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Course Outline

¢ Fundamentals (2 weeks)
» Bayes Decision Theory
» Probability Density Estimation

S
¢ Discriminative Approaches (5 weeks)
» Linear Discriminant Functions
» Support Vector Machines
» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

¢ Generative Models (4 weeks)
» Bayesian Networks
» Markov Random Fields
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Recap: Bayes Decision Theory Concepts

e Concept 1: Priors (a priori probabilities) p(Ck)

> What we can tell about the probability before seeing the data.
» Example: — 9
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Slide credit: Bernt Schiele LA
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Announcements

¢ Course webpage

» http://www.vision.rwth-aachen.de/teaching/
» Slides will be made available on the webpage

e L2P electronic repository
» Exercises and supplementary materials will be posted on the L2P

¢ Please subscribe to the lecture on the Campus system!
» Important to get email announcements and L2P access!

B. Leibe

Topics of This Lecture

¢ Recap: Bayes Decision Theory
» Basic concepts
» Minimizing the misclassification rate
» Minimizing the expected loss
» Discriminant functions

¢ Probability Density Estimation
» General concepts
» Gaussian distribution

¢ Parametric Methods
» Maximum Likelihood approach
» Bayesian vs. Frequentist views on probability
» Bayesian Learning

B. Leibe
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RWTH ACHET
Recap: Bayes Decision Theory Concepts
» Concept 2: Conditional probabilities p ( x|C, )
» Let z be a feature vector.
» z measures/describes certain properties of the input.

- E.g. number of black pixels, aspect ratio, ...
» p(z|C,) describes its likelihood for class C,.

= p(x|a)

THT

7 p(x|b)

ide credit: Bernt Schiele B. Leibe
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Machine Learning Summer’16

Bayes Decision Theory Concepts
 Concept 3: Posterior probabilities p(Ck | X)

the probability of class C, given the measurement vector z.

¢ Bayes’ Theorem:

p(xIC,)p(C,)

o(C, 1x)= PG P(E)

p(x) :izp(xm)p(ci)

¢ Interpretation

Likelihood x Prior
Normalization Factor

Posterior =

Slide credit: Bernt Schiele B. Leibe
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» We are typically interested in the a posteriori probability, i.e.

Recap: Bayes Decision Theory

¢ Optimal decision rule
» Decide for C; if

p(Cilz) > p(Calz)
» This is equivalent to

p(x|C1)p(C1) > p(z|C2)p(C2)

» Which is again equivalent to (Likelihood-Ratio test)

p(z|Cr) I@
p(z|C2) = p(C1)
—

Decision threshold 6

Slide credit: Bernt Schiele B. Leibe

Recap: Minimizing the Expected Loss

e Example:
» 2Classes: C,, C,
» 2 Decision: «,, a,
» Loss function: L(c;|C) = Ly,
» Expected loss (= risk R) for the two decisions:
Eq, [L] = R(aq|x) = Lup(Ci]x) + Laip(Calx)
Eo,[L] = R(az|x) = Li2p(C1|x) + Laop(Calx)

¢ Goal: Decide such that expected loss is minimized
. lLe. decide o, if R(az|x) > R(ap|x)

Slide credit: Bernt Schiele LA
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RWTH/CHET
Recap: Bayes Decision Theory
p%&P(X |b) Likelihood
X
p(xla)p(a
p(X | b) p(b) Likelihood x Prior
.
X
Decision boundary
p(alx) 7 P(O1X) pysserior — _Likelihood x Prior
_/\ o " NormalizationFactor,

X

B. Leibe

ide credit: Bernt Schiele lmage source; C.M, Bishop.

Bayes Decision Theory

e Decision regions: R, R,, R,, ...

B. Leibe

ide credit: Bernt Schiele
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Recap: Minimizing the Expected Loss
R(as|x) > R(az|x)
Liap(Cr %) + L2op(Calx) > L11p(C1]x) + Laip(Ca|x)
(L2 — L11)p(Ca|x) (L21 — Lo2)p(Calx)
(L12 — L11) p(C2[x) _ p(x|C2)p(C2)
(La1 — La2) p(Cilx)  p(x|C1)p(C1)

p(x[C1) (L21 — La2) p(Ca)
)

)
p(x|Ca ” (L12 — L11) p(C1)

\Y

\Y

= Adapted decision rule taking into account the loss.

ide credit: Bernt Schiele B. Leibe
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The Reject Option Discriminant Functions

p(Ci|z) p(Calz)

¢ Formulate classification in terms of comparisons
» Discriminant functions

y1(x), ..., yx(x)
» Classify z as class C, if
yi(@) > y;(z) Vj#k
¢ Examples (Bayes Decision Theory)

yr(z) = p(Cilz)

0.0

—_— =
reject region

¢ Classification errors arise from regions where the largest
posterior probability p(Cx|x) is significantly less than 1.

Machine Learning Summer’16
Machine Learning Summer’16

. These are the regions where we are relatively uncertain about Yk (I) = p(x|Ck )P(Ck)
class membership.
. For some applications, it may be better to reject the automatic Yk (:E) = 10g p(x‘ck) + 1Og p(ck)
decision entirely in such a case and e.g. consult a human expert.
B. Leibe Image source: C,M, Bishop, 200 Slide credit: Bernt Schiele B. Leibe ®
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Different Views on the Decision Problem Topics of This Lecture
* Yk(x) o< p(z|Ck)p(Ck)
» First determine the class-conditional densities for each class
individually and separately infer the prior class probabilities.
» Then use Bayes’ theorem to determine class membership.
= Generative methods
— ¢ Probability Density Estimation
g * Yk (1‘) - p(Ck ‘ZC) 2 » General Zoncepts Y
5 » First solve the inference problem of determining the posterior s . RN
H class probabilities. H » Gaussian distribution
£ £
@ » Then use decision theory to assign each new z to its class. @
g = Discriminative methods 2
E £
£ « Alternative 8
% » Directly find a discriminant function y;(z) which maps each _g
9 input z directly onto a class label. S
= _ 16 = ’ 7
B. Leibe B. Leibe
RWTH ACHET RWTH ACHET
Probability Density Estimation Probability Density Estimation
¢ Up to now e Data: z,, z,, z,, T, —+—+H—t—
» Bayes optimal classification

~ Based on the probabilities p(x|ck)p(ck)

o Estimate:
¢ How can we estimate (=learn) those probability #(@)

densities?

E » Supervised training case: data and class labels are known. f T

E . Estimate the probability density for each class Cy, separately: E

@ p(x|Cr) 7 * Methods

2 = . Parametric representations (today)

E » (For si.mplicity of notation, we will drop the class label Cy in the § . Non-parametric representations (lecture 3)

% following.) 2 > Mixture models (lecture 4)

g 18 .E‘ 19
Slide credit: Bernt Schiele B. Leibe ide credit: Rernt Schiele B. Leibe
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The Gaussian (or Normal) Distribution

RWTHACHE
Gaussian Distribution - Properties

¢ One-dimensional case
» Mean p
» Variance o2

Nielo?) = ——exp {1

¢ Central Limit Theorem

» “The distribution of the sum of N i.i.d. random variables
becomes increasingly Gaussian as NV grows.”

» In practice, the convergence to a Gaussian can be very rapid.
» This makes the Gaussian interesting for many applications.

Nzlp,o?)

e Example: N uniform [0,1] random variables.

¢ Multi-dimensional case 3 3

» Mean p
» Covariance X

N ®) = o { g ™= - )}

8. Leibe |
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mage source: C.M, Bishop, 200

Image source: CM, Bishop,
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Gaussian Distribution - Properties Gaussian Distribution - Properties

¢ Quadratic Form -
~ N depends on x through the exponent
A% = (x— )BT (x - )
» Here, A is often called the
Mahalanobis distance from x to p.

¢ Special cases
» Full covariance matrix

3 = [oy]

= General ellipsoid shape

==
. . . @
™« Shape of the Gaussian - ~ Diagonal covar?ance matrix
E.E-, » X is a real, symmetric matrix. E 3 = diag{oi}
E > We can the]rjefore decompose it into its eiﬁenvectors E = Axis-aligned ellipsoid .
7] [7} 1
1 L .
> ==Y Nuu! = =N —yaul @
H ; B Zl A £ » Uniform variance 3
H - 0o = & ) 21
) H T @ =
= and thus obtain A® = %’ with % — uf (x—p), 2 g
Z . = . o . = = Hypersphere
S = Constant density on ellipsoids with n directions along the S 2
= eigenvectors u; and scaling factors V Ai, 2 = 2
B. Leibe Image source; C,M, Bishop, 200 B. Leibe Image source: C,M, Bishop,

Gaussian Distribution - Properties Topics of This Lecture

¢ The marginals of a Gaussian are again Gaussians:

1 10
z
2y =07 plzalrs =0.7)
© ©
T 0.5 5 2
3 3
£ £
e £
@ P(za:7s) 7l ¢ Parametric Methods
1) Hza) = » Maximum Likelihood approach
[3 £ N . . <13
fg § » Bayesian vs. Frequentist views on probability
- 0 0 - i i
° 5 o5 = i % 5 = i o » Bayesian Learning
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B. Leibe lmage source: CM, Bishop, 2004
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Parametric Methods

e Given
. Data X = {z1,Z2,..., TN}
» Parametric form of the distribution
with parameters 6
(1,0)

» E.g. for Gaussian distrib.: 0 =

¢ Learning
» Estimation of the parameters 0

¢ Likelihood of 6

» Probability that the data X have indeed been generated from a
probability density with parameters 6

L(0) = p(X10)

Slide adapted from Bernt Schiele 8. Leibe

Maximum Likelihood Approach
H pzal6)

 We want to obtainé such that L(6) is maximized.

e Likelihood: L(¢) =p(X|0) =
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p(X16)
6 0
lide credit: Bernt Schiele B. Leibe 28
RWTHACHEN
Maximum Likelihood Approach
¢ Minimizing the log-likelihood p(zp|p,0) =
0 N ;%P(xn\u,a) 1 lew—pll?
JE— = — —€ 20°
GME(M’U) 7;1 p(zn|u, o) V2ro
_ .y _2(1:"7#)
= 202
1 N
ey

_E(M7U)=0 < a=
m

B. Leibe
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Maximum Likelihood Approach

¢ Computation of the IikeIihood1 (2 — )
. Single data point: P(Zn|60) = T vxp{— - Qai. }
na

» Assumption: all data points are independent
N

L(6) = p(X|6) = [ ] p(xnl6)
n=1
» Log-likelihood
E)=—-InL(0) = Zlnp(a:n\e)
n=1

» Estimation of the parameters 6 (Learning)
- Maximize the likelihood
- Minimize the negative log-likelihood

Slide credit: Bernt Schiele B. Leibe

Maximum Likelihood Approach
¢ Minimizing the log-likelihood

» How do we minimize a function?
= Take the derivative and set it to zero.

B0 =~ > Wnp(en0) = -

n=1 n=1
¢ Log-likelihood for Normal distribution (1D case)

N
E@0) = =Y Inp(zaluo
n=1
N
1 l|lzn — pl?
7;1 In ( s exp{ 5T

B. Leibe
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Maximum Likelihood Approach

¢ We thus obtain
1 N
= N Z Tn
n=1
¢ In a similar fashion we get

SR

“sample mean”

“sample variance”

o 6= (,5) is the Maximum Likelihood estimate for the
parameters of a Gaussian distribution.

e This is a very important result.
¢ Unfortunately, it is wrong...

B. Leibe




Maximum Likelihood Approach

¢ Or not wrong, but rather biased...

¢ Assume the samples z,, z,, ..., zy come from a true
Gaussian distribution with mean x and variance o2

» We can now compute the expectations of the ML estimates with
respect to the data set values. It can be shown that

E(pmp) = p
sota) — (552)

= The ML estimate will underestimate the true variance.

¢ Corrected estimate:

5_2

Machine Learning Summer’16

N
N 5 1 212
= m‘TML “N_-1 Z:l($n — i)

B. Leibe
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Deeper Reason

¢ Maximum Likelihood is a Frequentist concept

» In the Frequentist view, probabilities are the frequencies of
random, repeatable events.

» These frequencies are fixed, but can be estimated more
precisely when more data is available.

e This is in contrast to the Bayesian interpretation

» In the Bayesian view, probabilities quantify the uncertainty
about certain states or events.

» This uncertainty can be revised in the light of new evidence.

=

¢ Bayesians and Frequentists do not like /7\
each other too well...

Machine Learning Summer’16

B. Leibe
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Bayesian Approach to Parameter Learning

¢ Conceptual shift

> Maximum Likelihood views the true parameter vector 6 to be
unknown, but fixed.

» In Bayesian learning, we consider ¢ to be a random variable.

* This allows us to use knowledge about the parameters 0

» i.e. to use a prior for 6 posterior
p(dly)

» Training data then converts this
prior distribution on 6 into prior
a posterior probability density. p(8)

» The prior thus encodes knowledge we have about the type of
distribution we expect to see for 6.
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Slide adanted from Rernt Schiele B. Leibe
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Maximum Likelihood - Limitations
¢ Maximum Likelihood has several significant limitations

It systematically underestimates the variance of the distribution!
» E.g. consider the case

N:l,X:{Il}

= Maximum-likelihood estimate:

» We say ML overfits to the observed data.

» We will still often use ML, but it is important to know about
this effect.

Machine Learning Summer’16

Slide adapted from Bernt Schiele B. Leibe

Bayesian vs. Frequentist View

¢ To see the difference...
» Suppose we want to estimate the uncertainty whether the Arctic
ice cap will have disappeared by the end of the century.

This question makes no sense in a Frequentist view, since the
event cannot be repeated numerous times.

In the Bayesian view, we generally have a prior, e.g. from
calculations how fast the polar ice is melting.

If we now get fresh evidence, e.g. from a new satellite, we may
revise our opinion and update the uncertainty from the prior.

Posterior o< Likelihood x Prior

» This generally allows to get better uncertainty estimates for
many situations.

v

v

v

¢ Main Frequentist criticism

» The prior has to come from somewhere and if it is wrong, the
result will be worse.

Machine Learning Summer’16

B. Leibe

Bayesian Learning Approach

¢ Bayesian view:
. Consider the parameter vector ¢ as a random variable.

» When estimating the parameters, what we compute is
Assumption: given 0, this

palX) = [ pla01x)as
doesn’t depend on X anymore

(@, 01X) = p(]0, X)p(6] X)

pa]X) = / p(z10)p(8]X)do
—

This is entirely determined by the parameter 6
(i.e. by the parametric form of the pdf).
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Bayesian Learning Approach

p(e|X) = / p(19)p(61X)do

a4
p(X|0)p(0) _ p(0)
e RTe S

—

T~
o0 = [ oCxiop0)d0 — [ Lowi0)a0

¢ Inserting this above, we obtain

[ ) LEO)p0) p(x\e LO)w0)
el = [ B0 "/ T "

Slide credit: Bernt Schiele B. Leibe

Bayesian Density Estimation

¢ Discussion

p(x\X):/ (z|0)p(6)X)do = /%d&

. The probability p(6|X) makes the dependency of the estimate
on the data explicit.

. If p(f|X) is very small everywhere, but is large for one 0, then
p(z]X) ~ p(x|0)

= The more uncertain we are about ¢, the more we average over
all parameter values.

40

lide credit: Bernt Schiele B. Leibe

Bayesian Learning Approach

N
e Sample mean: z = ]inzn
n=1
o Bayes estimate:
o?up+ Nodz 5
"2+ Nog p(plX)
1 N N=10

! +
2 T 23
O'N O'O g

UN =

¢ Note:
|N=0 N-ox N=0 Z \)

My Mo ML ¥ &
o3 a3 0 2

po =0
p3

Image source: C.M, Bishop, 200d

Slide adanted from Rernt Schiele. B. Leibe
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Bayesian Learning Approach

* Discussion Likelihood of the parametric

form 6 given the data set X.

Estimate for 2 based on
parametric form 6

Prior for the
parameters 6

—
Bl L)
J L(O)p(0)do
LIV

I

Normalization: integrate
over all possible values of 6

pa|X) =

» If we now plug in a (suitable) prior p(f), we can estimate p(z|X)
from the data set X.

39
B. Leibe

Bayesian Density Estimation

e Problem

» In the general case, the integration over 6 is not possible
(or only possible stochastically).

¢ Example where an analytical solution is possible
» Normal distribution for the data, o2 assumed known and fixed.
» Estimate the distribution of the mean:

_ p(X|w)p(p)
p(ulX) = W

» Prior: We assume a Gaussian prior over i,
2
p(u) =N (plpo, o) -

4

ide credit: Bernt Schiele B. Leibe
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RWTH ACHET
Summary: ML vs. Bayesian Learning

¢ Maximum Likelihood
» Simple approach, often analytically possible.
~ Problem: estimation is biased, tends to overfit to the data.
= Often needs some correction or regularization.
» But:
- Approximation gets accurate for N — oco.

¢ Bayesian Learning
» General approach, avoids the estimation bias through a prior.
» Problems:
- Need to choose a suitable prior (not always obvious).
- Integral over 6 often not analytically feasible anymore.
» But:
- Efficient stochastic sampling techniques available (see Adv. ML).

(In this lecture, we’ll use both concepts wherever appropriate)

43
B. Leibe
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References and Further Reading

¢ More information in Bishop’s book
» Gaussian distribution and ML:  Ch. 1.2.4 and 2.3.1-2.3.4.

» Bayesian Learning: Ch. 1.2.3 and 2.3.6.
» Nonparametric methods: Ch. 2.5.
¢ Additional information can be found in Duda & Hart
» ML estimation: Ch. 3.2
~ Bayesian Learning: Ch. 3.3-3.5

» Nonparametric methods: Ch. 4.1-4.5
BSETND  Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

R.O. Duda, P.E. Hart, D.G. Stork

Pattern Classification

2" Ed., Wiley-Interscience, 2000
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