Machine Learning - Lecture 17

Efficient MRF Inference with Graph Cuts

07.07.2015

Bastian Leibe
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Course Outline

e Fundamentals (2 weeks)
- Bayes Decision Theory @ '
~ Probability Density Estimation <;gg

e Discriminative Approaches (5 weeks)
> Linear Discriminant Functions
~ Statistical Learning Theory & SVMs

- Ensemble Methods & Boosting
> Decision Trees & Randomized Trees

e Generative Models (4 weeks)
> Bayesian Networks
> Markov Random Fields
> Exact Inference
> Applications
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RWTH
Recap: MRF Structure for Images

e Basi r r
asic structure ,l ,I Noisy observations

“True” image content

ww

e Two components
~ Observation model
- How likely is it that node x; has label L, given observation y,?
- This relationship is usually learned from training data.

> Neighborhood relations
- Simplest case: 4-neighborhood |

- Serve as smoothing terms. [
= Discourage neighboring pixels to have different labels.
- This can either be learned or be set to fixed “penalties”.
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RWTH
Recap: How to Set the Potentials? "

e Unary potentials
» E.g. color model, modeled with a Mixture of Gaussians

d(X;, ¥i:6,) =—6,109 > p(k [ x XY, | Vi, Z¢)

= Learn color distributions for each label

Eg zcll||j)) & /////
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RWTH
Recap: How to Set the Potentials?

e Pairwise potentials
~ Potts Model
w(X,X;;0,)=0,0(X #X;)

- Simplest discontinuity preserving model.
- Discontinuities between any pair of labels are penalized equally.
- Useful when labels are unordered or number of labels is small.

> Extension: “contrast sensitive Potts model”
W(Xiixj’gij(y);ey/) = Qy/gij()’)a(xi > Xj)
> where,
2 2
g, =" p=2/avg(y, -y )

- Discourages label changes except in places where there is also a
large change in the observations.
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Topics of This Lecture

e Solving MRFs with Graph Cuts
~ Graph cuts for image segmentation
> s-t mincut algorithm
> Graph construction
~ Extension to non-binary case
~ Applications

B. Leibe
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Example: Image Segmentation

E: {0,1} - R N = number of pixels
0— fg
1 — bg

E(X)= Zci(bg)xi +¢;(fg) 1-x;) +Zcij[xj(1_ X))+ X% (1- Xj)]

Image (D) X X

Slide credit: Pushmeet Kohli B. Leibe
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RWTHAACHEN

. UNIVERSITY
Example: Image Segmentation
E: {0,1} - R N = number of pixels
0— fg
1 — bg

E(X)= Zci(bg)xi +¢,(fg) (1— %) +Zcij[xj(l_ X )+ X (1—x;)]

®
o
L ———

Unary Cost c;(bg) Xi X
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Dark (negative)  Bright (positive)

; 12
Slide credit: Pushmeet Kohli B. Leibe
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Example: Image Segmentation

E: {0,1}Y - R N = number of pixels
0— fg
1 — bg

E(X)= Zci(bg)xi +¢,(fg) (1— %) +Zcij[xj(l_ X )+ X (1—x;)]

Te) ® ]  J
=

£

§, ® —o—

2

c

0 Discontinuity Cost X X

S (¢;))

©

—

013

Slide credit: Pushmeet Kohli B. Leibe



Example: Image Segmentation

E: {0,1}}Y - R N = number of pixels
0— fg
1 — bg

E(X)= Zci(bg)xi +¢,(fg) (1— %) +Zcij[xj(1_ X )+ X (1—x;)]

X" =argminE(X)

How to minimize
E(x)?

Global Minimum (x7)
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Slide credit: Pushmeet Kohli B. Leibe
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Graph Cuts - Basic Idea

e Construct a graph such that:
1. Any st-cut corresponds to an assignment of x

2. The cost of the cut is equal to the energy of x : F(x)

st-mincut

Solution

Slide credit: Pushmeet Kohli B. Leibe



Graph Cuts for Binary Problems

e |dea: convert MRF into source-sink graph

hard | ; acut
. constraint
ﬁ =

0 <; hard
= s constraint
£ S
=
=)
7))
o .
=  Minimum cost cut can be
E‘; computed in polynomial time
£ (max-flow/min-cut algorithms)
3
= |16

Slide credit: Yuri Boykov B. Leibe [Boykov & Jolly, ICCV’01]



Simple Example of Energy

unary potentials pairwise potentials
E(L) ZD(L)+ > w, 5L, = L)
paeN
t-links n-links
{ . acut
Dp(t)[
o o

O OO

LIS *
“““““

oo
‘f D, (s) L, e{s,t}
° S . .

(binary object segmentation)
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Regional bias example

Suppose 4, and i are given
Bzxpecﬁsed” irﬁléensitiges Pl [5) o= exp (_” lp— s If /2032)

of object and background p(l, |t) ocexp (— I, = s |f /265)

NOTE: hard constrains are not required, in general.
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Slide credit: Yuri Boykov B. Leibe [Boykov & Jolly, ICCV’01]



UNIVERSI

Adding Regional Properties

1 1
“expected” intensities of o
object and background p(l, [s) o exp (=1 L — | /25?)
ps and g, p(1, 1) ocexp (=11, - 4 IF 1207)

can be re-estimated
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EM-style optimization

“19

Slide credit: Yuri Boykov B. Leibe [Boykov & Jolly, ICCV’01]



Adding Regional Properties

e More generally, unary potentials can be based on any
intensity/color models of object and background.

t . acut Dp(Lp) = _Iog(p(lp | Lp))

L2

1%

Object and background color distributions
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Slide credit: Yuri Boykov B. Leibe [Boykov & Jolly, ICCV’01]
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Topics of This Lecture

e Solving MRFs with Graph Cuts
» Graph cuts for image segmentation
> s-t mincut algorithm
> Graph construction
~ Extension to non-binary case
~ Applications

B. Leibe

21
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How Does it Work? The st-Mincut Problem

Graph (V, E, C)
Vertices V = {v,, v, ... V. .}
Edges E = {(v{, V5) ....}
Costs C ={c(y 3) -.--}
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Slide credit: Pushmeet Kohli B. Leibe
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The st-Mincut Problem

5+2 + 9=

Slide credit: Pushmeet Kohli

16

What is an st-cut?

An st-cut (S,T) divides the nodes
between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges
going fromSto T

.23
B. Leibe
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The st-Mincut Problem

What is an st-cut?

An st-cut (S,T) divides the nodes
between source and sink.

Slide credit: Pushmeet Kohli

What is the cost of a st-cut?

Sum of cost of all edges
going fromSto T

What is the st-mincut?

st-cut with the
minimum cost

B. Leibe

1024



How to Compute the st-Mincut?

Solve the dual maximum flow problem

Compute the maximum flow
between Source and Sink

Constraints

Edges: Flow < Capacity

Nodes: Flow in = Flow out

, Min-cut/Max-flow Theorem

In every network, the maximum flow|
equals the cost of the st-mincut
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History of Maxflow Algorithms

Augmenting Path and Push-Relabel

Slide credit: Andrew Goldberg

year | discoverer(s) | bound
1951 | Dantzig O (n?mU)
1955 | Ford & Fulkerson O(m?U)
1970 | Dinitz O(n’m)
1972 | Edmonds & Karp O(m?logl)
1973 | Dinitz O(nmlogU)
1974 | Karzanov O(n3)
o 1977 | Cherkassky O(n?m1/?)
- 1980 | Galil & Naamad O(nmlog?n)
- 1983 | Sleator & Tarjan O(nmlogn)
GE, 1986 | Goldberg & Tarjan O(nmlog(n?/m))
= 1987 | Ahuja & Orlin O(nm + n?logU)
=] 1987 | Ahuja et al. O(nmlog(ny/logU/m))
w_ 1989 | Cherivan & Hagerup | E(nm + n2log?n)
g’ 1990 | Cheriyan et al. O(n3/logn)
e 1990 | Alon O(nm 4+ n®logn)
o 1992 | King et al. O(nm 4+ n?7e)
e 1993 | Phillips & Westbrook | O(nm(109,,,,n + 109°T“n))
) 1994 | King et al. O(nm 109, /(n10gn) ™)
.E 1997 | Goldberg & Rao O(m3?log(n?/m)log U)
g O(n?/3mlog(n?/m)logU)
=

. Leibe

N: #nodes
m: #edges

U: maximum
edge weight

Algorithms
assume non-
negative edge
weights

.26



Maxflow Algorithms

Flow =0
ow Augmenting Path Based

[ Algorithms

1. Find path from source to sink
with positive capacity

0/9

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found
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Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli B. Leibe

.27



Maxflow Algorithms

Flow =0
ow Augmenting Path Based

Algorithms

1. Find path from source to sink
with positive capacity

0/9

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found
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Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli B. Leibe
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Maxflow Algorithms

Flow =0 + 2
ow i Augmenting Path Based

Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

is created in the residual graph with capacity equals to the flow
passed through the edge

0
M
| 59
@
£
£
S
/2]
o)
IE
=
[
®
)
-
)
IE
=
)
®
=

Slide credit: Pushmeet Kohli B. Leibe
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Maxflow Algorithms

Flow = 2
ow Augmenting Path Based

Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

is created in the residual graph with capacity equals to the flow
passed through the edge
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Slide credit: Pushmeet Kohli B. Leibe



Maxflow Algorithms

Flow =2 + 4
ow i Augmenting Path Based

Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

is created in the residual graph with capacity equals to the flow
passed through the edge
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Slide credit: Pushmeet Kohli B. Leibe



Maxflow Algorithms

Flow = 6
ow Augmenting Path Based

Algorithms

4/5 1. Find path from source to sink

with positive capacity

2/0

- 2. Push maximum possible flow
/°4/0 through this path

7°0/4

4

2/3

3. Repeat until no path can be
found

is created in the residual graph with capacity equals to the flow
passed through the edge
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Slide credit: Pushmeet Kohli B. Leibe



Maxflow Algorithms

Flow = 6
ow Augmenting Path Based

Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

is created in the residual graph with capacity equals to the flow
passed through the edge
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Slide credit: Pushmeet Kohli B. Leibe



Maxflow Algorithms

Flow =7

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found
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Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli B. Leibe
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When Can s-t Graph Cuts Be Applied?

unary potentials pairwise potentials

E(L) Z E.(L,) + > E(L, L) L, e{s.t}

t-links

pgeN
n-links

e s-t graph cuts can only globally minimize binary energies

that are submodular.

E(L) can be minimized
by s-t graph cuts

[Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

> [E(5,8)+ E(t,1) <E(s,t) + E(t,)

Submodularity (“convexity”)

e Submodularity is the discrete equivalent to convexity.
= Solution will be globally optimal.

40
B. Leibe



Topics of This Lecture

e Solving MRFs with Graph Cuts

» Graph cuts for image segmentation
. s-t mincut algorithm QL ®

~ Graph construction J/\/ /VV =>
}J

» Extension to non-binary case b
> Applications
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RWTHAACHEN
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Example: Graph Construction
E(al’aZ)
. Source (0)
:
£ a a
: 1 () () o
E Bl sk ()
‘E“ .45

Slide credit: Pushmeet Kohli B. Leibe



RWTHAACHEN

. UNIVERSITY
Example: Graph Construction
E(aw az) = 2a1
Source (0)
o 2
g a1 Q Q @3
é B sink (1)
= <46

Slide credit: Pushmeet Kohli B. Leibe



)
M
| 59
@
£
£
S
/2]
o)
=
=
[
®
)
-
)
IE
=
)
®
=

Example: Graph Construction

E(a,,a,) =2a, +5(1-4a,)

Source (0)

B sink

Slide credit: Pushmeet Kohli B. Leibe

NS \47



Example: Graph Construction
E(a,a,)=2a,+5(1-4a,)+9,+4(1-4a,)

Source (0)

B sink
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Slide credit: Pushmeet Kohli B. Leibe

”M'l \ R

.48



0
M
| 59
@
£
£
S
/2]
o)
IE
=
[
®
)
-
)
IE
=
)
®
=

Example: Graph Construction

E(a,a,)=2a +5(1-4a,)+9%,+4(1-a,)+(1-4a)a,

Source (0)

B sink (1)

Slide credit: Pushmeet Kohli B. Leibe

.49
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Example: Graph Construction

E(a,a,)=2a,+5(1-4a,)+9%,+4(1-a,)+(1-a)a, +2(1-a,)a,

Source (0)

B sink (1)

Slide credit: Pushmeet Kohli B. Leibe

130



0
M
| 59
@
£
£
S
70
o)
IE
=
[
®
)
-
)
IE
=
)
®
=

RWNTH
Example: Graph Construction "

E(a,a,)=2a,+5(1-4a,)+9%,+4(1-a,)+(1-a)a, +2(1-a,)a,

Source (0)

B sink (1)

Slide credit: Pushmeet Kohli B. Leibe

N



RWNTH
Example: Graph Construction "

E(a,a,)=2a,+5(1-4a,)+9%,+4(1-a,)+(1-a)a, +2(1-a,)a,

Source (0)
lll2l llllllll ll9ll COSt OfCUt= 11
1
a,1©1 _Q aq a,=1a,=1

\ 2/ E(1,1) =11
5 4 \. J

Slide credit: Pushmeet Kohli B. Leibe
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RWNTH
Example: Graph Construction "

E(a,a,)=2a,+5(1-4a,)+9%,+4(1-a,)+(1-a)a, +2(1-a,)a,

Source (0)

2 0 Cost of cut = 7

0, (\E——" g, a;=1a,=0

o\

2 ‘0., mn® E (170) __ 7
5 4 .

Slide credit: Pushmeet Kohli B. Leibe
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How Does the Code Look Like?

Graph *g;

For all pixels p

/* Add a node to the graph */
nodelD(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodelD(p), nodelD(q), cost);

end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodelD(p));

// is the label of pixel p (0 or 1)

0
M
| 59
@
£
£
S
70
o)
IE
=
[
®
)
-
)
IE
=
)
®
=

Slide credit: Pushmeet Kohli B. Leibe

. Source (0)



Graph *g;

For all pixels p

/* Add a node to the graph */
nodelD(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodelD(p), nodelD(q), cost);

end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodelD(p));

// is the label of pixel p (0 or 1)
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Slide credit: Pushmeet Kohli B. Leibe

How Does the Code Look Like?

Source (0)
bgCost(p) bgCost(q)
p () () 4
fgCost(p) fgCost(q)



Graph *g;

For all pixels p

/* Add a node to the graph */
nodelD(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodelD(p), nodelD(q), cost);

end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodelD(p));

// is the label of pixel p (0 or 1)
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Slide credit: Pushmeet Kohli B. Leibe

How Does the Code Look Like?

Source (0)
bgCost(p) bgCost(q)
cost(p,q)
—]
fgCost(p) fgCost(q)



Graph *g;

For all pixels p

/* Add a node to the graph */
nodelD(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodelD(p), nodelD(q), cost);

end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodelD(p));

// is the label of pixel p (0 or 1)
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Slide credit: Pushmeet Kohli B. Leibe

How Does the Code Look Like?

Source (0)

bgCost bgCost(g
co§t

Q—Q q

fgCost(p)




RWTHAACHEN
UNIVERSITY

Topics of This Lecture

e Solving MRFs with Graph Cuts
» Graph cuts for image segmentation
> s-t mincut algorithm
> Graph construction
~ Extension to non-binary case
> Applications
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Dealing with Non-Binary Cases

e Limitation to binary energies is often a nuisance.
= E.g. binary segmentation only...

e We would like to solve also multi-label problems.
> The bad news: Problem is NP-hard with 3 or more labels!

e There exist some approximation algorithms which
extend graph cuts to the multi-label case:

> oa~Expansion
> af-Swap

e They are no longer guaranteed to return the globally
optimal result.

> But a-Expansion has a guaranteed approximation quality
and converges in a few iterations.

B. Leibe



CHEN
: UNIVERSITY
o-Expansion Move

e Basic idea:

~ Break multi-way cut computation into a sequence of
binary s-t cuts.

|
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B. Leibe

Slide credit: Yuri Boykov
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o-Expansion Algorithm

1. Start with any initial solution
2. For each label “a” in any (e.g. random) order:
1. Compute optimal a-expansion move (s-t graph cuts).

2. Decline the move if there is no energy decrease.

3. Stop when no expansion move would decrease energy.

Slide credit: Yuri Boykov B. Leibe

o1



RWTHAACHEN
o UNIVERSITY
Example: Stereo Vision

Depth map

Original pair of “stereo” images
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Slide credit: Yuri Boykov B. Leibe



CHEN
: UNIVERSITY
o-Expansion Moves

e In each a-expansion a given label “a” grabs space from
other labels

initial solution
@ -expansion

@ -expansion

@ -expansion

@ -expansion

For each move, we choose the expansion that gives the largest

decrease in the energy: = binary optimization problem Q3
B. Leibe
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Slide credit: Yuri Boykov
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Topics of This Lecture

e Solving MRFs with Graph Cuts
» Graph cuts for image segmentation
> s-t mincut algorithm
~ Extension to non-binary case
~ Applications

B. Leibe
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GraphCut Applications: “GrabCut”

e Interactive Image Segmentation [Boykov & Jolly, ICCV’01]
> Rough region cues sufficient
~ Segmentation boundary can be extracted from edges

e Procedure

> User marks foreground and background regions with a brush.

~ This is used to create an initial segmentation
which can then be corrected by additional brush strokes.

cues

User segmentation cues
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GrabCut: Data Model

Foreground Background

Global optimum of
the energy
e Obtained from interactive user input

> User marks foreground and background regions with a brush

» Alternatively, user can specify a bounding box
B. Leibe
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Iterated Graph Cuts
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Energy after
each iteration
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GrabCut: Example Results
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References and Further Reading

e A gentle introduction to Graph Cuts can be found in the
following paper:

> Y. Boykov, O. Veksler, Graph Cuts in Vision and Graphics: Theories and
Applications. In Handbook of Mathematical Models in Computer Vision,
edited by N. Paragios, Y. Chen and O. Faugeras, Springer, 2006.

e Try the Graph Cut implementation at
http://pub.ist.ac.at/~vnk/software.html
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http://www.csd.uwo.ca/~yuri/Papers/chapter_04.pdf
http://pub.ist.ac.at/~vnk/software.html

