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Recap: Stacking

¢ |dea
» Learn L classifiers (based on the training data)
» Find a meta-classifier that takes as input the output of the L

first-level classifiers.
Classifier 1
Classifier 2

Combination
¢ Example
» Learn L classifiers with
leave-one-out.
» Interpret the prediction of the L classifiers as L-dimensional
feature vector.

» Learn “level-2” classifier based on the examples generated this
way.

lide credit: Bernt Schiele B. Leibe
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Topics of This Lecture

e Recap: AdaBoost
» Algorithm
» Analysis
» Extensions

¢ Analysis
» Comparing Error Functions

¢ Applications
» AdaBoost for face detection

e Decision Trees
» CART
> Impurity measures, Stopping criterion, Pruning
» Extensions, Issues
» Historical development: ID3, C4.5

B. Leibe

Course Outline

¢ Fundamentals (2 weeks)
~ Bayes Decision Theory
» Probability Density Estimation

¢ Discriminative Approaches (5 weeks)
» Linear Discriminant Functions
» Statistical Learning Theory & SVMs

» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

¢ Generative Models (4 weeks)
» Bayesian Networks
» Markov Random Fields

Machine Learning, Summer ‘15

B. Leibe
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Recap: Bayesian Model Averaging

¢ Model Averaging

» Suppose we have H different models /= 1,...,H with prior
probabilities p(h).
» Construct the marginal distribution over the data set

p(X) =Y _p(XIh)p(h)
h=1

¢ Average error of committee
E =_E
coM i AV
» This suggests that the average error of a model can be reduced
by a factor of M simply by averaging M versions of the model!

» Unfortunately, this assumes that the errors are all uncorrelated.
In practice, they will typically be highly correlated.

Machine Learning, Summer ‘15
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Recap: AdaBoost - “Adaptive Boosting”

¢ Main idea [Freund & Schapire, 1996]
» Instead of resampling, reweight misclassified training examples.
- Increase the chance of being selected in a sampled training set.
- Or increase the misclassification cost when training on the full set.

e Components
> h,(x): “weak” or base classifier
- Condition: <50% training error over any distribution
» H(x): “strong” or final classifier

¢ AdaBoost:

» Construct a strong classifier as a thresholded linear combination
of the weighted weak classifiers:

M
H(x) = sign <Z amhm(x)>
m=1

B. Leibe
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Recap: AdaBoost - Algorithm Topics of This Lecture
ses s . 1
1. Initialization: Set »(") = ¥ forn=1,...,N.
2. For m=1,...,M iterations
a) Train a new weak classifier h,,(x) using the current weighting
coefficients W™ by minimizing the weighted error function
N .
T = Yl (%) # ) . {‘ e ¢ Analysis
w n=1 0, else w » Comparing Error Functions
i b) Estimate the weighted error of this classifier on X: 7
£ o " I () # ) £
£ en == E
@ g Wn @
g c) Calculate a weighting coefficient for h,,(x): g
E ay, =1n ﬁ E
s €m g
2 d) Update the weighting coefficients: 2
= =
g " = wl™ exp{am (hin(xn) # tn)} g
B. Leibe 7 B. Leibe 8
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AdaBoost - Analysis Recap: Error Functions
o Result of this derivation t, C { 1: 1} E[K:”) Ideal misclassification error]
» We now know that AdaBoost minimizes an exponential error
function in a sequential fashion.
» This allows us to analyze AdaBoost’s behavior in more detail.
> In particular, we can see how robust it is to outlier data points.
2 2
5 5 Not differentiable! ————
£ £
£ E 2n = thy(Xn)
@ ) ) - N4 1 2" = Y
(=3 [=J
g =| « Ideal misclassification error function (black)
E 1,"3 » This is what we want to approximate,
2 2 . Unfortunately, it is not differentiable.
= <
§ é » The gradient is zero for misclassified points.
B. Lelbe 9 = We cannot minimize it by gradient descent. ) o o

RWTHACHE RWTHACHE
Recap: Error Functions Recap: Error Functions
t, C { 1, 1} \ E[:z.,,) ;c!]i.a;rr;;s::?zs:fication error] E[:z.,,) ;niqia;r:;s:ttzs:fication error]
Hinge error

Sensitive to outliers! Robust to outliers!

Penalizes “too correct”
data points!

Favors sparse
solutions!

Not differentiable! \

) ] i = ty(n) 2 ] oY = tay(xa)
e Squared error used in Least-Squares Classification e “Hinge error” used in SVMs
» Very popular, leads to closed-form solutions. » LZero error for points outside the margin (z, > 1) >

» However, sensitive to outliers due to squared penalty.
» Penalizes “too correct” data points

= Generally does not lead to good classifiers. 11
lmage source: Bishop, 2009

sparsity
» Linear penalty for misclassified points (z, < 1) = robustness

» Not differentiable around &=, 1 = Cannot be optimized directlyz
. Leibe lmage source: Bishop, 2004
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RWTHAACHE RWTHAACHE
Discussion: AdaBoost Error Function Discussion: AdaBoost Error Function
E[’z.,,) Ideal misclassification error] E[’z.,,) Ideal misclassification error]
‘ Squared error ‘ Squared error
Hinge error Hinge error

Exponential error Exponential error

Sensitive to outliers!

2 - 0 - 7 3" #n = tny(xn) ) 1 0 - 7 3" #n = tny(xn)
¢ Exponential error used in AdaBoost
» Continuous approximation to ideal misclassification function.
» Sequential minimization leads to simple AdaBoost scheme.
» Properties?

¢ Exponential error used in AdaBoost
» No penalty for too correct data points, fast convergence.
» Disadvantage: exponential penalty for large negative values!
= Less robust to outliers or misclassified data points!

Machine Learning, Summer ‘15
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B. Leibe

Image source: Bishop, 200 B. Leibe |

mage source: Bishop, 2001

RWTH CHE RWTH
Discussion: Other Possible Error Functions Summary: AdaBoost
E(z,) ;1i.zlrr:;s::Tzsjfication error] « Properties
Hinge error » Simple combination of multiple classifiers.

Exponential error
Cross-entropy error

» Easy to implement.
» Can be used with many different types of classifiers.
- None of them needs to be too good on its own.
- In fact, they only have to be slightly better than chance.
» Commonly used in many areas.
» Empirically good generalization capabilities.

E== {talny, + (1—t,)In(1 - ya)}

) - 0 I 3 = tny(%n) o Limitations

» Original AdaBoost sensitive to misclassified training data points.
- Because of exponential error function.
- Improvement by GentleBoost

» Single-class classifier
- Multiclass extensions available

e “Cross-entropy error” used in Logistic Regression
» Similar to exponential error for z>0.
» Only grows linearly with large negative values of z.
= Make AdaBoost more robust by switching to this error function.
= “GentleBoost” B. Leibe

Machine Learning, Summer ‘15
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Image source; Bishop, 200 B. Leibe
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Topics of This Lecture Example Application: Face Detection

¢ Frontal faces are a good example of a class where
global appearance models + a sliding window
detection approach fit well:

» Regular 2D structure
» Center of face almost shaped like a “patch”/window

¢ Applications
» AdaBoost for face detection

1D S 5300 S g
"6 EE S

7 4
Sa el

* Now we’ll take AdaBoost and see how the Viola-
Jones face detector works
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B. Leibe

ide credit: Kristen Grauman LA
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Feature extraction

“Rectangular” filters

Feature output is difference
between adjacent regions

Value at (x,y) is
sum of pixels
'| above and to the
left of (x,y)

Efficiently computable
with integral image: any |
sum can be computed
in constant time

Avoid scaling images >
scale features directly
for same cost

Integral image Daled=i2ed)
(o A+BHC+ D) =(A+C+ A+ B

=D

ide credit: Kristen Grauman B. Leibe

19,
[Viola & Jones, CVPR 2001]

RWTH/CHEN
AdaBoost for Feature+Classifier Selection
¢ Want to select the single rectangle feature and threshold

that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

Resulting weak classifier:

S i)l
B {-1 otherwise

For next round, reweight the
examples according to errors,
choose another filter/threshold
combo.

 — L(x)—
Outputs of a
possible rectangle
feature on faces
and non-faces.

21
ide credit: Kristen Grauman B. Leibe [Viola & Jones, CVPR 2001
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RWTHAACHER
Viola-Jones Face Detector: Results

JUDYBATS

A

ide credit: Kristen Grauman LA
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RWTH/CET
Large Library of Filters

Considering all
possible filter
parameters:
position, scale,
and type:

|
o —l | 180,000+ possible

L features
[ W |
. . =

associated with
each 24 x 24

Use AdaBoost both to select the informative features

and to form the classifier

= p = &

I 11

window

20
[Viola & Jones, CVPR 2001]

ide credit: Kristen Grauman B. Leibe

RWTHACHE
AdaBoost for Efficient Feature Selection

¢ Image features = weak classifiers
¢ For each round of boosting:
» Evaluate each rectangle filter on each example
» Sort examples by filter values
» Select best threshold for each filter (min error)
- Sorted list can be quickly scanned for the optimal threshold
Select best filter/threshold combination
Weight on this features is a simple function of error rate
Reweight examples

v

v

v

P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004.
(first version appeared at CVPR 2001)

2
ide credit: Kristen Grauman B. Leibe
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ide credit: Kristen Grauman LA

RWTHAACHER
Viola-Jones Face Detector: Results



http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
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Viola-Jones Face Detector: Results

Slide credit: Kristen Grauman B. Leibe
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RWTH CHE
Topics of This Lecture
¢ Decision Trees
» CART
> Impurity measures, Stopping criterion, Pruning
» Extensions, Issues
» Historical development: ID3, C4.5
B. Leibe z
RWTH ACHET
Decision Trees
Sunny  Overcast Rain
)
High Normal Strong Weak
No Yes o Yes
¢ Example:
» “Classify Saturday mornings according to whether they’re
suitable for playing tennis.”
B. Leibe

Image source: T Mitchell, 1997

RWTH/CET
References and Further Reading

¢ More information on Classifier Combination and Boosting
can be found in Chapters 14.1-14.3 of Bishop’s book.

=

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

* A more in-depth discussion of the statistical interpre-
tation of AdaBoost is available in the following paper:

» J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic
Regression: a Statistical View of Boosting, The Annals of
Statistics, Vol. 38(2), pages 337-374, 2000.

Machine Learning, Summer ‘15

B. Leibe

Decision Trees

¢ Very old technique
» Origin in the 60s, might seem outdated.
e But...
» Can be used for problems with nominal data

- E.g. attributes color € {red, green, blue} or weather € {sunny, rainy}.
- Discrete values, no notion of similarity or even ordering.

» Interpretable results
- Learned trees can be written as sets of if-then rules.

» Methods developed for handling missing feature values.

» Successfully applied to broad range of tasks
- E.g. Medical diagnosis
- E.g. Credit risk assessment of loan applicants

» Some interesting novel developments building on top of them...

Machine Learning, Summer ‘15

28
B. Leibe

Decision Trees
Sunny  Overcast Rain
=
5
E High Normal Strong Weak
@
S No Yes No Yes
g
€
1| ¢ Elements
2 ~ Each node specifies a test for some attribute.
fg » Each branch corresponds to a possible value of the attribute.
= 30
B. Leibe

Jmage source: T Mitchell, 1997



http://www-stat.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf
http://www-stat.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf
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Decision Trees

e Assumption
» Links must be mutually distinct and exhaustive
> l.e. one and only one link will be followed at each step.

¢ Interpretability es
» Information in a tree can then be
rendered as logical expressions. 7" ! Srons et
g P / \ 7 \
> In our example: Ne Yes Ne Yes

(Outlook = Sunny A Humidity = Normal)
V (Outlook = Overcast)
V (Outlook = Rain A Wind = Weak)

31
B. Leibe Image source; T. Mitchell, 1997

CART Framework

¢ Six general questions
1. Binary or multi-valued problem?
- l.e. how many splits should there be at each node?

2. Which property should be tested at a node?
- l.e. how to select the query attribute?

3. When should a node be declared a leaf?
- l.e. when to stop growing the tree?

4. How can a grown tree be simplified or pruned?
- Goal: reduce overfitting.

5. How to deal with impure nodes?
- l.e. when the data itself is ambiguous.

6. How should missing attributes be handled?

B. Leibe
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RWTH ACHET
CART - 2. Picking a Good Splitting Feature

¢ Goal
» Want a tree that is as simple/small as possible (Occam’s razor).
» But: Finding a minimal tree is an NP-hard optimization problem.

¢ Greedy top-down search
Efficient, but not guaranteed to find the smallest tree.

Seek a property T'at each node N that makes the data in the
child nodes as pure as possible.

For formal reasons more convenient to define impurity i(N).
Several possible definitions explored.

v

v

v

v

B. Leibe

RWTHACHE
Training Decision Trees

¢ Finding the optimal decision tree is NP-hard...

¢« Common procedure: Greedy top-down growing
» Start at the root node.

» Progressively split the training data into smaller and smaller
subsets.

In each step, pick the best attribute to split the data.

If the resulting subsets are pure (only one label) or if no further
attribute can be found that splits them, terminate the tree.

Else, recursively apply the procedure to the subsets.

v

v

v

¢ CART framework
» Classification And Regression Trees (Breiman et al. 1993)
» Formalization of the different design choices.

Machine Learning, Summer ‘15

B. Leibe
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CART - 1. Number of Splits

¢ Each multi-valued tree can be converted into an
equivalent binary tree:

/ \ / \
Grapefruis Lewon Cherry  Grape

= Only consider binary trees here...

Machine Learning, Summer ‘15
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B. Leibe Image source: R.O. Duda, RE. Hart, D.G, Stork, 200

RWTH ACHET
CART - Impurity Measures

Problem:

i(P) / discontinuous derivative!

¢ Misclassification impurity

i(N)zl—m]z;L

“Fraction of the
training patterns
in category C; that
end up in node N.”
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B. Leibe Image source: RO, Duda, PE, Hart, D.G, Storlk, 2001




CART - Impurity Measures

* Entropy impurity “Reduction in
i(N)=— Zp(Cj|N) logy p(C;|N)  entropy = gain in
J

information.”

Machine Learning, Summer ‘15

B. Leibe

37
Image source: RO, Duda, PE, Hart, D.G, Stork, 200

RWTH/JCHET]
CART - Impurity Measures

¢ Which impurity measure should we choose?
» Some problems with misclassification impurity.
- Discontinuous derivative.
= Problems when searching over continuous parameter space.

- Sometimes misclassification impurity does not decrease when Gini
impurity would.

» Both entropy impurity and Gini impurity perform well.
- No big difference in terms of classifier performance.

- In practice, stopping criterion and pruning method are often more
important.

Machine Learning, Summer ‘15

B. Leibe
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CART - Picking a Good Splitting Feature

¢ For efficiency, splits are often based on a single feature
» “Monothetic decision trees”

¢ Evaluating candidate splits
» Nominal attributes: exhaustive search over all possibilities.
> Real-valued attributes: only need to consider changes in label.
- Order all data points based on attribute ;.

- Only need to test candidate splits where label(x;) = label(z ;).
B. Leibe
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CART - Impurity Measures

¢ Gini impurity (variance impurity)
i(N)

“Expected error

C:IN)o(C:|N rate at node N if
;p( i) il ) the category label is

1 selected randomly.”
SlL= S RCIN)
J

38
Image source: R0, Duda, PE, Hart, D.G. Stork, 200
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CART - 2. Picking a Good Splitting Feature

¢ Application
» Select the query that decreases impurity the most
Ai(N) =i(N) — Pri(Ng) — (1 — Pp)i(Ng)

¢ Multiway generalization (gain ratio impurity):
» Maximize

1 K
Ai(s) = (i(N) -3 Pki(Nk))
k=1

» where the normalization factor ensures that large K are not
inherently favored:

Z=-> Pilog, P
k=1
B. Leibe

Machine Learning, Summer ‘15
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CART - 3. When to Stop Splitting

¢ Problem: Overfitting
» Learning a tree that classifies the training data perfectly may
not lead to the tree with the best generalization to unseen data.
» Reasons
- Noise or errors in the training data.
- Poor decisions towards the leaves of the tree that are based on very

little data.
¢ Typical behavior

on training data

on test data

accuracy
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hypothesis complexity

42
ide adapted from Ravmond Mogne, 8. Leibe
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CART - Overfitting Prevention (Pruning)

+ Two basic approaches for decision trees

» Prepruning: Stop growing tree as some point during top-down
construction when there is no longer sufficient data to make
reliable decisions.

» Postpruning: Grow the full tree, then remove subtrees that do
not have sufficient evidence.

¢ Label leaf resulting from pruning with the majority class
of the remaining data, or a class probability distribution.

o o

Cn = argml?.xp(CHN)

Machine Learning, Summer ‘15

p(Ck|N)

43

Slide adapted from Raymond Moane B. Leibe
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Decision Trees - Feature Choice

<027
1502

Bad tree

¥y 032

/\

PAVAN
A

N

<08

. A

¢ Best results if proper features are used

Machine Learning, Summer ‘15
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B. Leibe
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Decision Trees - Non-Uniform Cost

¢ Incorporating category priors
» Often desired to incorporate different priors for the categories.
» Solution: weight samples to correct for the prior frequencies.

¢ Incorporating non-uniform loss
- Create loss matrix \;;
» Loss can easily be incorporated into Gini impurity

N)= Z /\ijp(ci)P(Cj)
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B. Leibe
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Decision Trees - Handling Missing Attributes

¢ During training
» Calculate impurities at a node using only the attribute
information present.

- E.g. 3-dimensional data, one point is missing attribute z,.
- Compute possible splits on x, using all N points.
- Compute possible splits on x, using all N points.
- Compute possible splits on z, using N-1 non-deficient points.
= Choose split which gives greatest reduction in impurity.

¢ During test
» Cannot handle test patterns that are lacking the decision
attribute!
= In addition to primary split, store an ordered set of surrogate

splits that try to approximate the desired outcome based on
different attributes.
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RWTH/CHEN

Decision Trees - Feature Choice

f Good tree
e
o Best results if proper features are used
» Preprocessing to find important axes often pays off.

B. Leibe 9
RWTH/ACHET

Historical Development

« ID3 (Quinlan 1986)
» One of the first widely used decision tree algorithms.
» Intended to be used with nominal (unordered) variables
- Real variables are first binned into discrete intervals.
» General branching factor

- Use gain ratio impurity based on entropy (information gain)
criterion.

o Algorithm

» Select attribute a that best classifies examples, assign it to root.
~ For each possible value v, of a,

- Add new tree branch corresponding to test a = v;.

- If example_list(v;) is empty, add leaf node with most common label

in example_list(a).
- Else, recursively call ID3 for the subtree with attributes A \ a.
B. Leibe
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Historical Development

¢ C4.5 (Quinlan 1993)
~ Improved version with extended capabilities.
- Ability to deal with real-valued variables.
> Multiway splits are used with nominal data

- Using gain ratio impurity based on entropy (information gain)
criterion.

» Heuristics for pruning based on statistical significance of splits.
> Rule post-pruning

¢ Main difference to CART

» Strategy for handling missing attributes.

» When missing feature is queried, C4.5 follows all B possible
answers.
Decision is made based on all B possible outcomes, weighted by
decision probabilities at node N.

B. Leibe

v

52

Summary: Decision Trees

¢ Properties
» Simple learning procedure, fast evaluation.
» Can be applied to metric, nominal, or mixed data.
» Often yield interpretable results.

B. Leibe
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References and Further Reading

¢ More information on Decision Trees can be found in
Chapters 8.2-8.4 of Duda & Hart.

R.O. Duda, P.E. Hart, D.G. Stork
Pattern Classification
2n Ed., Wiley-Interscience, 2000

B. Leibe
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RWTH/CET
Decision Trees - Computational Complexity

¢ Given
~ Data points {x;,....xy}
» Dimensionality D

¢ Complexity
» Storage: O(N)

O(log N)
. Training runtime: O(DN?log N)

- Most expensive part.
- Critical step: selecting the optimal splitting point.
- Need to check D dimensions, for each need to sort IV data points.

O(DNlogN)

» Test runtime:

B. Leibe

Summary: Decision Trees

¢ Limitations
» Often produce noisy (bushy) or weak (stunted) classifiers.
» Do not generalize too well.
» Training data fragmentation:
- As tree progresses, splits are selected based on less and less data.
» Overtraining and undertraining:

- Deep trees: fit the training data well, will not generalize well to
new test data.

- Shallow trees: not sufficiently refined.
» Stability
- Trees can be very sensitive to details of the training points.

- If a single data point is only slightly shifted, a radically different
tree may come out!

= Result of discrete and greedy learning procedure.
» Expensive learning step
- Mostly due to costly selection of optimal split. 55




