Machine Learning - Lecture 17

Efficient MRF Inference with Graph Cuts

07.07.2015

Bastian Leibe **RWTH Aachen** http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Course Outline

- Fundamentals (2 weeks)
 - **Bayes Decision Theory**
 - **Probability Density Estimation**

- · Discriminative Approaches (5 weeks)
 - > Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Ensemble Methods & Boosting
 - > Decision Trees & Randomized Trees
- Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields
 - **Exact Inference**
 - **Applications**

RWTHAACHEN

RWTHAACHEN UNIVERSITY

Recap: MRF Structure for Images

Basic structure

Noisy observations

'True" image content

- Two components
 - Observation model
 - How likely is it that node x_i has label L_i given observation y_i ?
 - This relationship is usually learned from training data.
 - Neighborhood relations
 - Simplest case: 4-neighborhood
 - Serve as smoothing terms.
 - ⇒ Discourage neighboring pixels to have different labels.
 - This can either be learned or be set to fixed "penalties".

RWTHAACHEN UNIVERSITY Recap: How to Set the Potentials?

· Unary potentials

E.g. color model, modeled with a Mixture of Gaussians

$$\phi(x_i, y_i; \theta_{\phi}) = -\theta_{\phi} \log \sum_k p(k \mid x_i) \aleph(y_i \mid \overline{y}_k, \Sigma_k)$$

 \Rightarrow Learn color distributions for each label

RWITHAACHEN

--

Recap: How to Set the Potentials?

- · Pairwise potentials
 - > Potts Model

$$\psi(x_i,x_j;\theta_\psi)=\theta_\psi\delta(x_i\neq x_j)$$

- Simplest discontinuity preserving model,
- Discontinuities between any pair of labels are penalized equally.
- Useful when labels are unordered or number of labels is small,
- > Extension: "contrast sensitive Potts model"
- $\psi(x_i,x_j,g_{ij}(y);\theta_{\psi})=\theta_{\psi}g_{ij}(y)\delta(x_i\neq x_j)$ where,

$$g_{ij}(y) = e^{-\beta \|y_i - y_j\|^2}$$
 $\beta = 2/avg \|y_i - y_j\|^2$

Discourages label changes except in places where there is also a large change in the observations.

B. Leibe

Topics of This Lecture

• Solving MRFs with Graph Cuts

- > Graph cuts for image segmentation
- s-t mincut algorithm
- Graph construction
- Extension to non-binary case
- Applications

B. Leibe

Topics of This Lecture

- Solving MRFs with Graph Cuts
 - > Graph cuts for image segmentation
 - > s-t mincut algorithm
 - Graph construction
 - Extension to non-binary case
 - > Applications

B. Leibe

How Does it Work? The st-Mincut Problem Graph (V, E, C) Vertices V = {v₁, v₂ ... v_n} Edges E = {(v₁, v₂} Costs C = {C_(1, 2)}

When Can s-t Graph Cuts Be Applied?

$$E(L) \quad = \sum_{p}^{\text{unary potentials}} E_p(L_p) \ + \sum_{pq \in N}^{\text{pairwise potentials}} L_p \in \{s,t\}$$

 s-t graph cuts can only globally minimize binary energies that are submodular. [Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

· Submodularity is the discrete equivalent to convexity. ⇒ Solution will be globally optimal.

40

Topics of This Lecture

- · Solving MRFs with Graph Cuts
 - > Graph cuts for image segmentation
 - s-t mincut algorithm
 - > Graph construction
 - > Extension to non-binary case
 - Applications

RWITHAACHEN

■ 31

RWTHAACHEN UNIVERSITY **Example: Graph Construction** $E(a_1,a_2)$ Source (0) a_1 \bigcirc a_2 Sink (1) **1** 35 Slide credit: Pushmeet Kohli

B. Leibe

RWITHAACHEN UNIVERSITY **Dealing with Non-Binary Cases** · Limitation to binary energies is often a nuisance. ⇒ E.g. binary segmentation only... · We would like to solve also multi-label problems. > The bad news; Problem is NP-hard with 3 or more labels! · There exist some approximation algorithms which extend graph cuts to the multi-label case: α-Expansion $\alpha\beta$ -Swap · They are no longer guaranteed to return the globally optimal result. But lpha-Expansion has a guaranteed approximation quality and converges in a few iterations. **1** 59 B. Leibe

¥ 64

RWTHAACHEN UNIVERSITY References and Further Reading

- A gentle introduction to Graph Cuts can be found in the following paper:
 - Y. Boykov, O. Veksler, <u>Graph Cuts in Vision and Graphics: Theories and Applications</u>. In <u>Handbook of Mathematical Models in Computer Vision</u>, edited by N. Paragios, Y. Chen and O. Faugeras, Springer, 2006.
- Try the Graph Cut implementation at http://pub.ist.ac.at/~vnk/software.html

B. Leibe

