Mixture Models and EM

Recap: Histograms

- Basic idea:
 - Partition the data space into distinct bins with widths \(\Delta_i \) and count the number of observations, \(n_i \), in each bin.
 - Often, the same width is used for all bins, \(\Delta_i = \Delta \).
 - This can be done, in principle, for any dimensionality \(D \).

Recap: Kernel Density Estimation

- Approximation formula:
 \[
 p(x) \approx \frac{K}{NV} \\
 \text{fixed } V \quad \text{determine } K \\
 \text{fixed } K \quad \text{determine } V
 \]

Topics of This Lecture

- Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt
- K-Means Clustering
 - Algorithm
 - Applications
- EM Algorithm
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice
- Applications

Recap: Mixture of Gaussians (MoG)

- “Generative model”
 \[
 p(x) = \sum_{j=1}^{M} p(x|\theta_j) p(j) \\
 p(j) = \pi_j \\
 \text{“Weight” of mixture component}
 \]

Course Outline

- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation
- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns
- Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields
We can already see that this will be difficult, since the Maximum Likelihood procedure involves computing a complex gradient function (non-linear mutual dependencies). Optimization of one Gaussian depends on all other Gaussians! It is possible to apply iterative numerical optimization here, but in the following, we will see a simpler method.

Mixture of Gaussians

- **Multivariate Gaussians**
 \[p(x|\theta) = \sum_{j=1}^{M} \pi_j p(x|\theta_j) \]
 \[p(x|\theta_j) = \frac{1}{(2\pi)^{D/2} |\Sigma_j|^{1/2}} \exp \left\{ -\frac{1}{2} (x - \mu_j)^T \Sigma_j^{-1} (x - \mu_j) \right\} \]

- **Maximum Likelihood**
 \[\theta = (\pi_1, \mu_1, \Sigma_1, \ldots, \pi_M, \mu_M, \Sigma_M) \]

- **Minimum:**
 \[E = -\ln p(x|\theta) = -\sum_{n=1}^{N} \ln p(x_n|\theta) \]

 - Let's first look at \(\mu_j \):
 \[\frac{\partial E}{\partial \mu_j} = 0 \]

 - We can already see that this will be difficult, since
 \[\ln p(X|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left(\sum_{j=1}^{M} \pi_j N(x_n; \mu_j, \Sigma_j) \right) \]

 This will cause problems!

- **But...**
 \[\mu_j = \frac{\sum_{n=1}^{N} \gamma_j(x_n) x_n}{\sum_{n=1}^{N} \gamma_j(x_n)} = \frac{\pi_j N(x_n; \mu_j, \Sigma_j)}{\sum_{k=1}^{K} \pi_k N(x_n; \mu_k, \Sigma_k)} \]

 - I.e. there is no direct analytical solution!

\[\frac{\partial E}{\partial \mu_j} = f(\pi_1, \mu_1, \Sigma_1, \ldots, \pi_M, \mu_M, \Sigma_M) \]

- Complex gradient function (non-linear mutual dependencies)
- Optimization of one Gaussian depends on all other Gaussians!
- It is possible to apply iterative numerical optimization here, but in the following, we will see a simpler method.

Mixture of Gaussians - 1st Estimation Attempt

- Minimization:
 \[E = -\sum_{n=1}^{N} \ln \frac{1}{(2\pi)^{D/2} |\Sigma_j|^{1/2}} \exp \left\{ -\frac{1}{2} (x_n - \mu_j)^T \Sigma_j^{-1} (x_n - \mu_j) \right\} \]

 - **Parameters:**
 \[\theta = (\pi_1, \mu_1, \Sigma_1, \ldots, \pi_M, \mu_M, \Sigma_M) \]

 - **Minimization:**
 \[\frac{\partial E}{\partial \mu_j} = -\sum_{n=1}^{N} \frac{\partial}{\partial \mu_j} \ln p(x_n|\theta_j) \]
 \[= -\sum_{n=1}^{N} \left(\Sigma_j^{-1} (x_n - \mu_j) \right) \frac{p(x_n|\theta_j)}{\sum_{k=1}^{M} p(x_n|\theta_k)} \]
 \[= -\Sigma_j^{-1} \sum_{n=1}^{N} (x_n - \mu_j) \frac{p(x_n|\theta_j)}{\sum_{k=1}^{M} p(x_n|\theta_k)} = 0 \]

- **We thus obtain**
 \[\mu_j = \frac{\sum_{n=1}^{N} \gamma_j(x_n) x_n}{\sum_{n=1}^{N} \gamma_j(x_n)} \]

 "responsibility" of component \(j \) for \(x_n \)
Mixture of Gaussians - Other Strategy

• Assuming we knew the values of the hidden variable...

\[f(x) \]

\[\mu_1 = \frac{\sum_{n=1}^{N} h(j = 1|x_n)x_n}{\sum_{i=1}^{N} h(j = 1|x_n)} \]
\[\mu_2 = \frac{\sum_{n=1}^{N} h(j = 2|x_n)x_n}{\sum_{i=1}^{N} h(j = 2|x_n)} \]

ML for Gaussian #1
ML for Gaussian #2

\[p(j = 1|x) > p(j = 2|x) \]

Bayes decision rule: Decide \(j = 1 \) if

Chicken and egg problem - what comes first?

In order to break the loop, we need an estimate for \(j \).
E.g. by clustering...

Topics of This Lecture

• Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt

• K-Means Clustering
 - Algorithm
 - Applications

• EM Algorithm
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice

• Applications

K-Means Clustering

• Iterative procedure
 1. Initialization: pick \(k \) arbitrary centroids (cluster means)
 2. Assign each sample to the closest centroid.
 3. Adjust the centroids to be the means of the samples assigned to them.
 4. Go to step 2 (until no change)

• Algorithm is guaranteed to converge after finite #iterations.
 - Local optimum
 - Final result depends on initialization.
K-Means Clustering

- K-Means optimizes the following objective function:
 \[
 J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \| x_n - \mu_k \|^2
 \]

 where
 \[
 r_{nk} = \begin{cases}
 1 & \text{if } k = \arg \min_j \| x_n - \mu_j \|^2 \\
 0 & \text{otherwise.}
 \end{cases}
 \]

- In practice, this procedure usually converges quickly to a local optimum.

Example Application: Image Compression

- Take each pixel as one data point.
- Set the pixel color to the cluster mean.

Summary K-Means

- **Pros**
 - Simple, fast to compute
 - Converges to local minimum of within-cluster squared error
- **Problem cases**
 - Setting k?
 - Sensitive to initial centers
 - Sensitive to outliers
 - Detects spherical clusters only
- **Extensions**
 - Speed-ups possible through efficient search structures
 - General distance measures: k-medoids

Topics of This Lecture

- **Mixture distributions**
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt
- **K-Means Clustering**
 - Algorithm
 - Applications
- **EM Algorithm**
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice
- **Applications**
Clustering with "soft assignments"

- Expectation step of the EM algorithm
 \[p(j|x) \]
 \[p(1|x) \quad 0.99 \quad 0.8 \quad 0.2 \quad 0.01 \]
 \[p(2|x) \quad 0.01 \quad 0.2 \quad 0.8 \quad 0.99 \]

- Maximization step of the EM algorithm
 \[\mu_j = \frac{\sum_{n=1}^{N} p(j|x_n) x_n}{\sum_{n=1}^{N} p(j|x_n)} \]

EM Algorithm

- Expectation-Maximization (EM) Algorithm
 - **E-Step**: softly assign samples to mixture components
 \[\gamma_j(x_n) \leftarrow \frac{p_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}{\sum_{j=1}^{K} p_j \mathcal{N}(x_n | \mu_j, \Sigma_j)} \quad \forall j = 1, \ldots, K, n = 1, \ldots, N \]
 - **M-Step**: re-estimate the parameters (separately for each mixture component) based on the soft assignments
 \[\hat{N}_j = \sum_{n=1}^{N} \gamma_j(x_n) = \text{soft number of samples labeled } j \]
 \[\hat{\Sigma}^\text{new}_j = \frac{\hat{N}_j}{\sum_{n=1}^{N} \gamma_j(x_n) x_n (x_n - \hat{\mu}^\text{new}_j)} \]
 \[\hat{\mu}^\text{new}_j = \frac{1}{\sum_{n=1}^{N} \gamma_j(x_n)} \sum_{n=1}^{N} \gamma_j(x_n) x_n \]

EM - Technical Advice

- When implementing EM, we need to take care to avoid singularities in the estimation!
 - Mixture components may collapse on single data points.
 - E.g. consider the case \(\Sigma_j = \sigma^2 I \) (this also holds in general).
 - Assume component \(j \) is exactly centered on data point \(x \).

- Need to introduce regularization
 - Enforce minimum width for the Gaussians
 - E.g., instead of \(\Sigma^{-1} \), use \((\Sigma + \sigma^2 I)^{-1} \)

- Convergence is relatively slow.

- Initialize with k-Means to get better results!
 - k-Means is itself initialized randomly, will also only find a local optimum.
 - But convergence is much faster.

EM - Technical Advice (2)

- EM is very sensitive to the initialization
 - Will converge to a local optimum of \(E \).
 - Convergence is relatively slow.

- Initialize with k-Means to get better results!
 - k-Means is itself initialized randomly, will also only find a local optimum.
 - But convergence is much faster.

- Typical procedure
 - Run k-Means \(M \) times (e.g. \(M = 10-100 \)).
 - Pick the best result (lowest error \(J \)).
 - Use this result to initialize EM
 - Set \(\mu \) to the corresponding cluster mean from k-Means.
 - Initialize \(\Sigma \) to the sample covariance of the associated data points.
K-Means Clustering Revisited

Interpreting the procedure
1. Initialization: pick \(K \) arbitrary centroids (cluster means)
2. Assign each sample to the closest centroid. \((E\text{-Step})\)
3. Adjust the centroids to be the means of the samples assigned to them. \((M\text{-Step})\)
4. Go to step 2 (until no change)

Summary: Gaussian Mixture Models

Properties
- Very general, can represent any (continuous) distribution.
- Once trained, very fast to evaluate.
- Can be updated online.

Problems / Caveats
- Some numerical issues in the implementation
 \(\Rightarrow \) Need to apply regularization in order to avoid singularities.
- EM for MoG is computationally expensive
 \(\Rightarrow \) Especially for high-dimensional problems!
 \(\Rightarrow \) More computational overhead and slower convergence than k-Means
 \(\Rightarrow \) Results very sensitive to initialization
 \(\Rightarrow \) Run k-Means for some iterations as initialization!
- Need to select the number of mixture components \(K \).
 \(\Rightarrow \) Model selection problem (see Lecture 16)

Topics of This Lecture

- Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt
- K-Means Clustering
 - Algorithm
 - Applications
- EM Algorithm
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice
- Applications

Applications

- Mixture models are used in many practical applications.
 \(\Rightarrow \) Wherever distributions with complex or unknown shapes need to be represented...

- Popular application in Computer Vision
 - Model distributions of pixel colors.
 - Each pixel is one data point in, e.g., RGB space.
 \(\Rightarrow \) Learn a MoG to represent the class-conditional densities.
 \(\Rightarrow \) Use the learned models to classify other pixels.

Application: Background Model for Tracking

- Train background MoG for each pixel
 - Model “common” appearance variation for each background pixel.
 - Initialization with an empty scene.
 - Update the mixtures over time
 - Adapt to lighting changes, etc.

- Used in many vision-based tracking applications
 - Anything that cannot be explained by the background model is labeled as foreground (object).
 - Easy segmentation if camera is fixed.

Application: Image Segmentation

- **User assisted image segmentation**
 - User marks two regions for foreground and background.
 - Learn a MoG model for the color values in each region.
 - Use those models to classify all other pixels.
 - Simple segmentation procedure (building block for more complex applications)

Application: Color-Based Skin Detection

- Collect training samples for skin/non-skin pixels.
- Estimate MoG to represent the skin/non-skin densities

Classify skin color pixels in novel images

Interested to Try It?

- Here’s how you can access a webcam in Matlab:

```matlab
function out = webcam
% uses "Image Acquisition Toolbox,
adaptorName = 'winvideo';
vidFormat = 'I420_320x240';
vidObj1= videoinput(adaptorName, 1, vidFormat);
set(vidObj1, 'ReturnedColorSpace', 'rgb');
set(vidObj1, 'FramesPerTrigger', 1);
out = vidObj1 ;
cam = webcam();
img=getsnapshot(cam);
```

References and Further Reading

- More information about EM and MoG estimation is available in Chapter 2.3.9 and the entire Chapter 9 of Bishop’s book (recommendable to read).

- Additional information
 - Original EM paper:
 - EM tutorial:

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006