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Announcements

e Course webpage
~ http://www.vision.rwth-aachen.de/teaching/
~ Slides will be made available on the webpage

e L2P electronic repository
~ Exercises and supplementary materials will be posted on the L2P

e Please subscribe to the lecture on the Campus system!
> Important to get email announcements and L2P access!
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Course Outline

e Fundamentals (2 weeks)
~ Bayes Decision Theory
~ Probability Density Estimation

e Discriminative Approaches (5 weeks)
> Linear Discriminant Functions
~ Support Vector Machines
- Ensemble Methods & Boosting
> Randomized Trees, Forests & Ferns

e Generative Models (4 weeks)
> Bayesian Networks
> Markov Random Fields
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Topics of This Lecture

e Recap: Bayes Decision Theory
> Basic concepts
> Minimizing the misclassification rate
> Minimizing the expected loss
> Discriminant functions

e Probability Density Estimation
~ General concepts
~ Gaussian distribution

e Parametric Methods
> Maximum Likelihood approach
~ Bayesian vs. Frequentist views on probability
> Bayesian Learning
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RWTH
Recap: Bayes Decision Theory Concepts

e Concept 1: Priors (a priori probabilities) ‘ p(Ck) ‘

> What we can tell about the probability before seeing the data.

> Example: 9
P(a)=0.75
aababaaba P(b)=0.25

baaaabaaba :

abaaaabba
babaabaa

C, = p(C

@ 0.75
C, = p(C,)=0.25
% e In general: Z p(Ck ) =1

® k

=

Slide credit: Bernt Schiele B. Leibe
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Slide credit: Bernt Schiele

p(xla)

Recap: Bayes Decision Theory Concepts

e Concept 2: Conditional probabilities ‘ p(X |C, )‘
» Let x be a feature vector.
> © measures/describes certain properties of the input.

- E.g. number of black pixels, aspect ratio, ...
> p(x|C)) describes its likelihood for class C,.

AN |

p(x]b)

B. Leibe



RWTH
Bayes Decision Theory Concepts

e Concept 3: Posterior probabilities ‘p(Ck | X)‘

~ We are typically interested in the a posteriori probability, i.e.
the probability of class C, given the measurement vector z.

e Bayes’ Theorem:

p(C, | X) = p(x|C)P(C)  p(xIC)P(Cy)

p(x) Z p(x]C) p(C))

e Interpretation
Likelithood x Prior
Normalization Factor

Posterior =

({o]
F
.
(«})
=
=
-
(/3]
(@))
£
c
-
(4]
Q
—
Q
.E
=
Q
(3]
=

Slide credit: Bernt Schiele B. Leibe



Recap: Bayes Decision Theory

tp(x]a) (le) Likelihood

p( p(a

X | b p(b) Likelihood x Prior

Dec1510n boundary

p(alx) , Likelihood x Prior
Posterzor = -
NormalizationFactor

9
Slide credit: Bernt Schiele B. Leibe Image source: C.M. Bishop, 2006
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Recap: Bayes Decision Theory

e Optimal decision rule

- Decide for C, if

p(C1|z) > p(C2|)

~ This is equivalent to

p(x|C1)p(C1) > p(x|C2)p(Co)

> Which is again equivalent to (Likelihood-Ratio test)

Slide credit: Bernt Schiele

p(z|Cy1) - p(C2)
p(z|C2) ~ p(C1)
N

Decision threshold &

B. Leibe
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Bayes Decision Theory

* Decision regions: R,, R,, R,, -..
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RWTH
Recap: Minimizing the Expected Loss

e Example:
2 Classes: C, C,

2 Decision: o, o,
Loss function: L(c;|C) = Ly,

Y

Y

Y

Y

Expected loss (= risk R) for the two decisions:
Eo, L] = R(a1|x) = Li1p(C1]x) + L21p(C2|x)
Eo, L] = R(az|x) = Li2p(C1]x) + L22p(Ca|x)

e Goal: Decide such that expected loss is minimized
. l.e. decide o, if R(aa|x) > R(a1]x)
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Slide credit: Bernt Schiele B. Leibe
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RWNTH
Recap: Minimizing the Expected Loss

R(as|x) R(a1]x)
L1op(Cy1|x) 4+ Laop(Calx) > L11p(C1|x) + Lo1p(Ca|x)
(L1o — L11)p(C1|x) > (L21 — Lo2)p(Calx)

(L12 — L11) - p(C2|x) _ p(x|C2)p(Co)

V

(L21 — La22) p(Ci]x)  p(x|C1)p(Cy)

p(x|C1) - (L21 — La2) p(C2)
p(x|C2) (L12 — L11) p(Cy)

= Adapted decision rule taking into account the loss.

Slide credit: Bernt Schiele B. Leibe
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The Reject Option

1.0
‘T

0.0 /

- — T
reject region

e Classification errors arise from regions where the largest
posterior probability p(Ck|x) is significantly less than 1.

» These are the regions where we are relatively uncertain about
class membership.

~ For some applications, it may be better to reject the automatic

decision entirely in such a case and e.g. consult a human expert.

14
Image source: C.M. Bishop, 2006
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Discriminant Functions

e Formulate classification in terms of comparisons
> Discriminant functions

y1(2), .- -, Yk ()
. Classify z as class C, if
yk() >y;(x) Vj#k
e Examples (Bayes Decision Theory)
yr() = p(Ck|w)
ye(z) = p(z|Ck)p(Ck)
yr(z) = logp(|Ck) + log p(Cy)

Slide credit: Bernt Schiele B. Leibe
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RWNTH
Different Views on the Decision Problem

» yr(x) o< p(z|Cy)p(Cr)
~ First determine the class-conditional densities for each class
individually and separately infer the prior class probabilities.
~ Then use Bayes’ theorem to determine class membership.

= Generative methods

» yk(x) = p(Cklz)
~ First solve the inference problem of determining the posterior
class probabilities.

> Then use decision theory to assign each new z to its class.
= Discriminative methods

e Alternative

- Directly find a discriminant function y;(x) which maps each
input = directly onto a class label.

16
B. Leibe
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Topics of This Lecture

e Probability Density Estimation
~ General concepts
> Gaussian distribution

B. Leibe

ONVERSIR
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Probability Density Estimation

e Up to now

- Bayes optimal classification
- Based on the probabilities p(X‘Ck )p(ck)

e How can we estimate (=learn) those probability
densities?
» Supervised training case: data and class labels are known.
. Estimate the probability density for each class C;. separately:

p(x|Cr)

. (For simplicity of notation, we will drop the class label C;. in the
following.)

. 18
Slide credit: Bernt Schiele B. Leibe
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Probability Density Estimation

. L1
e Data: z,, =z, z,, v, .. —

A
e Estimate: p(x)
e Methods
> Parametric representations (today)
> Non-parametric representations (lecture 3)
> Mixture models (lecture 4)

Slide credit: Bernt Schiele B. Leibe
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The Gaussian (or Normal) Distribution

e One-dimensional case

> Mean p

> Variance o2

Nctne) - e -

V2o

e Multi-dimensional case

> Mean p

> Covariance X

N (x|p, ) =

1

(27T)D/2‘2|1/2

\
N(z|p,0?)

e { -

B. Leibe

1

2

v

CUQ‘

@

(x—p)'E7H (x — u)}

20
Image source: C.M. Bishop, 2006
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Gaussian Distribution - Properties

e Central Limit Theorem

“The distribution of the sum of N i.i.d. random variables
becomes increasingly Gaussian as /N grows.”

~ In practice, the convergence to a Gaussian can be very rapid.
> This makes the Gaussian interesting for many applications.

e Example: N uniform [0,1] random variables.

N =2

B. Leibe

N =10

21
Image source: C.M. Bishop, 2006



Gaussian Distribution - Properties

e Quadratic Form w
~ N depends on x through the exponent \/m
A? = (x — p) 'S (x — p) : )
> Here, A is often called the
Mahalanobis distance from x to p. A -
A
e Shape of the Gaussian .

T

> 23 is a real, symmetric matrix.
> We can therefore decompose it into its elgenvectors

> = Z )\Zuz Z —uZ

D
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2
and thus obtain A® = i—z with ¥ = U;f (x —p),
i=1 """
= Constant density on ellipsoids with main directions along the
eigenvectors u, and scaling factors V' Ai, 29

B. Leibe Image source: C.M. Bishop, 2006



RWNTH
Gaussian Distribution - Properties

e Special cases ok

> Full covariance matrix
3 = o]
= General ellipsoid shape

S

bwl
A
- Diagonal covariance matrix v
©
5 3 = diag{o;}
= = Axis-aligned ellipsoid
7] T1
>
e ’
g > Uniform variance e
©
g > =01
=
= = Hypersphere
g 2
>
—
23
B. Leibe

Image source: C.M. Bishop, 2006



Gaussian Distribution - Properties

e The marginals of a Gaussian are again Gaussians:

1 r 10 .
Tp A
zp = 0.7 %] p(z,|zy = 0.7)
=)
e 05¢ | 51
(]
=
€
(7p] p(xaaxb)
2 e
c
[
o
-l 0 0
g 0 0.5 Ty 1 0 0.5 T, 1
=
®
=
24
B. Leibe

Image source: C.M. Bishop, 2006
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Topics of This Lecture

e Parametric Methods
> Maximum Likelihood approach
~ Bayesian vs. Frequentist views on probability
> Bayesian Learning

B. Leibe
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Parametric Methods

e Given
. Data X ={x1,2o,...,2zN}

> Parametric form of the distribution
with parameters 6

. E.g. for Gaussian distrib.: 0 = (i, 0)

e Learning
~ Estimation of the parameters ¢

e Likelihood of ¢

> Probability that the data X have indeed been generated from a
probability density with parameters 6

L(6) = p(X16)

Slide adapted from Bernt Schiele B. Leibe

26
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Maximum Likelihood Approach

e Computation of the likelihood

1 —
> Single data point: p(ﬂ3n|9) = o eXp {— ($205)

> Assumption: all data points are lndependent
L(0) = p(X|6) = H p(n|0)

» Log-likelihood N
E(f)=—InL(6) = — ) Inp(z,|0)

» Estimation of the parameters 6 (Learning)

- Maximize the likelihood
- Minimize the negative log-likelihood

Slide credit: Bernt Schiele B. Leibe

)
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Maximum Likelihood Approach

o Likelihood: L(0) = p(X|9) = H p(2,]0)

e We want to obtaind such that L(6)is maximized.

p(X]0) 1

Slide credit: Bernt Schiele B. Leibe
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Maximum Likelihood Approach

e Minimizing the log-likelihood
> How do we minimize a function?
— Take the derivative and set it to zero.

o 3@19 xn‘g
(’9_¢9E(9)_ aHZmp T,|0) = Z

n=1
e Log-likelihood for Normal distribution (1D case)

E(6) = —Zlnp(:cn\u,a>

— —Zln exp Hazn—,uHZ
V2T 202

27‘(‘0‘

B. Leibe

)
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Maximum Likelihood Approach

e Minimizing the log llkellhood p(Tn|p, o) =
0 B au xn‘/% ) 1 e ||m7;;2“||2
@E(u’ o) = Z p(xn|p, o) V2ro

— _Z_

n=1

_ if:
L3 N)

n=1

Q
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Maximum Likelihood Approach

e We thus obtain

1 N
— E “sample mean”

2

e In a similar fashion, we get

N
— 1 2 “« : 9
o7 = E (xn, — f) sample variance

e 0= (ii,6) is the Maximum Likelihood estimate for the
parameters of a Gaussian distribution.

e This is a very important result.
e Unfortunately, it is wrong...

31
B. Leibe
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Maximum Likelihood Approach

e Or not wrong, but rather biased...

e Assume the samples x , z_, ..., x,, come from a true
Gaussian distribution with mean ;. and variance o~

> We can now compute the expectations of the ML estimates with
respect to the data set values. It can be shown that

E(pv) = w
B(ot) = (S5 )

= The ML estimate will underestimate the true variance.

e Corrected estimate:
N

) N
UZ:N—IJML_ 1Z

n=1 32
B. Leibe
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RWNTH
Maximum Likelihood - Limitations

e Maximum Likelihood has several significant limitations
> It systematically underestimates the variance of the distribution!
~ E.g. consider the case

N:LX:{CIZ‘l} l >

= Maximum-likelihood estimate:

- We say ML overfits to the observed data.

> We will still often use ML, but it is important to know about
this effect.

33

Slide adapted from Bernt Schiele B. Leibe



Deeper Reason

e Maximum Likelihood is a Frequentist concept

> In the Frequentist view, probabilities are the frequencies of
random, repeatable events.

» These frequencies are fixed, but can be estimated more
precisely when more data is available.

e This is in contrast to the Bayesian interpretation

> In the Bayesian view, probabilities quantify the uncertainty
about certain states or events.

> This uncertainty can be revised in the light of new evidence.

e Bayesians and Frequentists do not like /7
each other too well... =

s
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Bayesian vs. Frequentist View

e To see the difference...

~ Suppose we want to estimate the uncertainty whether the Arctic
ice cap will have disappeared by the end of the century.

» This question makes no sense in a Frequentist view, since the
event cannot be repeated numerous times.

> In the Bayesian view, we generally have a prior, e.g. from
calculations how fast the polar ice is melting.

~ If we now get fresh evidence, e.g. from a new satellite, we may
revise our opinion and update the uncertainty from the prior.

Posterior o< Likelihood x Prior
~ This generally allows to get better uncertainty estimates for
many situations.
e Main Frequentist criticism

» The prior has to come from somewhere and if it is wrong, the
result will be worse.
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RWTH
Bayesian Approach to Parameter Learning

e Conceptual shift

> Maximum Likelihood views the true parameter vector 6 to be
unknown, but fixed.

- In Bayesian learning, we consider 6 to be a random variable.

e This allows us to use knowledge about the parameters ¢

. i.e. to use a prior for 6 posterior
p(8ly)

» Training data then converts this .
prior distribution on 6 into prior
a posterior probability density. p(8)

~ The prior thus encodes knowledge we have about the type of
distribution we expect to see for 6.
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Bayesian Learning Approach

e Bayesian view:
» Consider the parameter vector 6 as a random variable.
> When estimating the parameters, what we compute is

p(x|X) = /p(aj, 0| X)do Assumption: given 0, this

doesn’t depend on X anymore

p(x,6|X) = p(x6, X)p(6]X)

p(2]X) = / p(]0)p(6]X)do
——

This is entirely determined by the parameter 6
(i.e. by the parametric form of the pdf).

({o]
F
.
(«})
=
=
-
(/3]
(@))
=
c
-
(4]
Q
—
Q
.E
=
(&)
(3]
=

37

Slide adapted from Bernt Schiele B. Leibe
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Bayesian Learning Approach

p(]X) = / p(]0)p(6]X)db
—
o) ZPXIO(0)

p(X)

p(X) = / p(X|0)p(6)d6 — / L(0)p(6)do

e Inserting this above, we obtain

p(x|X) = / p(x|9;é((9))p ) 4o —

Slide credit: Bernt Schiele B. Leibe

p(x|0)L(6)p(6)

[ L(0)p(6)do

do

38



Bayesian Learning Approach

* Discussion Likelihood of the parametric

form 0 given the data set X.

Estimate for x based on Prior for the
parametric form 0 parameters 0

v

pl0)LOp)
TZO0)®

I

Normalization: integrate
over all possible values of ¢

p(z|X) =

. If we now plug in a (suitable) prior p(f), we can estimate p(x|X)
from the data set X.
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Bayesian Density Estimation

e Discussion
p(z|X) =/p(a:|9)p(9|X)d9: p(@|0)L(O)p(0) .,

[ L(O)p(0)d 6’

. The probability p(0|X) makes the dependency of the estimate
on the data explicit.

. If p(8]X) is very small everywhere, but is large for one 4, then
p(z|X) = p(z|0)

=> The more uncertain we are about 6, the more we average over
all parameter values.
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Bayesian Density Estimation

e Problem

> In the general case, the integration over 6 is not possible
(or only possible stochastically).

e Example where an analytical solution is possible
> Normal distribution for the data, 02 assumed known and fixed.
» Estimate the distribution of the mean:

_ p(X[p)p(p)

> Prior: We assume a Gaussian prior over pu,

p(p) = N (plpo, 05) -

Slide credit: Bernt Schiele B. Leibe
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Bayesian Learning Approach

1
e Sample mean: = = ;

e Bayes estimate:
o?ug + Nogz s

IN = 2 T No2 p(u|X)
=)
E 1 1 N
£ 0% o5 07
(/]
g e Note
o N=0 N—o
E #é\f 224 MML -
'.::: o, 0(2) 0 91 0 ]
= to =0
, 42
B. Leibe

Slide adapted from Bernt Schiele Image source: C.M. Bishop, 2006
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RWTH
Summary: ML vs. Bayesian Learning

e Maximum Likelihood
- Simple approach, often analytically possible.

» Problem: estimation is biased, tends to overfit to the data.
= Often needs some correction or regularization.

> But:
- Approximation gets accurate for N — oo.

e Bayesian Learning
~ General approach, avoids the estimation bias through a prior.
> Problems:
- Need to choose a suitable prior (not always obvious).
- Integral over 6 often not analytically feasible anymore.
> But:
- Efficient stochastic sampling techniques available (see Adv. ML).

(In this lecture, we’ll use both concepts wherever appropriate)
B. Leibe
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References and Further Reading

 More information in Bishop’s book
> Gaussian distribution and ML: Ch. 1.2.4 and 2.3.1-2.3.4.

~ Bayesian Learning: Ch. 1.2.3 and 2.3.6.
> Nonparametric methods: Ch. 2.5.
e Additional information can be found in Duda & Hart
> ML estimation: Ch. 3.2
> Bayesian Learning: Ch. 3.3-3.5

> Nonparametrlc methods: Ch. 4.1-4.5

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006 Pattern

Classification

R.O. Duda, P.E. Hart, D.G. Stork

Pattern Classification

2 Ed., Wiley-Interscience, 2000
B. Leibe
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