — tin) 65(%0)
= W] — M0knd; (%)
» where

51€n = Yk (xn; W) - tkn

= Simply feed back the input data point, weighted by the
classification error.

48

ide credit: Bernt Schiele B. Leibe
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RWTH ACHET
Summary: Generalized Linear Discriminants

¢ Properties
» General class of decision functions.

Nonlinearity g(-) and basis functions ¢; allow us to address
linearly non-separable problems.

Shown simple sequential learning approach for parameter
estimation using gradient descent.

Better 2"d order gradient descent approaches available
(e.g. Newton-Raphson).

v

v

v

¢ Limitations / Caveats
» Flexibility of model is limited by curse of dimensionality
- g(-) and ¢, often introduce additional parameters.

- Models are either limited to lower-dimensional input space
or need to share parameters.

» Linearly separable case often leads to overfitting.
- Several possible parameter choices minimize training error. 50
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References and Further Reading

¢ More information on Linear Discriminant Functions can
be found in Chapter 4 of Bishop’s book (in particular
Chapter 4.1).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006
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