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Course Outline 

• Fundamentals (2 weeks) 

 Bayes Decision Theory 

 Probability Density Estimation 
 

• Discriminative Approaches (5 weeks) 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Randomized Trees, Forests & Ferns 
 

• Generative Models (4 weeks) 

 Bayesian Networks 

 Markov Random Fields 
 

B. Leibe 
2 
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Recap: Stacking 

• Idea 

 Learn L classifiers (based on the training data) 

 Find a meta-classifier that takes as input the output of the L 

first-level classifiers. 

 

 

 

• Example 

 Learn L classifiers with  

leave-one-out. 

 Interpret the prediction of the L classifiers as L-dimensional 

feature vector. 

 Learn “level-2” classifier based on the examples generated this 

way. 
3 

B. Leibe Slide credit: Bernt Schiele 

Combination 

Classifier 

Classifier 1 

Classifier L 

Classifier 2 

… 

Data 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a
c
h

in
e
 L

e
a
rn

in
g

, 
S

u
m

m
e
r 

‘1
5

 

Recap: Bayesian Model Averaging 

• Model Averaging 

 Suppose we have H different models h = 1,…,H with prior 

probabilities p(h). 

 Construct the marginal distribution over the data set 

 

 

 
 

• Average error of committee 

 
 

 This suggests that the average error of a model can be reduced 

by a factor of M simply by averaging M versions of the model! 

 Unfortunately, this assumes that the errors are all uncorrelated. 

In practice, they will typically be highly correlated. 
4 

B. Leibe 

p(X) =

HX

h=1

p(Xjh)p(h)

ECOM =
1

M
EAV
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Topics of This Lecture 
 

• Recap: AdaBoost 
 Algorithm 

 Analysis 

 Extensions 
 

• Analysis 
 Comparing Error Functions 

 

• Applications 
 AdaBoost for face detection 

 

• Decision Trees 
 CART 

 Impurity measures, Stopping criterion, Pruning 

 Extensions, Issues 

 Historical development: ID3, C4.5 

 
5 
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Recap: AdaBoost – “Adaptive Boosting”  

• Main idea             [Freund & Schapire, 1996] 

 Instead of resampling, reweight misclassified training examples. 

– Increase the chance of being selected in a sampled training set. 

– Or increase the misclassification cost when training on the full set. 
 

• Components 

 hm(x): “weak” or base classifier 

– Condition: <50% training error over any distribution 

 H(x): “strong” or final classifier 
 

• AdaBoost:  

 Construct a strong classifier as a thresholded linear combination 

of the weighted weak classifiers: 

 

6 
B. Leibe 

H(x) = sign

Ã
MX

m=1

®mhm(x)

!
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1. Initialization: Set                 for n = 1,…,N. 
 

2. For m = 1,…,M iterations 

a) Train a new weak classifier hm(x) using the current weighting 

coefficients W(m) by minimizing the weighted error function  

 

 

b) Estimate the weighted error of this classifier on X: 

 

 

c) Calculate a weighting coefficient for hm(x): 

 
 

d) Update the weighting coefficients: 

 
 

®m = ln

½
1¡ ²m

²m

¾

Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

Recap: AdaBoost – Algorithm 

7 
B. Leibe 

w(1)
n =

1

N

²m =

PN

n=1 w
(m)
n I(hm(x) 6= tn)PN

n=1 w
(m)
n

w(m+1)
n = w(m)

n expf®mI(hm(xn) 6= tn)g
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Topics of This Lecture 
 

• Recap: AdaBoost 
 Algorithm 

 Analysis 

 Extensions 
 

• Analysis 
 Comparing Error Functions 

 

• Applications 
 AdaBoost for face detection 

 

• Decision Trees 
 CART 

 Impurity measures, Stopping criterion, Pruning 

 Extensions, Issues 

 Historical development: ID3, C4.5 
8 
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AdaBoost – Analysis 

• Result of this derivation 

 We now know that AdaBoost minimizes an exponential error 

function in a sequential fashion. 

 This allows us to analyze AdaBoost’s behavior in more detail. 

 In particular, we can see how robust it is to outlier data points. 

9 
B. Leibe 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a
c
h

in
e
 L

e
a
rn

in
g

, 
S

u
m

m
e
r 

‘1
5

 

Recap: Error Functions 

 

 

 

 

 

 

 

 
 

• Ideal misclassification error function (black) 

 This is what we want to approximate,  

 Unfortunately, it is not differentiable. 

 The gradient is zero for misclassified points. 

 We cannot minimize it by gradient descent. 10 
Image source: Bishop, 2006 

Ideal misclassification error 

Not differentiable! 

zn = tny(xn)
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Recap: Error Functions 

 

 

 

 

 

 

 

 
 

• Squared error used in Least-Squares Classification 

 Very popular, leads to closed-form solutions. 

 However, sensitive to outliers due to squared penalty. 

 Penalizes “too correct” data points 

 Generally does not lead to good classifiers. 11 
Image source: Bishop, 2006 

Ideal misclassification error 

Squared error 

Penalizes “too correct” 

 data points! 

Sensitive to outliers! 

zn = tny(xn)
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Recap: Error Functions 

 

 

 

 

 

 

 

 
 

• “Hinge error” used in SVMs 

 Zero error for points outside the margin (zn > 1)  

sparsity 

 Linear penalty for misclassified points (zn < 1)   robustness 

 Not differentiable around zn = 1  Cannot be optimized directly. 

 

12 
Image source: Bishop, 2006 

Ideal misclassification error 

Hinge error 

Squared error 

Not differentiable! Favors sparse  

solutions! 

Robust to outliers! 

zn = tny(xn)

B. Leibe 
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Discussion: AdaBoost Error Function 

 

 

 

 

 

 

 

 
 

• Exponential error used in AdaBoost 

 Continuous approximation to ideal misclassification function. 

 Sequential minimization leads to simple AdaBoost scheme. 

 Properties? 

 13 
B. Leibe Image source: Bishop, 2006 

Ideal misclassification error 

Hinge error 

Squared error 

Exponential error 

zn = tny(xn)
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Discussion: AdaBoost Error Function 

 

 

 

 

 

 

 

 
 

• Exponential error used in AdaBoost 

 No penalty for too correct data points, fast convergence. 

 Disadvantage: exponential penalty for large negative values! 

 Less robust to outliers or misclassified data points! 

 14 
B. Leibe Image source: Bishop, 2006 

Ideal misclassification error 

Hinge error 

Squared error 

Exponential error 
Sensitive to outliers! 

zn = tny(xn)
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Discussion: Other Possible Error Functions 

 

 

 

 

 

 

 

 
 

• “Cross-entropy error” used in Logistic Regression 

 Similar to exponential error for z>0. 

 Only grows linearly with large negative values of z. 

 Make AdaBoost more robust by switching to this error function. 

 “GentleBoost” 

 

15 
B. Leibe Image source: Bishop, 2006 

Ideal misclassification error 

Hinge error 

Squared error 

Exponential error 

Cross-entropy error 

E =¡
X

ftn lnyn + (1¡ tn) ln(1¡ yn)g

zn = tny(xn)
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Summary: AdaBoost 

• Properties 

 Simple combination of multiple classifiers. 

 Easy to implement. 

 Can be used with many different types of classifiers. 

– None of them needs to be too good on its own. 

– In fact, they only have to be slightly better than chance. 

 Commonly used in many areas. 

 Empirically good generalization capabilities. 
 

• Limitations 

 Original AdaBoost sensitive to misclassified training data points. 

– Because of exponential error function. 

– Improvement by GentleBoost 

 Single-class classifier 

– Multiclass extensions available 
16 

B. Leibe 
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Topics of This Lecture 
 

• Recap: AdaBoost 
 Algorithm 

 Analysis 

 Extensions 
 

• Analysis 
 Comparing Error Functions 

 

• Applications 
 AdaBoost for face detection 

 

• Decision Trees 
 CART 

 Impurity measures, Stopping criterion, Pruning 

 Extensions, Issues 

 Historical development: ID3, C4.5 
 

 

 
17 
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Example Application: Face Detection 

• Frontal faces are a good example of a class where 

global appearance models + a sliding window 

detection approach fit well: 

 Regular 2D structure 

 Center of face almost shaped like a “patch”/window 

 

 

 

 

 

• Now we’ll take AdaBoost and see how the Viola-

Jones face detector works 

18 
B. Leibe Slide credit: Kristen Grauman 
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Feature extraction 

19 
B. Leibe 

Feature output is difference 

between adjacent regions 

[Viola & Jones, CVPR 2001] 

Efficiently computable 

with integral image: any 

sum can be computed 

in constant time 

Avoid scaling images  

scale features directly 

for same cost 

“Rectangular” filters 

Value at (x,y) is 

sum of pixels 

above and to the 

left of (x,y) 

Integral image 

Slide credit: Kristen Grauman 
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Large Library of Filters 

Considering all 

possible filter 

parameters: 

position, scale, 

and type:  

180,000+ possible 

features 

associated with 

each 24 x 24 

window 

 

Use AdaBoost both to select the informative features 

and to form the classifier 

B. Leibe [Viola & Jones, CVPR 2001] Slide credit: Kristen Grauman 
20 
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AdaBoost for Feature+Classifier Selection 

• Want to select the single rectangle feature and threshold 

that best separates positive (faces) and negative (non-

faces) training examples, in terms of weighted error. 

Outputs of a 

possible rectangle 

feature on faces 

and non-faces. 

…
 

Resulting weak classifier: 

For next round, reweight the 

examples according to errors, 

choose another filter/threshold 

combo. 

B. Leibe [Viola & Jones, CVPR 2001] Slide credit: Kristen Grauman 
21 
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AdaBoost for Efficient Feature Selection 

• Image features = weak classifiers 

• For each round of boosting: 

 Evaluate each rectangle filter on each example 

 Sort examples by filter values 

 Select best threshold for each filter (min error) 

– Sorted list can be quickly scanned for the optimal threshold 

 Select best filter/threshold combination 

 Weight on this features is a simple function of error rate 

 Reweight examples 

22 
B. Leibe 

P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004. 

(first version appeared at CVPR 2001)  

Slide credit: Kristen Grauman 

http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
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Viola-Jones Face Detector: Results 

B. Leibe Slide credit: Kristen Grauman 
23 
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Viola-Jones Face Detector: Results 

B. Leibe Slide credit: Kristen Grauman 
24 
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Viola-Jones Face Detector: Results 

B. Leibe Slide credit: Kristen Grauman 
25 
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References and Further Reading 

• More information on Classifier Combination and Boosting 

can be found in Chapters 14.1-14.3 of Bishop’s book.  

 

 

 

 

 
 
 

• A more in-depth discussion of the statistical interpre-

tation of AdaBoost is available in the following paper: 

 J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic 

Regression: a Statistical View of Boosting, The Annals of 

Statistics, Vol. 38(2), pages 337-374, 2000. 

 

 

 
 

B. Leibe 
26 

Christopher M. Bishop 

Pattern Recognition and Machine Learning 

Springer, 2006 

http://www-stat.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf
http://www-stat.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf
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Topics of This Lecture 
 

• Recap: AdaBoost 
 Algorithm 

 Analysis 

 Extensions 
 

• Analysis 
 Comparing Error Functions 

 

• Applications 
 AdaBoost for face detection 

 

• Decision Trees 
 CART 

 Impurity measures, Stopping criterion, Pruning 

 Extensions, Issues 

 Historical development: ID3, C4.5 
 

 

 
27 
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Decision Trees 

• Very old technique 

 Origin in the 60s, might seem outdated. 
 

• But… 

 Can be used for problems with nominal data 

– E.g. attributes color 2 {red, green, blue} or weather 2 {sunny, rainy}. 

– Discrete values, no notion of similarity or even ordering. 
 

 Interpretable results 

– Learned trees can be written as sets of if-then rules. 
 

 Methods developed for handling missing feature values. 
 

 Successfully applied to broad range of tasks 

– E.g. Medical diagnosis 

– E.g. Credit risk assessment of loan applicants 
 

 Some interesting novel developments building on top of them… 
 

28 
B. Leibe 
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Decision Trees 

 

 

 

 

 

 

 

 

 

• Example: 

 “Classify Saturday mornings according to whether they’re   

  suitable for playing tennis.” 

29 
B. Leibe Image source: T. Mitchell, 1997 
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Decision Trees 

 

 

 

 

 

 

 

 

 

• Elements 

 Each node specifies a test for some attribute. 

 Each branch corresponds to a possible value of the attribute. 

30 
B. Leibe Image source: T. Mitchell, 1997 
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Decision Trees 

• Assumption 

 Links must be mutually distinct and exhaustive 

 I.e. one and only one link will be followed at each step. 

 

 

 

• Interpretability 

 Information in a tree can then be  

rendered as logical expressions. 

 In our example: 
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(Outlook = Sunny ^Humidity = Normal)

_ (Outlook = Overcast)

_ (Outlook = Rain ^Wind = Weak)

Image source: T. Mitchell, 1997 
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Training Decision Trees 

• Finding the optimal decision tree is NP-hard… 
 

• Common procedure: Greedy top-down growing 

 Start at the root node. 

 Progressively split the training data into smaller and smaller 

subsets. 

 In each step, pick the best attribute to split the data. 

 If the resulting subsets are pure (only one label) or if no further 

attribute can be found that splits them, terminate the tree. 

 Else, recursively apply the procedure to the subsets. 

 

• CART framework 

 Classification And Regression Trees (Breiman et al. 1993) 

 Formalization of the different design choices. 
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CART Framework 

• Six general questions 

1. Binary or multi-valued problem? 

– I.e. how many splits should there be at each node? 
 

2. Which property should be tested at a node? 

– I.e. how to select the query attribute? 
 

3. When should a node be declared a leaf? 

– I.e. when to stop growing the tree? 
 

4. How can a grown tree be simplified or pruned? 

– Goal: reduce overfitting. 
 

5. How to deal with impure nodes? 

– I.e. when the data itself is ambiguous. 
 

6. How should missing attributes be handled? 
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CART – 1. Number of Splits 

• Each multi-valued tree can be converted into an 

equivalent binary tree: 

 

 

 

 

 

 

 

 
 

 Only consider binary trees here… 

34 
B. Leibe Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001 
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CART – 2. Picking a Good Splitting Feature  

• Goal 

 Want a tree that is as simple/small as possible (Occam’s razor). 

 But: Finding a minimal tree is an NP-hard optimization problem. 

 

• Greedy top-down search 

 Efficient, but not guaranteed to find the smallest tree. 

 Seek a property T at each node N that makes the data in the 

child nodes as pure as possible. 

 For formal reasons more convenient to define impurity i(N). 

 Several possible definitions explored. 
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CART – Impurity Measures 

 

 

 

 

 

 

 
 

• Misclassification impurity 
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i(P )

P

i(N) = 1¡max
j

p(CjjN)

“Fraction of the  

training patterns  

in category Cj that 

end up in node N.” 

Problem: 

discontinuous derivative! 

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001 
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CART – Impurity Measures 

 

 

 

 

 

 

 
 

• Entropy impurity 
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i(P )

P

i(N) = ¡
X

j

p(CjjN) log2 p(CjjN)
“Reduction in  

entropy = gain in 

information.” 

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001 
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CART – Impurity Measures 

 

 

 

 

 

 

 
 

• Gini impurity (variance impurity) 
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i(P )

P

i(N) =
X

i 6=j
p(CijN)p(Cj jN)

=
1

2
[1¡

X

j

p2(Cj jN)]

“Expected error 
rate at node N if 

 the category label is  

selected randomly.” 

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001 
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CART – Impurity Measures 

• Which impurity measure should we choose? 

 Some problems with misclassification impurity. 

– Discontinuous derivative. 

 Problems when searching over continuous parameter space. 

– Sometimes misclassification impurity does not decrease when Gini 

impurity would. 
 

 Both entropy impurity and Gini impurity perform well. 

– No big difference in terms of classifier performance. 

– In practice, stopping criterion and pruning method are often more 

important. 
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CART – 2. Picking a Good Splitting Feature  

• Application 

 Select the query that decreases impurity the most 

 

 

 

• Multiway generalization (gain ratio impurity): 

 Maximize 

 

 

 

 where the normalization factor ensures that large K are not 

inherently favored: 
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4i(N) = i(N)¡PLi(NL)¡ (1¡PL)i(NR)

4i(s) =
1

Z

Ã
i(N)¡

KX

k=1

Pki(Nk)

!

Z = ¡
KX

k=1

Pk log2 Pk
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• For efficiency, splits are often based on a single feature 

 “Monothetic decision trees” 

 

 

 

 

 

 

 
 

• Evaluating candidate splits 

 Nominal attributes: exhaustive search over all possibilities. 

 Real-valued attributes: only need to consider changes in label. 

– Order all data points based on attribute xi. 

– Only need to test candidate splits where label(xi)  label(xi+1). 

CART – Picking a Good Splitting Feature 
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CART – 3. When to Stop Splitting 

• Problem: Overfitting 

 Learning a tree that classifies the training data perfectly may 

not lead to the tree with the best generalization to unseen data. 

 Reasons 

– Noise or errors in the training data. 

– Poor decisions towards the leaves of the tree that are based on very 

little data. 
 

• Typical behavior 
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hypothesis complexity 

a
c
c
u
ra

c
y
 

on training data 

on test data 

Slide adapted from Raymond Mooney 
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CART – Overfitting Prevention (Pruning) 

• Two basic approaches for decision trees 

 Prepruning: Stop growing tree as some point during top-down 

construction when there is no longer sufficient data to make 

reliable decisions. 

 Postpruning: Grow the full tree, then remove subtrees that do 

not have sufficient evidence. 
 

• Label leaf resulting from pruning with the majority class 

of the remaining data, or a class probability distribution.  
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N

CN = argmax
k

p(CkjN)

N

p(CkjN)

Slide adapted from Raymond Mooney 
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Decision Trees – Handling Missing Attributes 

• During training 

 Calculate impurities at a node using only the attribute 

information present. 

 E.g. 3-dimensional data, one point is missing attribute x3. 

– Compute possible splits on x1 using all N points. 

– Compute possible splits on x2 using all N points. 

– Compute possible splits on x3 using N-1 non-deficient points. 

 Choose split which gives greatest reduction in impurity. 
 

• During test 

 Cannot handle test patterns that are lacking the decision 

attribute! 

 In addition to primary split, store an ordered set of surrogate 

splits that try to approximate the desired outcome based on 

different attributes. 
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Decision Trees – Feature Choice 

 

 

 

 

 

 

 

 
 

• Best results if proper features are used 
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Bad tree 
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Decision Trees – Feature Choice 

 

 

 

 

 

 

 

 
 

• Best results if proper features are used 

 Preprocessing to find important axes often pays off. 
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Good tree 
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Decision Trees – Non-Uniform Cost 

• Incorporating category priors 

 Often desired to incorporate different priors for the categories. 

 Solution: weight samples to correct for the prior frequencies. 

 

• Incorporating non-uniform loss 

 Create loss matrix ¸ij  

 Loss can easily be incorporated into Gini impurity 
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i(N) =
X

ij

¸ijp(Ci)p(Cj)
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Historical Development 

• ID3 (Quinlan 1986) 

 One of the first widely used decision tree algorithms. 

 Intended to be used with nominal (unordered) variables 

– Real variables are first binned into discrete intervals. 

 General branching factor  

– Use gain ratio impurity based on entropy (information gain) 

criterion. 
 

• Algorithm 

 Select attribute a that best classifies examples, assign it to root. 

 For each possible value vi of a, 

– Add new tree branch corresponding to test a = vi. 

– If example_list(vi) is empty, add leaf node with most common label 

in example_list(a). 

– Else, recursively call ID3 for the subtree with attributes A \ a. 
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Historical Development 

• C4.5 (Quinlan 1993) 

 Improved version with extended capabilities. 

 Ability to deal with real-valued variables. 

 Multiway splits are used with nominal data 

– Using gain ratio impurity based on entropy (information gain) 

criterion. 

 Heuristics for pruning based on statistical significance of splits. 

 Rule post-pruning 
 

• Main difference to CART 

 Strategy for handling missing attributes. 

 When missing feature is queried, C4.5 follows all B possible 

answers. 

 Decision is made based on all B possible outcomes, weighted by 

decision probabilities at node N. 
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Decision Trees – Computational Complexity  

• Given 

 Data points {x1,…,xN}  

 Dimensionality D  
 

• Complexity 
 

 Storage: 
 

 Test runtime: 
 

 Training runtime: 

– Most expensive part. 

– Critical step: selecting the optimal splitting point. 

– Need to check D dimensions, for each need to sort N data points. 
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O(DN2 logN)

O(logN)

O(N)

O(DN logN)
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Summary: Decision Trees 

• Properties 

 Simple learning procedure, fast evaluation. 

 Can be applied to metric, nominal, or mixed data. 

 Often yield interpretable results. 
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Summary: Decision Trees 

• Limitations 

 Often produce noisy (bushy) or weak (stunted) classifiers. 

 Do not generalize too well. 

 Training data fragmentation:  

– As tree progresses, splits are selected based on less and less data. 

 Overtraining and undertraining: 

– Deep trees: fit the training data well, will not generalize well to 

new test data. 

– Shallow trees: not sufficiently refined. 

 Stability 

– Trees can be very sensitive to details of the training points. 

– If a single data point is only slightly shifted, a radically different 

tree may come out! 

 Result of discrete and greedy learning procedure.  

 Expensive learning step 

– Mostly due to costly selection of optimal split. 55 
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References and Further Reading 

• More information on Decision Trees can be found in 

Chapters 8.2-8.4 of Duda & Hart.  
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