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Recap: Histograms
¢ Basic idea:
» Partition the data space into distinct

bins with widths A; and count the

number of observations, n;, in each

bin. 1

by
i = =
DT NA, .
© 0 05 1
E » Often, the same width is used for all bins, A; = A.
5 » This can be done, in principle, for any dimensionality D...
“ x
c
E if; ...but the required
s 7[“ 7 number of bins
2 H— grows exponen-
§ L tially with D!
= D=1 ° D=2 > D=3
B. Leibe

Topics of This Lecture

¢ Mixture distributions
> Mixture of Gaussians (MoG)
» Maximum Likelihood estimation attempt

¢ K-Means Clustering
» Algorithm
~ Applications

e EM Algorithm
» Credit assignment problem
> MoG estimation
» EM Algorithm
» Interpretation of K-Means
» Technical advice

¢ Applications
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Course Outline

¢ Fundamentals (2 weeks)
~ Bayes Decision Theory
» Probability Density Estimation

¢ Discriminative Approaches (5 weeks)
» Linear Discriminant Functions
» Support Vector Machines

» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

¢ Generative Models (4 weeks)
» Bayesian Networks
» Markov Random Fields

B. Leibe
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Recap: Kernel Density Estimation

e Approximation formula: EXe,:ZZ
14

PX) ~ =
NV
fixed V fixed K
determine K determine V
Kernel Methods  K-Nearest Neighbor
¢ Kernel methods + o K-Nearest Neighbor
» Place a kernel window k _' LA » Increase the volume V
at location x and count - until the K next data
how many data points .. points are found.
fall inside it. -
5
ide adapted from Bernt Schiele B. Leibe
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RWTH ACHET
Recap: Mixture of Gaussians (MoG)

¢ “Generative model”

. _ _ “Weight” of mixture
p(j) =, component
1
2| 3
T Mixture
" /\(A ) component
T
I Mixture density
p(z) d
M p(16) = 3 p(16;)p())
j=1

T

ide credit: Bernt Schiele B. Leibe
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Mixture of Multivariate Gaussians Mixture of Multivariate Gaussians

¢ Multivariate Gaussians

p(x[0) = ZP(X\Gj)p(j)

1 1 _
P(X\ej) = WGXP {*i(x - ”j)TEj l(x - /"j)}
j

0.5

» Mixture weights / mixture coefficieﬂr}}:s:

p(j) =7; with0- ;- 1 and Zﬂ'j:l 1@
. Parameters: 77 N T2

0:(71'17“17217'“77TM7“M72M) 0 =
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Mixture of Gaussians - 15t Estimation Attempt

RWTH/JCHEN
Mixture of Gaussians - 15t Estimation Attempt

¢ Maximum Likelihood

Minimization: 9
N ’ N9 p(xal0;) gyl 0=
- Minimize £ = —InL(f) = — Y _ Inp(x,|0) oF _ o1, ’ 5 o = N i )
n=1 8”] 71 D1 P(Xn|0k)
- Let’s first look at 11 N (xul65)
E - P X j
o, S vl CRIVRNE LT

© op; © n=1 2 k=1 P(%nl0k)
£ ‘ . £ =
g AT
2 » We can already see that this will be difficult, since 2 n=1
E N i3 ¢ We thus obtain =7 (%n)
E Inp(X|m, pu, ) = Zln { e N (X |, i) % _ 22/:1 ’Yj(Xn)Xn “responsibil?ty” of
£ n=1 £ = ;= W component j for x,,
é This will cause problems! ‘;‘3 n=17jXn

ide adapted from Bernt Schiele B. Leibe B. Leibe

RWTH/ T
Mixture of Gaussians - 15t Estimation Attempt

N
— Zn: 1 Xn, A

S v (%n) v (%n)
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Mixture of Gaussians - Other Strategy

e But... e Other strategy:

WJN(XH@ %)

St N (Xafpas) i)

]

S

S(x)

¢ |.e. there is no direct analytical solution!

© ©

g OF g . Observed data: . see P . X
E a_ﬂ' = f (T, 21, T gy B) E » Unobserved data: 1111 22 2 2
'g J '& - Unobserved = “hidden variable”: j|x

£ » Complex gradient function (non-linear mutual dependencies) =

c c .

E » Optimization of one Gaussian depends on all other Gaussians! § h(] = 1|xn) = 1 111 0 0 0
% » It is possible to apply iterative numerical optimization here, 2 R

£ but in the following, we will see a simpler method. £ h(j = 2|x,) = 0 000 1 1 1
o o

© -]

= =

LA ide credit: Rernt Schiele LA
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Mixture of Gaussians - Other Strategy

¢ Assuming we knew the values of the hidden variable...

J(x)

X

ML for Gaussian #1 I T ML for Gaussian #2

assumed known —> 1 111

RWTHAACHE

2 2 2 j

h(j=1z,)= 1111 0 0 o0

h(j =2lz,) = 0 000 11 1
N . N .

= Yon=1 P = Lzn)ws pp = Yon=1 P = 2Jz0) 70
- N . - N .
Zi:l h(j = 1|zn) Zi:l h(j = 2lz,)
Slide credit: Bernt Schiele B. Leibe 14

Mixture of Gaussians - Other Strategy

¢ Chicken and egg problem - what comes first?

J(x)

We don’t know
any of those!
1111 22 2 2

¢ In order to break the loop, we need an estimate for ;.
» E.g. by clustering...

J

lide credit: Bernt Schiele B. Leibe
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Topics of This Lecture

¢ K-Means Clustering
» Algorithm
~ Applications

B. Leibe
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Mixture of Gaussians - Other Strategy

¢ Assuming we knew the mixture components...

v |M

p(j = 1]z)

p(j = 2|x)

1 111 22 2 2 J

¢ Bayes decision rule: Decide j =1 if

p(j = 1zn) > p(j = 2|zn)

Machine Learning Summer ‘16

Slide credit: Bernt Schiele B. Leibe
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Clustering with Hard Assignments

e Let’s first look at clustering with “hard assignments”

J(x)

e X
E o ooe o0 . .
£
g
£
©
3
2 .
£ 1111 2 2 ]
8
= il 17
ide credit: Bernt Schiele B. Leibe
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K-Means Clustering

¢ Iterative procedure

1. Initialization: pick K arbitrary
centroids (cluster means) 1

2. Assign each sample to the closest
centroid.

3. Adjust the centroids to be the
means of the samples assigned
to them.

4. Go to step 2 (until no change)

« Algorithm is guaranteed to
converge after finite #iterations. | * ¥
> Local optimum Il
. Final result depends on initialization. "

ide credit: Bernt Schiele B. Leibe
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K-Means - Example wit

h K=2

Machine Learning Summer ‘16
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20
Image source: CM, Bishop, 2001

Example Application: Image Compress'ion" '

2
Take each pixel
as one data point.

. -‘i&';

I

K-Means
Clustering

2
Set the pi:% 50y
to the cluster mean. \¥,‘
-2

e

Machine Learning Summer ‘16
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22

Image source; CM, Bishop, 200¢

Summary K-Means

e Pros
» Simple, fast to compute

» Converges to local minimum
of within-cluster squared error

e Problem cases
» Setting k?
» Sensitive to initial centers
» Sensitive to outliers
» Detects spherical clusters only

¢ Extensions
» Speed-ups possible through
efficient search structures
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ide credit: Kristen Grauman

» General distance measures: k-medoids

(A} Two atural cluste femcam chster
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K-Means Clustering

¢ K-Means optimizes the following ool J ¢
objective function:

J:ZZrnk”xn_ﬂkHQ . &

n=1k=1 N

» where 1 2 3 4

1
Tnk = {0

» In practice, this procedure usually converges quickly to a local
optimum.

if k = argminy ||x, — p;|?

otherwise.

B. Leibe I .2 CM, Bishop,

‘ LI
Example Application: Image Compression

K=2

K=3

K =10

Original image

B. Leibe I 2. C.M, Bishop.
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Topics of This Lecture

e EM Algorithm
» Credit assignment problem
» MoG estimation
» EM Algorithm
» Interpretation of K-Means
» Technical advice

B. Leibe
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EM Clustering

¢ Clustering with “soft assignments”
» Expectation step of the EM algorithm

J(x)

x
plle) j \ \ /
p(1]x) 0.99 0.8 0.2 0.01
p(2|z) 0.01 0.2 0.8 0.99
Slide credit: Bernt Schiele B Leibe *
RWTHACHEN

EM Algorithm

¢ Expectation-Maximization (EM) Algorithm
» E-Step: softly assign samples to mixture components
TN (et )
—_L
i1 TN (% ey i)
> M-Step: re-estimate the parameters (separately for each mixture
component) based on the soft assignments
N
Nj Z 7;(%n) = soft number of samples labeled ;j

n=1

%) Vj=1,....,K, n=1,...,N

< 1
S o o D k) e — ) e
J n=1 32
8. Leibe

~ ncw)T

lide adapted from Bernt Schiele
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RWTHAACHER
EM - Technical Advice

 When implementing EM, we need to take care to avoid
singularities in the estimation!
» Mixture components may collapse on single data points.
» E.g. consider the case X, = 571 (this also holds in general)
» Assume component j is exactly centered on data point x,. This
data point will then contribute a term in the likelihood function

1
N(xn‘xnwo' I) plx)
vV 7TU]
» For g; — 0, this term goes to infinity! .
34
lmage source: C.M, Bishop, 2004

= Need to introduce regularization
» Enforce minimum width for the Gaussians
. E.g., instead of 31, use (X + o, I)?!

min

B. Leibe
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EM Clustering

¢ Clustering with “soft assignments”
» Maximization step of the EM algorithm

J(x)

_ 25:1 P(j|xn)Xn

J N .
> =1 P(51%n)
X
® o0
p(ljz) 0.99 0.8 0.2 0.01 Maximum Likelihood
p(2lz) 0.01 02 0.8 0.99 estimate
slide credit: Bernt Schiele B. Leibe 7
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EM Algorithm - An Example

-2 0 2 -2 0 2 -2

B. Leibe
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Image source; C,M, Bishop,
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EM - Technical Advice (2)

¢ EM is very sensitive to the initialization
» Will converge to a local optimum of E.
» Convergence is relatively slow.

= Initialize with k-Means to get better results!

» k-Means is itself initialized randomly, will also
local optimum.

» But convergence is much faster.

¢ Typical procedure
» Run k-Means M times (e.g. M = 10-100).
» Pick the best result (lowest error J).
» Use this result to initialize EM

- Set p; to the corresponding cluster mean from k-
- Initialize X; to the sample covariance of the associated data puints.35

B. Leibe

only find a

Means.
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K-Means Clustering Revisited K-Means Clustering Revisited

¢ Interpreting the procedure
1. Initialization: pick K arbitrary
centroids (cluster means) {

¢ K-Means clustering essentially corresponds to a Gaussian
Mixture Model (MoG or GMM) estimation with EM
whenever
» The covariances are of the K Gaussians are set to ¥, = 02
» For some small, fixed o2

2. Assign each sample to the closest
centroid. (E-Step)

3. Adjust the centroids to be the
means of the samples assigned
to them. (M-Step)

k-Means MoG

2 2
] ]
£ £ R
E E :
a . i |+ (7] ! o ! .
o 4. Go to step 2 (until no change) ) ’T.?:, :\,%%: . {g
£ g o 8 o8 e 0 7 05
5 H ofenl, .
3 o 3 9 N ﬁ;;‘; et © o
&
% é’ i % e,
o o ) °
L] ih ] S
= = W5 0 W5 i 75 2 W5 g o5 i 75 2
36 37
B. Leibe Slide credit: Bernt Schiele B. Leibe
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Summary: Gaussian Mixture Models Topics of This Lecture
¢ Properties
» Very general, can represent any (continuous) distribution.
» Once trained, very fast to evaluate.
» Can be updated online.
¢ Problems / Caveats
® » Some numerical issues in the implementation =
; = Need to apply regularization in order to avoid singularities. ;
E » EM for MoG is computationally expensive E
@ - Especially for high-dimensional problems! @
.E’ - More computational overhead and slower convergence than k-Means _E’
E - Results very sensitive to initialization 5
"f = Run k-Means for some iterations as initialization! :
c =
§ » Need to select the number of mixture components K. -§ « Applications
= = Model selection problem (see Lecture 16) 3 = 13
B. Leibe B. Leibe
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Applications Application: Background Model for Tracking
¢ Mixture models are used in . ¢ Train background MoG for each pixel Gaussian
many practical applications. » Model “common* appearance | Mixture
» Wherever distributions with complex o . variation for each background pixel.
or unknown shapes need to be ’ r » Initialization with an empty scene.
represented... ,, » Update the mixtures over time
0 - Adapt to lighting changes, etc.
0 05 1

¢ Used in many vision-based tracking
applications =
» Anything that cannot be explained ="
i

Popular application in Computer Vision

» Model distributions of pixel colors.

» Each pixel is one data point in, e.g., RGB space.

= Learn a MoG to represent the class-conditional densities.
= Use the learned models to classify other pixels.

by the background model is labeled
as foreground (=object).

Easy segmentation if camera is fixed.

v
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C. Stauffer, E. Grimson, Learning Patterns of Activity Using Real-Time Tracking,
IEEE Trans. PAMI, 22(8):747-757, 2000.
B. Leibe
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http://people.csail.mit.edu/people/stauffer/Home/_papers/vsam-pami-tracking.pdf
http://people.csail.mit.edu/people/stauffer/Home/_papers/vsam-pami-tracking.pdf
http://people.csail.mit.edu/people/stauffer/Home/_papers/vsam-pami-tracking.pdf
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Application: Image Segmentation

(a) input image

(b) user input {(c) inferred segmentation

e User assisted image segmentation
» User marks two regions for foreground and background.
» Learn a MoG model for the color values in each region.
» Use those models to classify all other pixels.
= Simple segmentation procedure
(building block for more complex applications)

42
B. Leibe
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Interested to Try It?

¢ Here’s how you can access a webcam in Matlab:

function out = webcam

% uses "Image Acquisition Toolbox,

adaptorName = 'winvideo';

'1420_320x240';

vidObjl= videoinput (adaptorName, 1, vidFormat);
set (vidObjl, 'rgb');

set (vidObjl, 'FramesPerTrigger', 1);

out = vidObjl ;

vidFormat =

'"ReturnedColorSpace’,

cam = webcam() ;
img=getsnapshot (cam) ;

) 44
B. Leibe
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RWTH/CET
Application: Color-Based Skin Detection

¢ Collect training samples
for skin/non-skin pixels.

¢ Estimate MoG to

represent the skin/
non-skin densities
win
& o
non-skin ‘ Classify skin color pixels in novel images
M. Jones and J. Rehg, Statistical Color Models with Application to Skin
Detection, 1JCV 2002. 43
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References and Further Reading
¢ More information about EM and MoG estimation is

available in Chapter 2.3.9 and the entire Chapter 9 of
Bishop’s book (recommendable to read). ==

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

¢ Additional information i
» Original EM paper: L
- A.P. Dempster, N.M. Laird, D.B. Rubin, ,,Maximum-Likelihood from

incomplete data via EM algorithm”, In Journal Royal Statistical
Society, Series B. Vol 39, 1977

» EM tutorial:
- J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its
Application to Parameter Estimation for Gaussian Mixture and
Hidden Markov Models“, TR-97-021, ICSI, U.C. Berkeley, CA,USA

B. Leibe



http://www.cc.gatech.edu/~rehg/Papers/SkinDetect-IJCV.pdf
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http://www.mmp.rwth-aachen.de/teaching/ml/dempster-em-jrss77.pdf
http://www.mmp.rwth-aachen.de/teaching/ml/dempster-em-jrss77.pdf
http://www.mmp.rwth-aachen.de/teaching/ml/dempster-em-jrss77.pdf
http://www.mmp.rwth-aachen.de/teaching/ml/bilmes-emgentletutorial-tr97.pdf
http://www.mmp.rwth-aachen.de/teaching/ml/bilmes-emgentletutorial-tr97.pdf
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