

Machine Learning - Lecture 17

Efficient MRF Inference with Graph Cuts

07.07.2015

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

RWTHAACHEN UNIVERSITY

Course Outline

- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation

- Linear Discriminant Functions
- Statistical Learning Theory & SVMs
- Ensemble Methods & Boosting
- Decision Trees & Randomized Trees

- Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields
 - Exact Inference
 - Applications

Recap: MRF Structure for Images

Basic structure

Noisy observations

"True" image content

- Two components
 - Observation model
 - How likely is it that node x_i has label L_i given observation y_i ?
 - This relationship is usually learned from training data.
 - Neighborhood relations
 - Simplest case: 4-neighborhood
 - Serve as smoothing terms.
 - ⇒ Discourage neighboring pixels to have different labels.
 - This can either be learned or be set to fixed "penalties".

Recap: How to Set the Potentials?

- Unary potentials
 - E.g. color model, modeled with a Mixture of Gaussians

$$\phi(x_i, y_i; \theta_{\phi}) = -\theta_{\phi} \log \sum_{k} p(k \mid x_i) \aleph(y_i \mid \overline{y}_k, \Sigma_k)$$

⇒ Learn color distributions for each label

Recap: How to Set the Potentials?

- Pairwise potentials
 - Potts Model

$$\psi(x_i, x_j; \theta_{\psi}) = \theta_{\psi} \delta(x_i \neq x_j)$$

- Simplest discontinuity preserving model.
- Discontinuities between any pair of labels are penalized equally.
- Useful when labels are unordered or number of labels is small.
- Extension: "contrast sensitive Potts model"

$$\psi(x_i, x_j, g_{ij}(y); \theta_{\psi}) = \theta_{\psi} g_{ij}(y) \delta(x_i \neq x_j)$$

where,

$$g_{ij}(y) = e^{-\beta \|y_i - y_j\|^2}$$
 $\beta = 2/avg \|y_i - y_j\|^2$

- Discourages label changes except in places where there is also a large change in the observations.

Topics of This Lecture

- Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Graph construction
 - Extension to non-binary case
 - Applications

$$E \colon \{0,1\}^N \to \mathbb{R} \qquad \qquad N = \text{number of pixels} \\ 0 \to \text{fg} \\ 1 \to \text{bg}$$

$$E(X) = \sum_{i} c_{i}(bg)x_{i} + c_{i}(fg)(1 - x_{i}) + \sum_{ij} c_{ij}[x_{j}(1 - x_{i}) + x_{i}(1 - x_{j})]$$

Image (D)

$$E \colon \{0,1\}^N \to \mathbb{R} \qquad \qquad N = \text{number of pixels} \\ 0 \to \text{fg} \\ 1 \to \text{bg}$$

$$E(X) = \sum_{i} c_{i}(bg)x_{i} + c_{i}(fg)(1 - x_{i}) + \sum_{ij} c_{ij}[x_{j}(1 - x_{i}) + x_{i}(1 - x_{j})]$$

B. Leibe

Unary Cost $c_i(bg)$

Dark (negative) Bright (positive)

12

Slide credit: Pushmeet Kohli

$$E \colon \{0,1\}^N \to \mathbb{R} \qquad \qquad N = \text{number of pixels} \\ 0 \to \text{fg} \\ 1 \to \text{bg}$$

$$E(X) = \sum_{i} c_{i}(bg)x_{i} + c_{i}(fg)(1 - x_{i}) + \sum_{ij} c_{ij}[x_{j}(1 - x_{i}) + x_{i}(1 - x_{j})]$$

Discontinuity Cost (c_{ij})

$$E \colon \{0,1\}^N \to \mathbb{R} \qquad \qquad N = \text{number of pixels} \\ 0 \to \text{fg} \\ 1 \to \text{bg}$$

$$E(X) = \sum_{i} c_{i}(bg)x_{i} + c_{i}(fg)(1 - x_{i}) + \sum_{ij} c_{ij}[x_{j}(1 - x_{i}) + x_{i}(1 - x_{j})]$$

Global Minimum (x^*)

$$X^* = \arg\min E(X)$$

How to minimize $E(\mathbf{x})$?

Graph Cuts - Basic Idea

- Construct a graph such that:
 - 1. Any st-cut corresponds to an assignment of x
 - 2. The cost of the cut is equal to the energy of \mathbf{x} : $E(\mathbf{x})$

Graph Cuts for Binary Problems

Idea: convert MRF into source-sink graph

Minimum cost cut can be computed in polynomial time

(max-flow/min-cut algorithms)

Simple Example of Energy

unary potentials

pairwise potentials

$$E(L) = \sum_{p} D_{p}(L_{p}) + \sum_{pq \in N} w_{pq} \cdot \mathcal{S}(L_{p} \neq L_{q})$$
 t-links n-links

$$L_p \in \{s,t\}$$
 (binary object segmentation)

Adding Regional Properties

Regional bias example

Suppose μ_s and μ_t are given "expected" intensities of object and background

$$\Rightarrow \frac{p(I_p \mid s) \propto \exp\left(-\|I_p - \mu_s\|^2 / 2\sigma_s^2\right)}{p(I_p \mid t) \propto \exp\left(-\|I_p - \mu_t\|^2 / 2\sigma_t^2\right)}$$

NOTE: hard constrains are not required, in general.

Adding Regional Properties

"expected" intensities of object and background μ_s and μ_t can be re-estimated

EM-style optimization

Adding Regional Properties

 More generally, unary potentials can be based on any intensity/color models of object and background.

$$D_p(L_p) = -\log(p(I_p \mid L_p))$$

Object and background color distributions

Topics of This Lecture

- Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Graph construction
 - Extension to non-binary case
 - Applications

How Does it Work? The st-Mincut Problem

Graph (V, E, C)

Vertices V = $\{v_1, v_2 ... v_n\}$ Edges E = $\{(v_1, v_2)\}$ Costs C = $\{c_{(1, 2)}\}$

The st-Mincut Problem

What is an st-cut?

An st-cut (S,T) divides the nodes between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going from S to T

The st-Mincut Problem

What is an st-cut?

An st-cut (S,T) divides the nodes between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going from S to T

What is the st-mincut?

st-cut with the minimum cost

How to Compute the st-Mincut?

Solve the dual maximum flow problem

Compute the maximum flow between Source and Sink

Constraints

Edges: Flow < Capacity

Nodes: Flow in = Flow out

Min-cut/Max-flow Theorem

In every network, the maximum flow equals the cost of the st-mincut

History of Maxflow Algorithms

Augmenting Path and Push-Relabel

year	discoverer(s)	bound
1951	Dantzig	$O(n^2mU)$
1955	Ford & Fulkerson	$O(m^2U)$
1970	Dinitz	$O(n^2m)$
1972	Edmonds & Karp	$O(m^2 \log U)$
1973	Dinitz	$O(nm \log U)$
1974	Karzanov	$O(n^3)$
1977	Cherkassky	$O(n^2m^{1/2})$
1980	Galil & Naamad	$O(nm\log^2 n)$
1983	Sleator & Tarjan	$O(nm \log n)$
1986	Goldberg & Tarjan	$O(nm\log(n^2/m))$
1987	Ahuja & Orlin	$O(nm + n^2 \log U)$
1987	Ahuja et al.	$O(nm\log(n\sqrt{\log U}/m))$
1989	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$
1990	Cheriyan et al.	$O(n^3/\log n)$
1990	Alon	$O(nm + n^{8/3} \log n)$
1992	King et al.	$O(nm + n^{2+\epsilon})$
1993	Phillips & Westbrook	$O(nm(\log_{m/n} n + \log^{2+\epsilon} n))$
1994	King et al.	$O(nm\log_{m/(n\log n)}n)$
1997	Goldberg & Rao	$O(m^{3/2}\log(n^2/m)\log U)$
		$O(n^{2/3}m\log(n^2/m)\log U)$

n: #nodes

m: #edges

U: maximum edge weight

Algorithms assume non-negative edge weights

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

$$Flow = 0 + 2$$

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- Repeat until no path can be found

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- Repeat until no path can be found

$$Flow = 2 + 4$$

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- Repeat until no path can be found

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- Repeat until no path can be found

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- Repeat until no path can be found

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

38

Algorithms assume non-negative capacity

When Can s-t Graph Cuts Be Applied?

unary potentials pairwise potentials
$$E(L) = \sum_p E_p(L_p) + \sum_{pq \in N} E(L_p, L_q) \qquad L_p \in \{s, t\}$$
 t-links n-links

• s-t graph cuts can only globally minimize binary energies that are submodular. [Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

E(L) can be minimized by s-t graph cuts
$$|E(s,s) + E(t,t) \le E(s,t) + E(t,s) |$$
 Submodularity ("convexity")

- Submodularity is the discrete equivalent to convexity.
 - ⇒ Solution will be globally optimal.

Topics of This Lecture

- Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Graph construction
 - Extension to non-binary case
 - Applications

 $E(a_1,a_2)$

 $a_1 \bigcirc$

$$E(a_1, a_2) = 2a_1$$

$$E(a_1, a_2) = 2a_1 + 5(1 - a_1)$$

$$E(a_1, a_2) = 2a_1 + 5(1 - a_1) + 9a_2 + 4(1 - a_2)$$

$$E(a_1, a_2) = 2a_1 + 5(1 - a_1) + 9a_2 + 4(1 - a_2) + (1 - a_1)a_2$$

$$E(a_1, a_2) = 2a_1 + 5(1 - a_1) + 9a_2 + 4(1 - a_2) + (1 - a_1)a_2 + 2(1 - a_2)a_1$$

$$E(a_1, a_2) = 2a_1 + 5(1 - a_1) + 9a_2 + 4(1 - a_2) + (1 - a_1)a_2 + 2(1 - a_2)a_1$$

$$E(a_1, a_2) = 2a_1 + 5(1 - a_1) + 9a_2 + 4(1 - a_2) + (1 - a_1)a_2 + 2(1 - a_2)a_1$$

Cost of cut = 11

$$a_1 = 1 \ a_2 = 1$$

$$E(1,1) = 11$$

$$E(a_1, a_2) = 2a_1 + 5(1 - a_1) + 9a_2 + 4(1 - a_2) + (1 - a_1)a_2 + 2(1 - a_2)a_1$$

Cost of cut = 7

$$a_1 = 1 \ a_2 = 0$$

$$E(1,0) = 7$$


```
Graph *g;
For all pixels p
                                                                               Source (0)
     /* Add a node to the graph */
     nodeID(p) = g->add_node();
     /* Set cost of terminal edges */
     set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p,q
     add_weights(nodeID(p), nodeID(q), cost);
end
                                                                                 Sink (1)
g->compute maxflow();
label p = g->is connected to source(nodeID(p));
// is the label of pixel p (0 or 1)
```



```
Graph *g;
For all pixels p
     /* Add a node to the graph */
     nodeID(p) = g->add_node();
     /* Set cost of terminal edges */
     set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p,q
     add_weights(nodeID(p), nodeID(q), cost);
end
g->compute maxflow();
label p = g->is connected to source(nodeID(p));
// is the label of pixel p (0 or 1)
```



```
Graph *g;
For all pixels p
     /* Add a node to the graph */
     nodeID(p) = g->add_node();
     /* Set cost of terminal edges */
     set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p,q
     add weights(nodeID(p), nodeID(q), cost);
end
g->compute maxflow();
label p = g->is connected to source(nodeID(p));
// is the label of pixel p (0 or 1)
```



```
Graph *g;
For all pixels p
     /* Add a node to the graph */
     nodeID(p) = g->add_node();
     /* Set cost of terminal edges */
     set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p,q
     add weights(nodeID(p), nodeID(q), cost);
end
g->compute maxflow();
label p = g->is connected to source(nodeID(p));
// is the label of pixel p (0 or 1)
```


$$p = bg q = fg$$

Topics of This Lecture

- Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Graph construction
 - Extension to non-binary case
 - Applications

Dealing with Non-Binary Cases

- Limitation to binary energies is often a nuisance.
 - ⇒ E.g. binary segmentation only...
- We would like to solve also multi-label problems.
 - The bad news: Problem is NP-hard with 3 or more labels!
- There exist some approximation algorithms which extend graph cuts to the multi-label case:
 - \triangleright α -Expansion
 - $\rightarrow \alpha\beta$ -Swap
- They are no longer guaranteed to return the globally optimal result.
 - > But α -Expansion has a guaranteed approximation quality and converges in a few iterations.

α-Expansion Move

Basic idea:

Break multi-way cut computation into a sequence of binary s-t cuts.

α-Expansion Algorithm

- 1. Start with any initial solution
- 2. For each label " α " in any (e.g. random) order:
 - 1. Compute optimal α -expansion move (s-t graph cuts).
 - Decline the move if there is no energy decrease.
- 3. Stop when no expansion move would decrease energy.

RWTHAACHEN UNIVERSITY

Example: Stereo Vision

Depth map

Original pair of "stereo" images

α-Expansion Moves

• In each α -expansion a given label " α " grabs space from other labels

For each move, we choose the expansion that gives the largest decrease in the energy: \Rightarrow binary optimization problem

Topics of This Lecture

- Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Extension to non-binary case
 - Applications

GraphCut Applications: "GrabCut"

- Interactive Image Segmentation [Boykov & Jolly, ICCV'01]
 - Rough region cues sufficient
 - Segmentation boundary can be extracted from edges

Procedure

- User marks foreground and background regions with a brush.
- This is used to create an initial segmentation which can then be corrected by additional brush strokes.

User segmentation cues

GrabCut: Data Model

Global optimum of the energy

- Obtained from interactive user input
 - User marks foreground and background regions with a brush
 - Alternatively, user can specify a bounding box

Iterated Graph Cuts

Result

Color model (Mixture of Gaussians)

RWTHAACHEN UNIVERSITY

GrabCut: Example Results

References and Further Reading

- A gentle introduction to Graph Cuts can be found in the following paper:
 - Y. Boykov, O. Veksler, <u>Graph Cuts in Vision and Graphics: Theories and Applications</u>. In *Handbook of Mathematical Models in Computer Vision*, edited by N. Paragios, Y. Chen and O. Faugeras, Springer, 2006.

Try the Graph Cut implementation at

http://pub.ist.ac.at/~vnk/software.html

