Machine Learning - Lecture 11

AdaBoost and Decision Trees
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Course Outline

e Fundamentals (2 weeks)
- Bayes Decision Theory
~ Probability Density Estimation

e Discriminative Approaches (5 weeks)
> Linear Discriminant Functions
~ Statistical Learning Theory & SVMs
- Ensemble Methods & Boosting
> Randomized Trees, Forests & Ferns

e Generative Models (4 weeks)
> Bayesian Networks
> Markov Random Fields
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Recap: Stacking

e |dea
» Learn L classifiers (based on the training data)

> Find a meta-classifier that takes as input the output of the L
first-level classifiers.

| Classifier 1 H

| Classifier 2

Combination

Data |7 _> Classifier

e Example

> Learn L classifiers with | Classifier L

leave-one-out.

- Interpret the prediction of the L classifiers as L-dimensional
feature vector.

» Learn “level-2” classifier based on the examples generated this
way.
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Slide credit: Bernt Schiele B. Leibe



RWTH
Recap: Bayesian Model Averaging

e Model Averaging

> Suppose we have H different models h =1,...,H with prior
probabilities p(h).
~ Construct the marginal distribution over the data set

p(X) = > _p(X|h)p(h)

e Average error of committee .

Ecom = MEAV

~ This suggests that the average error of a model can be reduced
by a factor of )M simply by averaging )M versions of the model!

> Unfortunately, this assumes that the errors are all uncorrelated.
In practice, they will typically be highly correlated.
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Topics of This Lecture

e Recap: AdaBoost
> Algorithm
~  Analysis
> Extensions

e Analysis
> Comparing Error Functions

e Applications
> AdaBoost for face detection

e Decision Trees
> CART
> Impurity measures, Stopping criterion, Pruning
> Extensions, Issues
» Historical development: ID3, C4.5

B. Leibe
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R\WNTH
Recap: AdaBoost - “Adaptive Boosting”

e Main idea [Freund & Schapire, 1996]

> Instead of resampling, reweight misclassified training examples.
- Increase the chance of being selected in a sampled training set.
- Or increase the misclassification cost when training on the full set.

e Components

> h,(x): “weak” or base classifier
- Condition: <50% training error over any distribution
> H(x): “strong” or final classifier

e AdaBoost:

> Construct a strong classifier as a thresholded linear combination
of the weighted weak classifiers:

H(x) = sign (Z amhm(x)>

B. Leibe

0
M
S
@
£
£
S
7]
>
=
c
.
c
)
-
)
=
=
3)
c
=




Recap: AdaBoost - Algorithm

1. Initialization: Set w(") = ]iv forn=1,...,N.

2. For m=1,...,M iterations

a) Train a new weak classifier h_(x) using the current weighting
coefficients W (™ by minimizing the weighted error function

N A i frria
J, = wa,(zm)f(hm(x) £ tn) I(A) = {1. if A is true
n=1

0, else
b) Estimate the weighted error of this classifier on X:
_ Caa @i (i () # t)
€m =
Sy wn”

c) Calculate a weighting coefficient for h, (x):

]-_ m
amzln{ c }
Em

d) Update the weighting coefficients:
w,,(lmﬂ) — w,,(zm) exp {am I (hm(Xn) #tn)}

B. Leibe
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RWTHAACHEN
. . UNIVERSITY
Topics of This Lecture

e Analysis
> Comparing Error Functions
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AdaBoost - Analysis

e Result of this derivation

> We now know that AdaBoost minimizes an exponential error
function in a sequential fashion.

~ This allows us to analyze AdaBoost’s behavior in more detail.
> In particular, we can see how robust it is to outlier data points.
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RWNTH
Recap: Error Functions

E (Zn) Ideal misclassification error

tn € {—1,1}

Not differentiable! S

=2 y N\ 1 7™ #n = tnl(%n)

e |deal misclassification error function (black)
> This is what we want to approximate,
> Unfortunately, it is not differentiable.
» The gradient is zero for misclassified points.
= We cannot minimize it by gradient descent. 10

Image source: Bishop, 2006
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Recap: Error Functions

E (Zn) Ideal misclassification error
Squared error

tn € {—1,1}

Sensitive to outliers!

Penalizes “too correct”
data points!

", #

—2 1 0 1

e Squared error used in Least-Squares Classification
~ Very popular, leads to closed-form solutions.
» However, sensitive to outliers due to squared penalty.
» Penalizes “too correct” data points
= Generally does not lead to good classifiers. 11

Image source: Bishop, 2006

2"' Zn = tny(xn)
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RWNTH
Recap: Error Functions

E (Zn) Ideal misclassification error
Squared error
Hinge error

Robust to outliers!

Favors sparse
/ solutions!
e “Hinge error” used in SVMs

- Lero error for points outside the margin (z, > 1) =
sparsity
> Linear penalty for misclassified points (:, < 1) = robustness

~ Not differentiable around 2 = 1 = Cannot be optimized directlyz
B.Leibe Image source: Bishop, 2006

Not differentiable! \

—2 -1 0
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RWTHAACHEN
Discussion: AdaBoost Error Function

! E (Zn) Ideal misclassification error
Squared error
Hinge error
Exponential error

=2 y 7™ %n = tn}(Xn)

e Exponential error used in AdaBoost
> Continuous approximation to ideal misclassification function.
> Sequential minimization leads to simple AdaBoost scheme.
> Properties?
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Discussion: AdaBoost Error Function

A

E (Zn) Ideal misclassification error
Squared error
Hinge error

.y . Exponential error
Sensitive to outliers!

=2 y 7™ %n = tn}(Xn)

e Exponential error used in AdaBoost
> No penalty for too correct data points, fast convergence.
> Disadvantage: exponential penalty for large negative values!
= Less robust to outliers or misclassified data points!
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Image source: Bishop, 2006
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Discussion: Other Possible Error Functions

A
E (Zn) Ideal misclassification error

Squared error
Hinge error
Exponential error
Cross-entropy error

E=— Z{tn Iny, + (1 —t,)In(1 —yy)}

=2 y o1 2% = tal(Xn)

e “Cross-entropy error” used in Logistic Regression
> Similar to exponential error for z>0.
> Only grows linearly with large negative values of z.
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= Make AdaBoost more robust by switching to this error function.

15
= “GentleBoost” B. Leibe

Image source: Bishop, 2006




Summary: AdaBoost

e Properties
» Simple combination of multiple classifiers.
» Easy to implement.

> Can be used with many different types of classifiers.
- None of them needs to be too good on its own.
- In fact, they only have to be slightly better than chance.

Commonly used in many areas.
Empirically good generalization capabilities.

Y

Y

e Limitations
» Original AdaBoost sensitive to misclassified training data points.
- Because of exponential error function.
- Improvement by GentleBoost
> Single-class classifier
- Multiclass extensions available
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RWTHAACHEN
. . UNIVERSITY
Topics of This Lecture

e Applications
> AdaBoost for face detection
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RWNTH
Example Application: Face Detection

 Frontal faces are a good example of a class where
global appearance models + a sliding window
detection approach fit well:

~ Regular 2D structure
~ Center of face almost shaped like a “patch”/window

e Now we’ll take AdaBoost and see how the Viola-
Jones face detector works

Slide credit; Kristen Grauman B. Leibe
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Feature extraction

“Rectangular” filters

Feature output is difference
between adjacent regions

Value at (x,y) is

) .. sum of pixels
T Efficiently computable above and to the
o o o A B
= with integral image: any left of (x,y) 1 ,
= sum can be computed )
¥ in constant time x.y) !
C
£ Avoid scaling images 2>
il) Scale features direCtly Integral image D=1+4-(2+3)
= for same cost = A+(A+B+C+D)—(A+C+ A+B)
= =D
(@]
©
=

: 19
Slide credit: Kristen Grauman B. Leibe [Viola & Jones, CVPR 2001]



Large Library of Filters
I = Considering all

—

possible filter
parameters:
position, scale,

e | and type:

|
180,000+ possible
features

]
B |
associated with

each 24 x 24
- . = window

Use AdaBoost both to select the informative features
and to form the classifier
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Slide credit: Kristen Grauman B. Leibe [Viola & Jones, CVPR 2001]



RWNTH
AdaBoost for Feature+Classifier Selection

e Want to select the single rectangle feature and threshold
that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

Resulting weak classifier:

hg _ { +1 if £(x)> 0,

feature on faces
and non-faces.

mm

g M -1 otherwise

E ebpoeoe eoe o

o BLE

e . | . For next round, reweight the
= I _t[(.'?()H .

c examples according to errors,
3 Outputs of a choose another filter/threshold
© possible rectangle combo.

f_g

=

: 21
Slide credit: Kristen Grauman B. Leibe [Viola & Jones, CVPR 2001]



RWNTH
AdaBoost for Efficient Feature Selection

 Image features = weak classifiers

e For each round of boosting:
~ Evaluate each rectangle filter on each example
~ Sort examples by filter values

> Select best threshold for each filter (min error)
- Sorted list can be quickly scanned for the optimal threshold

> Select best filter/threshold combination
~ Weight on this features is a simple function of error rate
> Reweight examples

P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004.

(first version appeared at CVPR 2001)
B. Leibe
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Slide credit: Kristen Grauman


http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf

0
M
S
@
£
£
S
7]
>
=
c
S
c
)
-
)
=
=
3)
c
=

RWNTH
Viola-Jones Face Detector: Results

B. Leibe

Slide credit: Kristen Grauman

23
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RWNTH
Viola-Jones Face Detector: Results

Slide credit; Kristen Grauman B. Leibe

25
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RWNTH
References and Further Reading

 More information on Classifier Combination and Boosting
can be found in Chapters 14.1-14.3 of Bishop’s book.

= PATTERN RECOGNITION &

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

e A more in-depth discussion of the statistical interpre-
tation of AdaBoost is available in the following paper:

» J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic
Regression: a Statistical View of Boosting, The Annals of
Statistics, Vol. 38(2), pages 337-374, 2000.

26
B. Leibe


http://www-stat.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf
http://www-stat.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf
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Topics of This Lecture

e Decision Trees
> CART
> Impurity measures, Stopping criterion, Pruning
> Extensions, Issues
» Historical development: ID3, C4.5

B. Leibe

27
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Decision Trees

e Very old technique
> Origin in the 60s, might seem outdated.

e But...
~ Can be used for problems with nhominal data

- E.g. attributes color € {red, green, blue} or weather € {sunny, rainy}.

- Discrete values, no notion of similarity or even ordering.

Interpretable results
- Learned trees can be written as sets of if-then rules.

Y

» Methods developed for handling missing feature values.

> Successfully applied to broad range of tasks
- E.g. Medical diagnosis
- E.g. Credit risk assessment of loan applicants

> Some interesting novel developments building on top of them...

B. Leibe

28
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Decision Trees

Sunny

pd

Humidity

/\

High Normal

/

No

e Example:

\

Yes

Outlook

hvercast

Yes

Rain

™~

Wind

/\

Strong Weak

/

No

\

Yes

> “Classify Saturday mornings according to whether they’re
suitable for playing tennis.”

B. Leibe

29
Image source: T. Mitchell, 1997
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Decision Trees

Sunny

Humidity

/\

High Normal

/ \

No Yes

e Elements

Outlook

hvercast

Yes

Rain

Wind

/\

Strong Weak

/ \

No Yes

» Each node specifies a test for some attribute.
» Each branch corresponds to a possible value of the attribute.

B. Leibe

30
Image source: T. Mitchell, 1997



Decision Trees

e Assumption
» Links must be mutually distinct and exhaustive
> l.e. one and only one link will be followed at each step.

Outlook

N

Sunny Overcast Rain

re e ~.
e Interpretability Hiamidin ves Wind
. Information in a tree can then be /\ /\
rendered as logical expressions., " Nordl Strong - Wedd
® P / \ / \
> In our example: No Yes No Ves

(Outlook = Sunny N Humidity = Normal)
V (OQutlook = Qvercast)
V (Outlook = Rain \ Wind = Weak)
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Image source: T. Mitchell, 1997
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Training Decision Trees

 Finding the optimal decision tree is NP-hard...

e Common procedure: Greedy top-down growing
~ Start at the root node.

~ Progressively split the training data into smaller and smaller
subsets.

> In each step, pick the best attribute to split the data.

> If the resulting subsets are pure (only one label) or if no further
attribute can be found that splits them, terminate the tree.

~ Else, recursively apply the procedure to the subsets.

e CART framework

> Classification And Regression Trees (Breiman et al. 1993)
> Formalization of the different design choices.

32
B. Leibe
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CART Framework

e Six general questions

1. Binary or multi-valued problem?
- l.e. how many splits should there be at each node?

2. Which property should be tested at a node?
- l.e. how to select the query attribute?

3. When should a node be declared a leaf?
- l.e. when to stop growing the tree?

4. How can a grown tree be simplified or pruned?
- Goal: reduce overfitting.

5. How to deal with impure nodes?
- l.e. when the data itself is ambiguous.

6. How should missing attributes be handled?

B. Leibe

33



CART - 1. Number of Splits

e Each multi-valued tree can be converted into an
equivalent binary tree:

color = Green?

ves

size = big?

no

yes no yes
[Te) mall
-—
E Watermelon Apple Grape Apple @ Watcrnelon
E ves no ves no yves
E big small sweel Sour ’ ’ ’
=)
(/)] Grapefruit Lemon Cherry  Grape Apple  Grape size = big? Apple
(@)} ves no ves no
C
c .
E Grapefruit Lemon Cherry  Grape
(D)
—
(B)
cC ] °
=| = Only consider binary trees here...
(&)
=

34

B. Leibe Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001



RWTH
CART - 2. Picking a Good Splitting Feature

e Goal
> Want a tree that is as simple/small as possible (Occam’s razor).
~ But: Finding a minimal tree is an NP-hard optimization problem.

e Greedy top-down search
~ Efficient, but not guaranteed to find the smallest tree.

~ Seek a property 7 at each node /N that makes the data in the
child nodes as pure as possible.

» For formal reasons more convenient to define impurity (V).
~ Several possible definitions explored.
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CART - Impurity Measures
ti(P) / discontinuous derivative!

e Misclassification impurity “Fraction of the

: B training patterns
i(N) =1-— m?Xp(Cj N) in category C; that

end up in node N.”
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B. Leibe Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001



RWTHAACHEN

. UNIVERSITY
CART - Impurity Measures
ti(P)
f
- P
0 0.5 1

* Entropy impurity “Reduction in
i(N) = — Zp(Cj |N)log, p(C;|N) entropy = gain in

p information.”
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B. Leibe Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001



RWTHAACHEN
. UNIVERSITY
CART - Impurity Measures

e Gini impurity (variance impurity) “Expected error

i(N) = C;|N)p(C:|N rate at node N if
) ;p( NV)p(CIN) the category label is

| selected randomly.”
= S[=Y PN
P 38

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001
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CART - Impurity Measures

e Which impurity measure should we choose?

» Some problems with misclassification impurity.
- Discontinuous derivative.
= Problems when searching over continuous parameter space.

- Sometimes misclassification impurity does not decrease when Gini
impurity would.

~ Both entropy impurity and Gini impurity perform well.
- No big difference in terms of classifier performance.

- In practice, stopping criterion and pruning method are often more
important.

B. Leibe
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RWTH
CART - 2. Picking a Good Splitting Feature

e Application
~ Select the query that decreases impurity the most
Ni(N) = i(N) — Pri(NL) — (1 — Pp)i(Ng)

 Multiway generalization (gain ratio impurity):
> Maximize

Ni(s) = % (Z(N) - ZPkZ(Nk)>
k=1

- where the normalization factor ensures that large K are not
inherently favored:

K
Z=—-> Pylog, Py

k=1
B. Leibe

40



RWTH
CART - Picking a Good Splitting Feature

e For efficiency, splits are often based on a single feature
“Monothetic decision trees”

.]‘2 ljl 'Rfl ‘ | [ R

;
1 A R, /] / /
R 1 / e 7
X2 R .

/
/
/ /
X A
-

e Evaluating candidate splits
> Nominal attributes: exhaustive search over all possibilities.

> Real-valued attributes: only need to consider changes in label.
- Order all data points based on attribute ..
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- Only need to test candidate splits where label(x,) # label(x,,,).
B. Leibe
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RWTH
CART - 3. When to Stop Splitting

e Problem: Overfitting

» Learning a tree that classifies the training data perfectly may
not lead to the tree with the best generalization to unseen data.

> Reasons
- Noise or errors in the training data.

- Poor decisions towards the leaves of the tree that are based on very
little data.

e Typical behavior

a

on training data

on test data

accuracy

hypothesis complexity
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Slide adapted from Raymond Mooney B. Leibe
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RWNTH
CART - Overfitting Prevention (Pruning)

e Two basic approaches for decision trees

> Prepruning: Stop growing tree as some point during top-down
construction when there is no longer sufficient data to make
reliable decisions.

> Postpruning: Grow the full tree, then remove subtrees that do
not have sufficient evidence.

e Label leaf resulting from pruning with the majority class
of the remaining data, or a class probability distribution.

Cn = argm]?Xp(Ck\N) | I I

p(Cx|N)

43

Slide adapted from Raymond Mooney B. Leibe
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RWTH
Decision Trees - Handling Missing Attributes

e During training
~ Calculate impurities at a node using only the attribute
information present.

- E.g. 3-dimensional data, one point is missing attribute z..
- Compute possible splits on z, using all /V points.
- Compute possible splits on z, using all /V points.
- Compute possible splits on x, using N-1 non-deficient points.
= Choose split which gives greatest reduction in impurity.

e During test

» Cannot handle test patterns that are lacking the decision
attribute!

= In addition to primary split, store an ordered set of surrogate
splits that try to approximate the desired outcome based on
different attributes.

47
B. Leibe
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o 15827 Bad tree

Xy < 032 X, <0.6

AN

1‘,-::15'19? ,;'_UELLJ 11-:15'33

SN N

1 1 Xy = (.86

'q.-l.-rl; 1._,[,, L-Lrl; /\

x, < 0.81

r":-
x; /\

Y

e Best results if proper features are used

B. Leibe
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Decision Trees - Feature Choice

- 1.2 Xy + 2, < 0.1

e Best results if proper features are used
~ Preprocessing to find important axes often pays off.

B. Leibe

Good tree

49
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RWNTH
Decision Trees - Non-Uniform Cost

e Incorporating category priors

» Often desired to incorporate different priors for the categories.

> Solution: weight samples to correct for the prior frequencies.

e Incorporating non-uniform loss
- Create loss matrix \;;
~ Loss can easily be incorporated into Gini impurity

(V) = Z Aiip(Ci)p(Cy)

B. Leibe
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Historical Development

e |ID3 (Quinlan 1986)

> One of the first widely used decision tree algorithms.

> Intended to be used with nominal (unordered) variables
- Real variables are first binned into discrete intervals.

~ General branching factor

- Use gain ratio impurity based on entropy (information gain)
criterion.

e Algorithm
~ Select attribute a that best classifies examples, assign it to root.
» For each possible value v, of a,

- Add new tree branch corresponding to test a = v,.

- If example_list(v,) is empty, add leaf node with most common label
in example_list(a).
- Else, recursively call ID3 for the subtree with attributes A \ a.
B. Leibe
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Historical Development

e C4.5 (Quinlan 1993)

» Improved version with extended capabilities.
Ability to deal with real-valued variables.

Multiway splits are used with nominal data

- Using gain ratio impurity based on entropy (information gain)
criterion.

~ Heuristics for pruning based on statistical significance of splits.
Rule post-pruning

Y

Y

Y

e Main difference to CART

> Strategy for handling missing attributes.

> When missing feature is queried, C4.5 follows all B possible
answers.

~ Decision is made based on all B possible outcomes, weighted by
decision probabilities at node V.

B. Leibe
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Decision Trees - Computational Complexity

e Given
- Data points {x,,...,x}
> Dimensionality D

e Complexity
. Storage: O(N)

. Test runtime: O(log N)
. Training runtime: O(DNZ?log N)

- Most expensive part.
- Critical step: selecting the optimal splitting point.
- Need to check D dimensions, for each need to sort [NV data points.

O(DNlog N)
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Summary: Decision Trees

e Properties
~ Simple learning procedure, fast evaluation.
> Can be applied to metric, nominal, or mixed data.
» Often yield interpretable results.

B. Leibe
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Summary: Decision Trees

e Limitations

>

>

Y

Y

Y

Often produce noisy (bushy) or weak (stunted) classifiers.
Do not generalize too well.
Training data fragmentation:

- As tree progresses, splits are selected based on less and less data.

Overtraining and undertraining:

- Deep trees: fit the training data well, will not generalize well to
new test data.

- Shallow trees: not sufficiently refined.
Stability
- Trees can be very sensitive to details of the training points.

- If a single data point is only slightly shifted, a radically different
tree may come out!

= Result of discrete and greedy learning procedure.
Expensive learning step
- Mostly due to costly selection of optimal split.
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References and Further Reading

e More information on Decision Trees can be found in
Chapters 8.2-8.4 of Duda & Hart.

Pattcrg _
R.O. Duda, P.E. Hart, D.G. Stork lestiicanion
Pattern Classification
2" Ed., Wiley-Interscience, 2000

B. Leibe

56



