

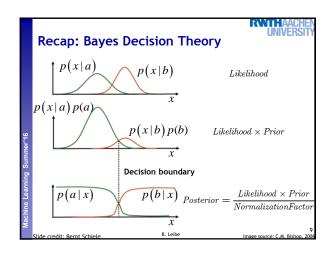
Bayes Decision Theory Concepts

- Concept 3: Posterior probabilities
- $p(C_{\iota} | x)$
- We are typically interested in the a posteriori probability, i.e. the probability of class C_k given the measurement vector x.
- · Bayes' Theorem:

$$p(C_k \mid x) = \frac{p(x \mid C_k) p(C_k)}{p(x)} = \frac{p(x \mid C_k) p(C_k)}{\sum_{i} p(x \mid C_i) p(C_i)}$$

Interpretation

$$Posterior = \frac{Likelihood \times Prior}{Normalization\ Factor}$$



Recap: Bayes Decision Theory

· Optimal decision rule

▶ Decide for C₁ if

$$p(\mathcal{C}_1|x) > p(\mathcal{C}_2|x)$$

> This is equivalent to

$$p(x|\mathcal{C}_1)p(\mathcal{C}_1) > p(x|\mathcal{C}_2)p(\mathcal{C}_2)$$

> Which is again equivalent to (Likelihood-Ratio test)

$$\frac{p(x|\mathcal{C}_1)}{p(x|\mathcal{C}_2)} > \underbrace{\frac{p(\mathcal{C}_2)}{p(\mathcal{C}_1)}}$$

Decision threshold θ

Bayes Decision Theory • Decision regions: \mathcal{R}_1 , \mathcal{R}_2 , \mathcal{R}_3 , ... R3 R_2

Recap: Minimizing the Expected Loss

- Example:
 - \blacktriangleright 2 Classes: $C_{\scriptscriptstyle 1}$, $C_{\scriptscriptstyle 2}$
 - > 2 Decision: α_1 , α_2
 - Loss function: $L(\alpha_i|\mathcal{C}_k) = L_{kj}$
 - Expected loss (= risk R) for the two decisions:

$$\mathbb{E}_{\alpha_1}[L] = R(\alpha_1|\mathbf{x}) = L_{11}p(\mathcal{C}_1|\mathbf{x}) + L_{21}p(\mathcal{C}_2|\mathbf{x})$$

$$\mathbb{E}_{\alpha_2}[L] = R(\alpha_2|\mathbf{x}) = L_{12}p(\mathcal{C}_1|\mathbf{x}) + L_{22}p(\mathcal{C}_2|\mathbf{x})$$

· Goal: Decide such that expected loss is minimized

, I.e. decide α_1 if $R(\alpha_2|\mathbf{x}) > R(\alpha_1|\mathbf{x})$

Recap: Minimizing the Expected Loss

 $R(\alpha_2|\mathbf{x}) > R(\alpha_1|\mathbf{x})$

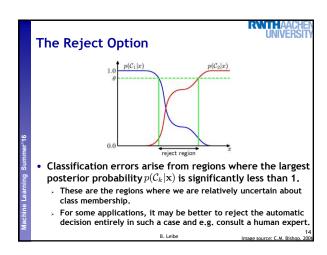
 $L_{12}p(\mathcal{C}_1|{\bf x}) + L_{22}p(\mathcal{C}_2|{\bf x}) \ > \ L_{11}p(\mathcal{C}_1|{\bf x}) + L_{21}p(\mathcal{C}_2|{\bf x})$

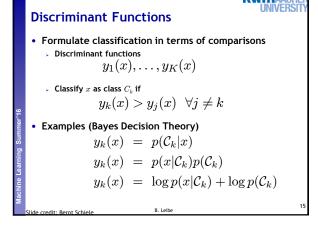
 $(L_{12} - L_{11})p(C_1|\mathbf{x}) > (L_{21} - L_{22})p(C_2|\mathbf{x})$

 $\frac{(L_{12}-L_{11})}{(L_{21}-L_{22})} > \frac{p(\mathcal{C}_2|\mathbf{x})}{p(\mathcal{C}_1|\mathbf{x})} = \frac{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}$

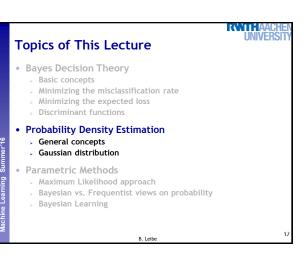
 $\frac{p(\mathbf{x}|\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)} \ > \ \frac{(L_{21}-L_{22})}{(L_{12}-L_{11})} \frac{p(\mathcal{C}_2)}{p(\mathcal{C}_1)}$

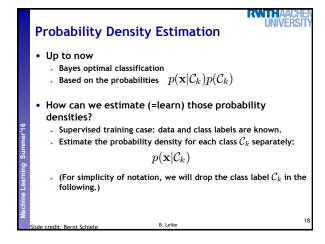
⇒ Adapted decision rule taking into account the loss.

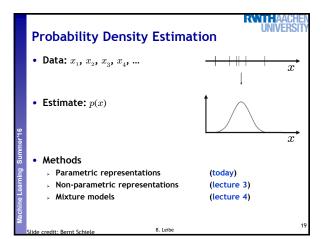


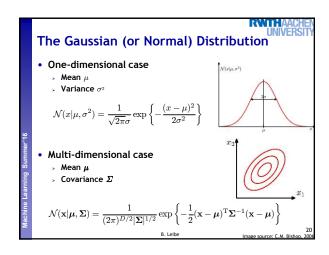


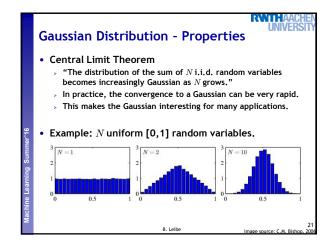
Different Views on the Decision Problem • $y_k(x) \propto p(x|\mathcal{C}_k)p(\mathcal{C}_k)$ • First determine the class-conditional densities for each class individually and separately infer the prior class probabilities. • Then use Bayes' theorem to determine class membership. • Generative methods • $y_k(x) = p(\mathcal{C}_k|x)$ • First solve the inference problem of determining the posterior class probabilities. • Then use decision theory to assign each new x to its class. • Discriminative methods • Alternative • Directly find a discriminant function $y_k(x)$ which maps each input x directly onto a class label.

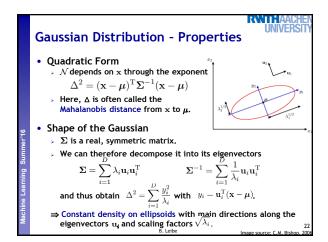


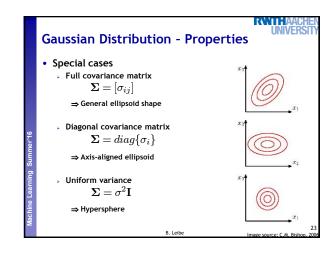


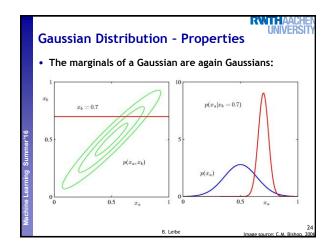


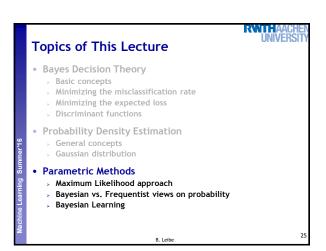






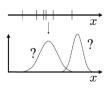






Parametric Methods

- Given
 - Data $X=\{x_1,x_2,\ldots,x_N\}$
 - > Parametric form of the distribution with parameters $\boldsymbol{\theta}$
 - E.g. for Gaussian distrib.: $\theta = (\mu, \sigma)$



Learning

- \succ Estimation of the parameters heta
- Likelihood of θ
 - \succ Probability that the data X have indeed been generated from a probability density with parameters $\boldsymbol{\theta}$

$$L(\theta) = p(X|\theta)$$

Maximum Likelihood Approach

- Computation of the likelihood _ _ Single data point: $p(x_n|\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$
 - Assumption: all data points are independent

$$L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$

Log-likelihood
$$E(\theta) = -\ln L(\theta) = -\sum_{n=1}^N \ln p(x_n|\theta)$$

- Estimation of the parameters θ (Learning)
 - Maximize the likelihood
 - Minimize the negative log-likelihood

B. Leibe

Maximum Likelihood Approach • Likelihood: $L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$ • We want to obtain $\hat{\theta}$ such that $L(\hat{\theta})$ is maximized. $p(X|\theta)$

Maximum Likelihood Approach

- Minimizing the log-likelihood
 - > How do we minimize a function?

$$\frac{\partial}{\partial \theta} E(\theta) = -\frac{\partial}{\partial \theta} \sum_{n=1}^{N} \ln p(x_n|\theta) = -\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \theta} p(x_n|\theta)}{p(x_n|\theta)} \stackrel{!}{=} 0$$

· Log-likelihood for Normal distribution (1D case)

$$E(\theta) = -\sum_{n=1}^{N} \ln p(x_n | \mu, \sigma)$$
$$= -\sum_{n=1}^{N} \ln \left(\frac{1}{\sqrt{2\pi\sigma}} \exp\left\{ -\frac{||x_n - \mu||^2}{2\sigma^2} \right\} \right)$$

Maximum Likelihood Approach

$$\begin{array}{ll} \bullet \ \, \mbox{Minimizing the log-likelihood} \\ \frac{\partial}{\partial \mu} E(\mu,\sigma) \ \, = \ \, -\sum_{n=1}^N \frac{\frac{\partial}{\partial \mu} p(x_n|\mu,\sigma)}{p(x_n|\mu,\sigma)} \\ \\ = \ \, -\sum_{n=1}^N -\frac{2(x_n-\mu)}{2\sigma^2} \\ \\ = \ \, \frac{1}{\sigma^2} \sum_{n=1}^N (x_n-\mu) \\ \\ = \ \, \frac{1}{\sigma^2} \left(\sum_{n=1}^N x_n - N\mu \right) \end{array}$$

$$= \frac{1}{\sigma^2} \left(\sum_{n=1}^N x_n - N\mu \right)$$

$$\frac{\partial}{\partial \mu} E(\mu, \sigma) \stackrel{!}{=} 0 \qquad \Leftrightarrow \quad \hat{\mu} = \frac{1}{N} \sum_{n=1}^N x_n$$
30

Maximum Likelihood Approach

• We thus obtain

$$\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

"sample mean"

• In a similar fashion, we get

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \hat{\mu})^2$$

"sample variance"

- $\hat{\theta} = (\hat{\mu}, \hat{\sigma})$ is the Maximum Likelihood estimate for the parameters of a Gaussian distribution.
- This is a very important result.
- · Unfortunately, it is wrong...

Maximum Likelihood Approach

- Or not wrong, but rather biased...
- Assume the samples x_1 , x_2 , ..., x_N come from a true Gaussian distribution with mean μ and variance σ^2
 - We can now compute the expectations of the ML estimates with respect to the data set values. It can be shown that

$$\begin{split} \mathbb{E}(\mu_{\mathrm{ML}}) &= \mu \\ \mathbb{E}(\sigma_{\mathrm{ML}}^2) &= \left(\frac{N-1}{N}\right)\sigma^2 \end{split}$$

⇒ The ML estimate will underestimate the true variance.

· Corrected estimate:

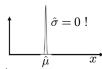
$$\tilde{\sigma}^2 = \frac{N}{N-1} \sigma_{\mathrm{ML}}^2 = \frac{1}{N-1} \sum_{n=1}^N (x_n - \hat{\mu})^2$$
 s. Leibe

Maximum Likelihood - Limitations

- Maximum Likelihood has several significant limitations
- > It systematically underestimates the variance of the distribution!
- E.g. consider the case

$$N=1, X=\{x_1\}$$

⇒ Maximum-likelihood estimate:



 \overline{x}

- We say ML overfits to the observed data.
- We will still often use ML, but it is important to know about this effect.

Slide adapted from Bernt Schiele

D Laiba

Deeper Reason

- Maximum Likelihood is a Frequentist concept
 - In the Frequentist view, probabilities are the frequencies of random, repeatable events.
 - These frequencies are fixed, but can be estimated more precisely when more data is available.
- This is in contrast to the Bayesian interpretation
 - In the Bayesian view, probabilities quantify the uncertainty about certain states or events.
 - > This uncertainty can be revised in the light of new evidence.
- Bayesians and Frequentists do not like each other too well...

B. Leibe

Bayesian vs. Frequentist View

- To see the difference...
 - Suppose we want to estimate the uncertainty whether the Arctic ice cap will have disappeared by the end of the century.
 - This question makes no sense in a Frequentist view, since the event cannot be repeated numerous times.
- In the Bayesian view, we generally have a prior, e.g. from calculations how fast the polar ice is melting.
- If we now get fresh evidence, e.g. from a new satellite, we may revise our opinion and update the uncertainty from the prior.

 $Posterior \propto Likelihood \times Prior$

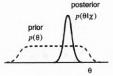
- This generally allows to get better uncertainty estimates for many situations.
- Main Frequentist criticism
 - $\,\succ\,$ The prior has to come from somewhere and if it is wrong, the result will be worse.

B. Leibe

Bayesian Approach to Parameter Learning

- · Conceptual shift
 - > Maximum Likelihood views the true parameter vector $\boldsymbol{\theta}$ to be unknown, but fixed.
 - > In Bayesian learning, we consider θ to be a random variable.
- ullet This allows us to use knowledge about the parameters heta

 - > Training data then converts this prior distribution on θ into
 - a posterior probability density.



> The prior thus encodes knowledge we have about the type of distribution we expect to see for θ .

Slide adapted from Bernt Schiel

B. Leibe

Bayesian Learning Approach

- · Bayesian view:
 - > Consider the parameter vector $\boldsymbol{\theta}$ as a random variable.
 - When estimating the parameters, what we compute is

$$p(x|X) = \int p(x,\theta|X)d\theta \qquad \begin{array}{c} \text{Assumption: given θ, this} \\ \text{doesn't depend on X anymore} \\ p(x,\theta|X) = p(x|\theta,\cancel{X})p(\theta|X) \end{array}$$

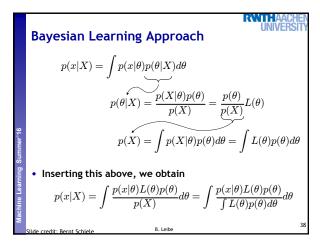
p(x,y|x) = p(x|y,y|x)

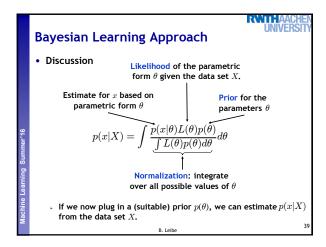
 $p(x|X) = \int p(x|\theta)p(\theta|X)d\theta$

This is entirely determined by the parameter $\boldsymbol{\theta}$ (i.e. by the parametric form of the pdf).

Slide adapted from Bernt Schiele

3. Leibe





Bayesian Density Estimation $p(x|X) = \int p(x|\theta)p(\theta|X)d\theta = \int \frac{p(x|\theta)L(\theta)p(\theta)}{\int L(\theta)p(\theta)d\theta}d\theta$ The probability $p(\theta|X)$ makes the dependency of the estimate on the data explicit. If $p(\theta|X)$ is very small everywhere, but is large for one $\hat{\theta}$, then $p(x|X) \approx p(x|\hat{\theta})$ \Rightarrow The more uncertain we are about θ , the more we average over all parameter values.

