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Topics of This Lecture

¢ Recap: Parametric Methods
> Maximum Likelihood approach
» Bayesian Learning

¢ Non-Parametric Methods
Histograms

Kernel density estimation
» K-Nearest Neighbors

~ k-NN for Classification

~ Bias-Variance tradeoff

v

v

¢ Mixture distributions
> Mixture of Gaussians (MoG)
> Maximum Likelihood estimation attempt
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Recap: Maximum Likelihood Approach
¢ Computation of the likelihood

» Single data point: p(In|9)

> Assumption: all data points X = {zl,.. ,z,} are independent

L(0) = p(X|0) = Hp z|0)
» Log-likelihood
E()=—InL(0) = — Zlnp(zn|9)

¢ Estimation of the parameters ¢ (Learning)
> Maximize the likelihood (=minimize the negative log-likelihood)
= Take the derivative and set it to zero.

iv: 5P (@nlf) Ly
;vnw

Slide credit: Bernt Schiele LA

©
=
=
]
=
£
=
2]
=)
=
€
£
«
1
=
o
=
=
(]
]
=

Course Outline

¢ Fundamentals (2 weeks)
. Bayes Decision Theory @ §7'
» Probability Density Estimation '

¢ Discriminative Approaches (5 weeks)
» Linear Discriminant Functions
» Support Vector Machines

» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

¢ Generative Models (4 weeks)
» Bayesian Networks
» Markov Random Fields
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Recap: Gaussian (or Normal) Distribution

¢ One-dimensional case
> Mean p

» Variance o2 /

Nl 0%)

2y _ 1 _ (z — N)z
N(alp,0?) = Tore cxr){ 577
¢ Multi-dimensional case V. N
» Mean p

» Covariance %

N(x|p, ) = WQXP {*%(x —p)"TE (x - H)}

B. Leibe
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Image source; C,M, Bishop,
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Recap: Bayesian Learning Approach
¢ Bayesian view:

. Consider the parameter vector ¢ as a random variable.
» When estimating the parameters, what we compute is
Assumption: given 0, this

palX) = [ pla01x)as
doesn’t depend on X anymore

(@, 01X) = p(]0, X)p(6] X)

pa]X) = / p(z10)p(8]X)do
—

This is entirely determined by the parameter 6
(i.e. by the parametric form of the pdf).
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ide adapted from Berpt Schiele B. Leibe




Bayesian Learning Approach

* Discussion Likelihood of the parametric

form 6 given the data set X.

Estimate for z based on
parametric form 6

Prior for the

parameters 6

_ T hal0)L0)p(d)
J L(0)p(0)do
JoV

I

Normalization: integrate
over all possible values of

p(z]X) do

~ If we now plug in a (suitable) prior p(f), we can estimate p(z|X)
from the data set X.

Machine Learning Summer ‘16
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Non-Parametric Methods

¢ Non-parametric representations
» Often the functional form of the distribution is unknown

e

¢ Estimate probability density from data
» Histograms
» Kernel density estimation (Parzen window / Gaussian kernels)
» k-Nearest-Neighbor

Machine Learning Summer ‘16

lide credit: Bernt Schiele B. Leibe

RWTH ACHET
Histograms
¢ The bin width A acts as a smoothing factor.
STA—o01
not smooth enough
o i
0 0.5 1
A=0.08

© about OK
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3 SMa—os
g too smooth
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Image source: C.M, Bishop, 200d

B. Leibe

Machine Learning Summer ‘16

Machine Learning Summer ‘16

RWTH/ACHEN
Topics of This Lecture
¢ Non-Parametric Methods
» Histograms
» Kernel density estimation
» K-Nearest Neighbors
» k-NN for Classification
» Bias-Variance tradeoff
8
B. Leibe
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Histograms
¢ Basic idea:
» Partition the data space into distinct
bins with widths A; and count the
number of observations, n;, in each
bin. 1
Ty
i = =
DT NA, .
0 05 1
» Often, the same width is used for all bins, A; = A.
» This can be done, in principle, for any dimensionality D...
if; ...but the required
7[“ 7 number of bins
i grows exponen-
tially with D!
D=1 B D=2 > D=3 10
B. Leibe

Image source; C,M, Bishop,
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Summary: Histograms

¢ Properties
» Very general. In the limit (N—oc), every probability density can
be represented.
» No need to store the data points once histogram is computed.
» Rather brute-force

¢ Problems

» High-dimensional feature spaces
— D-dimensional space with M bins/dimension will require /" bins!
= Requires an exponentially growing number of data points
=*“Curse of dimensionality”

» Discontinuities at bin edges

» Bin size?
- too large: too much smoothing
- too small: too much noise

ide credit: Bernt Schiele B. Leibe
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Statistically Better-Founded Approach

¢ Data point x comes from pdf p(x)
» Probability that x falls into small region R

P= [ p(y)dy

R
o If R is sufficiently small, p(x) is roughly constant
» Let V be the volume of R

P= [ sy~ sV
R
« If the number N of samples is sufficiently large, we can
estimate P as x X
P=— =
i p(x) ~ 557

Slide credit: Bernt Schiele B. Leibe

Kernel Methods

¢ Parzen Window
> Hypercube of dimension D with edge length h:

R
k(u):{(l)’ lu; - 5, i=1,...,

else

“Kernel function”

KZk X"V/k

» Probability density estimate:
N
K 1 X—X
- = k n
NV NRP 7;1 ( h )

B. Leibe

p(x) ~

lide credit: Bernt Schiele
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Kernel Methods: Gaussian Kernel

¢ Gaussian kernel
» Kernel function

1 u?
k(u) = CTEEE exp {_W}

N
K=Zk(xfxn) V:/k(udu:
» Probability density estimate

n=1
L e
. mPR P 02

B. Leibe

slide credit: Bernt Schiele
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Statistically Better-Founded Approach

K
p(x
fixed V/ fixed K
determine K determine V/
Kernel Methods  K-Nearest Neighbor

¢ Kernel methods
» Example: Determine
the number K of data -*
points inside a fixed
window... -

Slide credit: Bernt Schiele B. Leibe

Kernel Methods: Parzen Window

¢ Interpretations

1. We place a kernel window k at
location x and count how many
data points fall inside it.

2. We place a kernel window k around
each data point x, and sum up
their influences at location x.

= Direct visualization of the density.

« Still, we have artificial discontinuities at the cube
boundaries...

» We can obtain a smoother density model if we choose a
smoother kernel function, e.g. a Gaussian

B. Leibe
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Gauss Kernel: Examples
3 h = 0.005
not smooth enough
0 A i
0 0.5 1
5
h=0.07
about OK M
" -
0 0.5 1
h=02
too smooth )___'A
0 — - —
0 0.5 1
h acts as a smoother.
18
B. Leibe Image source: CM, Bishon, 200




Kernel Methods

¢ In general
~ Any kernel such that

k(u) = 0, fk(u)rlu =1
can be used. Then

K= Z k(x —xp,)
n=1

» And we get the probability density estimate

Machine Learning Summer ‘16

SINESE S e
X) R —— = — X —X
PO TN "
n=1
Slide adapted from Bernt Schiele B. Leibe "

K-Nearest Neighbor

* Nearest-Neighbor density estimation
» Fix K, estimate V from the data. K=3
» Consider a hypersphere centred @
on x and let it grow to a volume V* oo @
that includes K of the given N data °
points.
» Then

K
plx) = v

¢ Side note

» Strictly speaking, the model produced by K-NN is not a true
density model, because the integral over all space diverges.
» E.g. consider K =1 and a sample exactly on a data point x = z;.

Machine Learning Summer ‘16
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Summary: Kernel and k-NN Density Estimation

¢ Properties
» Very general. In the limit (N—oc), every probability density can
be represented.
» No computation involved in the training phase
= Simply storage of the training set

¢ Problems
~ Requires storing and computing with the entire dataset.
= Computational cost linear in the number of data points.
= This can be improved, at the expense of some computation

during training, by constructing efficient tree-based search
structures.

> Kernel size / K in K-NN?
- Too large: too much smoothing
- Too small: too much noise
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B. Leibe
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Statistically Better-Founded Approach
K
p(x) = NV

fixed V/ fixed K
determine K determine V

Kernel Methods  K-Nearest Neighbor
- o K-Nearest Neighbor

_. LI » Increase the volume V'

- until the K next data

- points are found.
- 20
Slide credit: Bernt Schiele B. Leibe
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k-Nearest Neighbor: Examples

K=1
not smooth enough 1
0 2
- 0.5 1
K=5
about OK ;
o i \\,
SO 0.5 1
Tl K=30
too smooth
0 s /\
0 0.5 1

K acts as a smoother.

22

B. Leibe Image source; C,M, Bishop,
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K-Nearest Neighbor Classification
¢ Bayesian Classification
p(x[C;)p(C;)
p(Cj|x) = ———~—~
( ]| ) p(x)
¢ Here we have
p(X) ~ 77
K; K; N, NV K,
Cl~ —2_ — p(C. POt At R ——
. k-N t Neighb
ey =~ caret Neghoor
id it Bornt Schiel B. Leibe 2
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K-Nearest Neighbors for Classification

To Ta /
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B. Leibe

mage source: C.M, Bishop, 200

Bias-Variance Tradeoff

* Probability density estimation

» Histograms: bin size?

- A too large: too smooth

- A too small: not smooth enough
» Kernel methods: kernel size?

— h too large: too smooth

— h too small: not smooth enough
» K-Nearest Neighbor: K?

— K too large: too smooth

— K too small: not smooth enough

Too much bias
Too much variance

¢ This is a general problem of many probability density
estimation methods
» Including parametric methods and mixture models

Machine Learning Summer ‘16

lide credit: Bernt Schiele B. Leibe

Topics of This Lecture

¢ Mixture distributions
» Mixture of Gaussians (MoG)
> Maximum Likelihood estimation attempt
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K-Nearest Neighbors for Classification

¢ Results on an example data set
i ;

K K=3 K =31

it Foeignte s i ipate e

* K acts as a smoothing parameter.

¢ Theoretical guarantee

» For N—oo, the error rate of the 1-NN classifier is never more
than twice the optimal error (obtained from the true conditional
class distributions).

Machine Learning Summer ‘16

B. Leibe Image source; C.M, Bishop,
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Discussion

¢ The methods discussed so far are all simple and easy to
apply. They are used in many practical applications.
e However...
» Histograms scale poorly with increasing dimensionality.
= Only suitable for relatively low-dimensional data.

» Both k-NN and kernel density estimation require the entire data
set to be stored.

= Too expensive if the data set is large.

» Simple parametric models are very restricted in what forms of
distributions they can represent.

= Only suitable if the data has the same general form.

¢ We need density models that are efficient and flexible!

Machine Learning Summer ‘16
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Mixture Distributions

¢ A single parametric distribution is often not sufficient
» E.g. for multimodal data

100 100

80 80

60 60

40 40

Single Gaussian Mixture of two

Gaussians
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Mixture of Gaussians (MoG)

¢ Sum of M individual Normal distributions

" /&A

» In the limit, every smooth distribution can be approximated this
way (if M is large enough)

M

p(@]0) =Y p(«(6;)p(4)

Jj=1

X

ide credit: Bernt Schiele B. Leibe

Mixture of Gaussians (MoG)

¢ “Generative model”

“Weight” of mixture

@ p(j) =m; component
i 3\
x Mixture
plo) /\(A plx|6;) component
x
I Mixture density
p(z) M
p(@]0) = p(«(0;)p(5)
j=1
x
) 3
ide credit: Bernt Schiele B. Leibe
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Mixture of Multivariate Gaussians
¢ Multivariate Gaussians

M
p(x(0) = p(x[6,)p())
j=1

1 1 _
p(x[0;) = WGXI’ {_f(x - ”j)sz l(x - /"'j)}
j

» Mixture weights / mixture coefficieﬂr}]ts:

p(j):ﬂ'j with 0 - My 1 and Zﬂj:l 1@
j=1

0:(W17N17217'~'77TMa“M72M) 0 =

» Parameters:

35

ide credit: Rernt Schiele B. Leibe Image source: C.M, Bishoo 200
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Mixture of Gaussians

M
p(x[6) = Jp(«(6;)p()
=1

T — )2
p(xlaj)_/\f(xmj,gg)_\/zimlexp{( ) }

Likelihood of measurement 4
given mixture component j

p)
20'j

Prior of
component j

M
p(j) =m; with 0 ;- 1 and Zﬂ'j =1.
Jj=1
* Notes
» The mixture density integrates to 1: /p(a:)dx =1

» The mixture parameters are

0 = (m1, 41,01, - - -, , T, 40, O01)

ide adapted from Bernt Schiele B. Leibe

Mixture of Multivariate Gaussians

(a)

05

05

34

B. Leibe e: (.M, Bishop,

Mixture of Multivariate Gaussians

¢ “Generative model”

6

34
Image source: C.M, Bishop, 200

ide credit: Bernt Schiele B. Leibe
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Mixture of Gaussians - 1t Estimation Attempt

¢ Maximum Likelihood N
- Minimize £ = —InL(0) = — Zlnp(xn|9)
» Let’s first look at p1;:

E
9B _ \/
op;

Hj

» We can already see that this will be difficult, since
Inp(Xm, 1, 2) =Y I d > N (0|, 2k>}

This will cause problems!

Slide adapted from Bernt Schiele 8. Leibe
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Mixture of Gaussians - 15t Estimation Attempt
e But...
N . TN (x. () E;
By = 2] n %i(%n) = A O )

ol Wazw'(?xru(g),zu

¢ |.e. there is no direct analytical solution!
OF
= ) ’ b PR s ; b
8;1,] = f(m, 1y, 30 T, Mgy 200)

» Complex gradient function (non-linear mutual dependencies)
» Optimization of one Gaussian depends on all other Gaussians!

» It is possible to apply iterative numerical optimization here,
but in the following, we will see a simpler method.

B. Leibe
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Mixture of Gaussians - Other Strategy

¢ Assuming we knew the values of the hidden variable...

J(x)

X

ML for Gaussian #1 I T ML for Gaussian #2

assumed known —>1 111

2 J

h(j=1lzn) = 1 111 00 0 0

h(j =2|z.) = 0 000 11 1
N . N .

= Yon=1 U = Lzn)ws g = Yon=1 P = 2Jz0) s
- N . - N -
2ic Wi = 1lzn) >ict Wi = 2[zn)
slide credit: Rerpt Schiele B. Leibe 4

Machine Learning Summer ‘16

©
=
.
5}
£
£
=
12}
o
I
=
£
S
o
-
o
IE
5
]
S
=

Machine Learning Summer ‘16

RWTH/ACHEN
Mixture of Gaussians - 1t Estimation Attempt
¢ Minimization: O\ ol Si) =
N L 0. oy
oF _ Z 7P(xnl6) 5 1) G, B5)
On; =1 Zk 1p(xn\9k)

2

8 (st — gy POl%) )
Z( RS e
7rj/\/(xn|uj72]

ide credit: Bernt Schiele B. Leibe

= -¥! (xn — 1) =0
y ;::1 7 K:1 TN (X |y 2
¢ We thus obtain =7 (%n)
ZN71 75 (Xn) X, “responsibility” of
> p = = component j for x,
=1 (Xn)
B. Leibe 38
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Mixture of Gaussians - Other Strategy
¢ Other strategy: @
S /
) A
f(x[2)
» Observed data: . ees e o . X
» Unobserved data: 1111 22 2 2
- Unobserved = “hidden variable”: j|x
h(j = 1|zn) = 1111 0 0 0
h(j =2lzn) = 0 000 11 1
) 40
ide credit: Bernt Schiele B. Leibe
RWTH ACHET

Mixture of Gaussians - Other Strategy

¢ Assuming we knew the mixture components...

p(j = 1]z)

1 111 22 2 2 i

p(j = 2|x)

¢ Bayes decision rule: Decide j =1 if
PG =1fan) > p(j = 2Jzn)

42




RWTHACHE
Mixture of Gaussians - Other Strategy
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References and Further Reading

¢ Chicken and egg problem - what comes first?

J(x)

¢ More information in Bishop’s book
~ Gaussian distribution and ML:  Ch. 1.2.4 and 2.3.1-2.3.4.

» Bayesian Learning: Ch. 1.2.3 and 2.3.6.
» Nonparametric methods: Ch. 2.5.
x « Additional information can be found in Duda & Hart
» ML estimation: Ch. 3.2
We don’t know < » Bayesian Learning: Ch. 3.3-3.5
any of those! 1111 22 2 2 j g Nonparametric methods: Ch. 4.1-4.5

Christopher M. Bishop
¢ In order to break the loop, we need an estimate for ;. ::ﬁﬁ;'e':ezfy%g:m" and Machine Learning
» E.g. by clustering...
= Next lecture...

R.O. Duda, P.E. Hart, D.G. Stork

Pattern Classification

2" Ed., Wiley-Interscience, 2000
B. Leibe
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