Machine Learning - Lecture 10

Model Combination & Boosting

02.06.2015

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de
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Announcements

e Tentative Exam Dates
> Planning with the following dates:
~ 1t date: Thursday, 13.08., afternoon
~ 2" date: Friday, 11.09., afternoon

> We tried to avoid overlaps with other Computer Science Master
lectures as much as possible.

> Exact slot durations and rooms will still be announced.

» Does anybody still have conflicts with both exam dates?
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Course Outline

e Fundamentals (2 weeks)
~ Bayes Decision Theory
~ Probability Density Estimation

e Discriminative Approaches (5 weeks)
> Linear Discriminant Functions
~ Statistical Learning Theory & SVMs
- Ensemble Methods & Boosting
> Randomized Trees, Forests & Ferns

e Generative Models (4 weeks)
> Bayesian Networks
> Markov Random Fields
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RWTH
Applications of SVMs: Text Classification

e Problem:
> Classify a document in a number of categories

d<
e Representation:

~ “Bag-of-words” approach

~ Histogram of word counts (on learned dictionary) u_.l..J_._,

- Very high-dimensional feature space (~10.000 dimensions)
- Few irrelevant features

e This was one of the first applications of SVMs
> T.Joachims (1997)
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RWTH
Example Application: Text Classification

e Results:

SVM (poly) SVM (rbf)
degree d = width v =
Bayes|Rocchio{C4.5(k-NN{l 1 | 2 3 4 5 06 (08110112
earn 95.9 96.1 [96.1197.3 [198.2]98.4/98.5/98.4198.3/198.5]|08.5/98.4|98.3
lacq 91.5 | 92.1 |85.3192.0|]92.6/94.6{95.2/95.2195.3((95.0}95.3/95.3/95.4
money-fx || 62.9 67.6 |69.4]78.2 1|166,9172.5175.4174.9176.2]174.0|75.4/76.3] 75.9
0 grain 72.5 79.5 [189.1]82.2 [191.3(93.1]92.4/91.3]189.91{93.1/91.9/91.9190.6
- crude 81.0 1 81.5 |75.5]185.7 ||86.0]87.3|88.6(88.9187.8{|88.9[R9.0/88.9/88.2
GE, trade 50.0 77.4 [59.2177.4 1169.2175.5176.6|77.3177.11176.9178.0|77.8/76.8
;E; mterest 58.0 72.5 149.1]74.0 |169.8{63.3/67.9{73.1(76.2|174.4175.0176.2|76.1
"{ ship 787 | 83.1 [80.9]79.2 |I182.0/85.4]86.0/86.5]/86.01[85.4/86.5/87.6[87.1
=4 wheat 60.6 79.4 |85.5]76.6 {|83.1|84.5/85.285.9/83.81185.2|85.9/85.9/85.9
§ corn 47.3 | 62.2 |87.7|77.9 ||86.0|86.5|85.3 [85.7]/83.9 ||85.1{85.7/85.784.5
o . 84.2[85.1185.9[86.2[85.9|[86.4 [86.5|86.3 [ 86.2
FCIJ microavg.)| 72.0 | 79.9 |79.4/82.3 combined: 86.0 combined: 86.4
%
=
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Example Application: Text Classification

e This is also how you could implement a simple spam

filter...
Dictionary

o |,
A Mailbox
z ‘ > — SVM
S
=) . . . L. R
= Incoming email Word activations
g
-l
CICJ -
E Trash
=

B. Leibe
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Example Application: OCR

" Handwritten digit
" P el art s L 102 6o pREET
recognition 1610330 102304028100290.12
> US Postal Service Database “{ﬁ%aigkligu’%g&%g%g?%i%gg%
Vol 1700 003257013 I 4RkREY
- Standard benchmark task 0y 9e0g7 1 7Y e 00159701827
for many learning algorithms )" <7%5'c 73 1 257008 822157 4004
e Er5 129015362 ]23033 43379
350121 1272808515053880319
1331 a 111 aL8719284)8)08LY
T T 1s12673600izusb L Lok
(35939202293927225.00 670
SABAATAS L) D%l S EREl ORIl
o LE1030475262000119964
531208k 1RESSTLILATIES Y60
Lol 130187 11299108 1110781
G 1097075512319730) 5817085
157 A8 L RasS (28 u318000163
73 EmL 88 e0sst60aste08s

L8255 | PESAIRES A0 A1k L

: 7
B. Leibe



Historical Importance

e USPS benchmark

> 2.5% error: human performance

e Different learning algorithms
> 16.2% error: Decision tree (C4.5)
> 5.9% error: (best) 2-layer Neural Network
> 5.1% error: LeNet 1 - (massively hand-tuned) 5-layer network

e Different SVMs

> 4.0% error: Polynomial kernel (p=3, 274 support vectors)
> 4.1% error: Gaussian kernel (0=0.3, 291 support vectors)
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Example Application: OCR

e Results
> Almost no overfitting with higher-degree kernels.

degree of || dimensionality of | support | raw
polynomial feature space vectors | error
1 256 282 8.9
< 2 ~ 33000 227 4.7
g 3 ~ 1 x 108 274 4.0
5 4 ~ 1 x 10% 321 4.2
S 5! 2 1 x 1012 374 4.3
E 6 ~ 1 x 10 377 4.5
] 7 ~ 1 x 1018 422 4.5
-

B. Leibe
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Example Application: Object Detection

o Sliding-window approach gf;;time
Obj./non-obj.
Classifier
q y

e E.g. histogram representation (HOG)

> Map each grid cell in the input window to a
histogram of gradient orientations.

> Train a linear SVM using training set of
pedestrian vs. non-pedestrian windows.
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[Dalal & Triggs, CVPR 2005]



RWTH
Example Application: Pedestrian Detection

N. Dalal, B. Triggs, Hi rams of Oriented Gradients for Human Detection, CVPR 2005

Machine Learning, Summer ‘15

11

B. Leibe


http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs
http://lear.inrialpes.fr/pubs/2005/DT05/
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Many Other Applications

e Lots of other applications in all fields of technology
> OCR
> Text classification
> Computer vision

» High-energy physics

~ Monitoring of household appliances

~ Protein secondary structure prediction

» Design on decision feedback equalizers (DFE) in telephony

B. Leibe
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So Far...

>

e We’ve seen already a variety of different classifiers
k-NN T
.

Bayes classifiers

Linear discriminants

SVMs

e Each of them has their strengths and weaknesses...

>

Can we improve performance by combining them?

B. Leibe
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Topics of This Lecture

e Ensembles of Classifiers

e Constructing Ensembles
> Cross-validation
> Bagging

e Combining Classifiers
» Stacking
~ Bayesian model averaging
> Boosting

e AdaBoost
> Intuition
> Algorithm
»  Analysis
> Extensions

e Applications

B. Leibe
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Ensembles of Classifiers

e Intuition

~ Assume we have K classifiers.

» They are independent (i.e., their errors are uncorrelated).
Each of them has an error probability p < 0.5 on training data.

Y

- Why can we assume that p won’t be larger than 0.5?

> Then a simple majority vote of all classifiers should have a
lower error than each individual classifier...
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Ensembles of Classifiers

e Example
> K classifiers with error probability p = 0.3.
~ Probability that exactly L classifiers make an error:

p“(1—p)f=*
02

2 018
“L 0.16 ¢
Q
E 014
g et B Lo
E QOB Rl LT e
= » The probability that 11 wel ||
g or more classifiers make aost ||| |

. b ,
2 an error is 0.026. ol (| ||
= FEs B e e
: A e
E ul ¢ ers in Error

Slide credit: Bernt Schiele B. Leibe



Topics of This Lecture

e Constructing Ensembles
> Cross-validation
> Bagging

e Combining Classifiers
» Stacking
~ Bayesian Model Averaging
> Boosting
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Methods for obtaining
a set of classifiers

Methods for combining
different classifiers
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Constructing Ensembles

e How do we get different classifiers?
» Simplest case: train same classifier on different data.

~ But... where shall we get this additional data from?
- Recall: training data is very expensive!

e |dea: Subsample the training data

~ Reuse the same training algorithm several times on different
subsets of the training data.

e Well-suited for “unstable” learning algorithms

> Unstable: small differences in training data can produce very
different classifiers

- E.g., Decision trees, neural networks, rule learning algorithms,...

» Stable learning algorithms
- E.g., Nearest neighbor, linear regression, SVMs,...

B. Leibe
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Constructing Ensembles

e Cross-Validation
~ Split the available data into /V disjunct subsets.
» In each run, train on N-1 subsets for training a classifier.
» Estimate the generalization error on the held-out validation set.

e E.g. 5-fold cross-validation
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Constructing Ensembles

e Bagging = “Bootstrap aggregation” (Breiman 1996)

> In each run of the training algorithm, randomly select M
samples from the full set of [V training data points.

- If M = N, then on average, 63.2% of the training points will be
represented. The rest are duplicates.

e Injecting randomness

> Many (iterative) learning algorithms need a random initialization
(e.g. k-means, EM)

> Perform mutliple runs of the learning algorithm with different
random initializations.
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Topics of This Lecture

e Constructing Ensembles
> Cross-validation
> Bagging

e Combining Classifiers
» Stacking
~ Bayesian Model Averaging
> Boosting
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Methods for obtaining
a set of classifiers

Methods for combining
different classifiers




Stacking

e |dea
> Learn L classifiers (based on the training data)

> Find a meta-classifier that takes as input the output of the L
first-level classifiers.

| Classifier 1 H

| Classifier 2

Combination
_>

Data |7 _> Classifier

e Example

> Learn L classifiers with | Classifier L

leave-one-out cross-validation.

- Interpret the prediction of the L classifiers as L-dimensional
feature vector.

» Learn “level-2” classifier based on the examples generated this
way.
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Stacking

e Why can this be useful?
~ Simplicity
- We may already have several existing classifiers available.

= No need to retrain those, they can just be combined with the rest.

> Correlation between classifiers
- The combination classifier can learn the correlation.
= Better results than simple Naive Bayes combination.

> Feature combination

- E.g. combine information from different sensors or sources
(vision, audio, acceleration, temperature, radar, etc.).

- We can get good training data for each sensor individually,
but data from all sensors together is rare.

= Train each of the L classifiers on its own input data.

Only combination classifier needs to be trained on combined input.

B. Leibe
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Recap: Model Combination

e E.g. Mixture of Gaussians
~ Several components are combined probabilistically.

> Interpretation: different data points can be generated by
different components.

> We model the uncertainty which mixture component is
responsible for generating the corresponding data point:

p(x) = Z TN (x|, i)
k=1

» Fori.i.d. data, we write the marginal probability of a data set
X ={xy,...,Xx\} in the form:

p(X) = HP(Xn) = H ZWkN(XnWm k)

24
B. Leibe



Bayesian Model Averaging

e Model Averaging
» Suppose we have H different models h =1,...,H with prior
probabilities p(h).
~ Construct the marginal distribution over the data set

p(X) = > _p(X|h)p(h)

e Interpretation
> Just one model is responsible for generating the entire data set.

» The probability distribution over h just reflects our uncertainty
which model that is.

~ As the size of the data set increases, this uncertainty reduces,
and p(X|h) becomes focused on just one of the models.
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RWTH
Note the Different Interpretations!

e Model Combination
~ Different data points generated by different model components.
> Uncertainty is about which component created which data point.
= One latent variable z A for each data point:

p(X) = HP(Xn) = H Zp(xmzn)

n=1 z,

e Bayesian Model Averaging
» The whole data set is generated by a single model.
> Uncertainty is about which model was responsible.
= One latent variable z for the entire data set:

p(X) — Zp(Xa Z)

B. Leibe
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RWTH
Model Averaging: Expected Error

e Combine M predictors y, (x) for target output hi(x).

- E.g. each trained on a different bootstrap data set by bagging.
~ The committee prediction is given by

ycom (X) = % Z Ym (X)

> The output can be written as the true value plus some error.
y(x) = h(x) + €(x)

~ Thus, the average sum-of-squares error takes the form

Ex = [ {ym (%) = h(x)}’| = Ex [em(x)?]
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Model Averaging: Expected Error

e Average error of 1nd1v1dual models
Eav = — Z Ex [€m(x

e Average error of committee

Econ = Eq {]\%mzlym(x)—h(x)} — E, {%Zem(x)}

e Assumptions

. Errors have zero mean: [Ey [€,,(X)] =
. Errors are uncorrelated: [Ey |€,,(Xx)€;(x )] =0
]_ /Sn’t thi
e Then: Ecom = MEAV s”e“acu;:r;

28
B. Leibe
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RWTH
Model Averaging: Expected Error

e Average error of committee

1

Ecom = MEAV

~ This suggests that the average error of a model can be reduced
by a factor of )M simply by averaging )M versions of the model!

~ Spectacular indeed...
~ This sounds almost too good to be true...

e And it is... Can you see where the problem is?

> Unfortunately, this result depends on the assumption that the
errors are all uncorrelated.

~ In practice, they will typically be highly correlated.
~ Still, it can be shown that

Ecom - Eay

B. Leibe
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RWNTH
Discussion: Ensembles of Classifiers

e Set of simple methods for improving classification
» Often effective in practice.

e Apparent contradiction

> We have stressed before that a classifier should be trained on
samples from the distribution on which it will be tested.

» Resampling seems to violate this recommendation.

» Why can a classifier trained on a weighted data distribution do
better than one trained on the i.i.d. sample?

e Explanation

> We do not attempt to model the full category distribution here.
» Instead, try to find the decision boundary more directly.

» Also, increasing number of component classifiers broadens the
class of implementable decision functions.
B. Leibe
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Topics of This Lecture

e AdaBoost

> Intuition
> Algorithm
»  Analysis

> Extensions
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AdaBoost - “Adaptive Boosting”

e Main idea [Freund & Schapire, 1996]

> Instead of resampling, reweight misclassified training examples.
- Increase the chance of being selected in a sampled training set.
- Or increase the misclassification cost when training on the full set.

e Components

> h,(x): “weak” or base classifier
- Condition: <50% training error over any distribution
> H(x): “strong” or final classifier

e AdaBoost:

> Construct a strong classifier as a thresholded linear combination
of the weighted weak classifiers:

H(x) = sign (Z amhm(x)>

B. Leibe
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AdaBoost: Intuition

o © Consider a 2D feature
Weak e @ 3 space with positive and
Classifier 1 ~Ho---=--~" . l
O ° negative examples.
® o0

Each weak classifier splits
> the training examples with
at least 50% accuracy.

Examples misclassified by
a previous weak learner
are given more emphasis
at future rounds.
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Figure adapted from Freund & Schapire

Slide credit; Kristen Grauman B. Leibe



AdaBoost: Intuition

o © Weights

.
Weak . . Increased .l
O o) ~

Classifier1 ~ o _--=-=--""7"

® O Weak }._’: O
O O Classifier 2 q
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Figure adapted from Freund & Schapire

Slide credit; Kristen Grauman B. Leibe



AdaBoost: Intuition

o © Weights 1-——.-.
@

Classifier1 ~ o _--=---"""

© o Weak }.__': O
O @) Classifier 2 q

Weak " .
classifier 3 ."| O
° @
Final classifier is @
combination of the .‘t.
weak classifiers

0
M
| 59
)
€
€
S
(7]
o)
=
c
S
S
)
1
o)
=
c
3)
a
p=

39

Figure adapted from Freund & Schapire
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AdaBoost - Formalization

e 2-class classification problem

- Given: training set X = {x, ..., x,}
with target values T ={t, ...ty }, ¢, € {-1,1}.
- Associated weights W={w,, ..., w,} for each training point.

e Basic steps

- In each iteration, AdaBoost trains a new weak classifier h,  (x)
based on the current weighting coefficients W (™),

- We then adapt the weighting coefficients for each point

- Increase w,, if x,, was misclassified by h,_(x).

- Decrease w,, if x,, was classified correctly by h_ (x).
> Make predictions using the final combined model

H(x) = sign (Z amhm(x)>

B. Leibe
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AdaBoost - Algorithm

1.

Initialization: Set (! = JLV forn=1,...,N.

2. For m=1,...,M iterations

a) Train a new weak classifier h_(x) using the current weighting
coefficients W (™ by minimizing the weighted error function
N

— Z w;m)l(hm(x) 7é tn) I(A) = {1. if A is true

0, else
b) Estimate the weightezl error of this classifier on X:

N iV I(hy (x) # 1)

€y =
ij 1 w?(’bm)

c) Calculate a weighting coefficient for h, (x):

Xy, = 7
How should we

d) Update the weighting coefficients: do this exactly?

w?(,bmﬂ) = 7

41
B. Leibe
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RWTH
AdaBoost - Historical Development

e Originally motivated by Statistical Learning Theory
~ AdaBoost was introduced in 1996 by Freund & Schapire.

» It was empirically observed that AdaBoost often tends not to
overfit. (Breiman 96, Cortes & Drucker 97, etc.)

~ As a result, the margin theory (Schapire et al. 98) developed,
which is based on loose generalization bounds.
- Note: margin for boosting is not the same as margin for SVM.
- A bit like retrofitting the theory...

- However, those bounds are too loose to be of practical value.

e Different explanation (Friedman, Hastie, Tibshirani, 2000)

> Interpretation as sequential minimization of an exponential
error function (“Forward Stagewise Additive Modeling”).

> Explains why boosting works well.
~ Improvements possible by altering the error function.

B. Leibe
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RWTH
AdaBoost - Minimizing Exponential Error

e Exponential error function

E = Z exXp {_tnfm(xn)}

- where f (x) is a classifier defined as a linear combination of
base classifiers h,;(x):

fm(X) = % > ohy(x)

e Goal

- Minimize E with respect to both the weighting coefficients
and the parameters of the base classifiers h,(x).

B. Leibe
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RWNTH
AdaBoost - Minimizing Exponential Error

e Sequential Minimization

- Suppose that the base classifiers i (x),..
coefficients o ,...,«,,_, are fixed.

(x) and their

°9 m 1

= Only minimize with respect to o, and h_ (x).

b= ZGXP{ tnfm(xn)} with fm(x :—Zalhl X)

:‘2 n=1

%, Zex o 1(%) — b (%)
‘};— — p n m—1 g 9 nmlitm\An
E =c;:1$t.

v 1

2 = Z w,,(%m) exp { — itnamhm (%) }

< n=1

p=

44
B. Leibe
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RWNTH
AdaBoost - Minimizing Exponential Error

N
E = Z w,,(,bm) exp {—%tnamhm(xn)}
n=1

> Observation:

- Correctly classified points: ¢ h _(x,) = +1 = collectin 7
- Misclassified points: t,h,(x,)=-1 = collect in F,

> Rewrite the error function as

E = e m/? Z wq(,bm)

nETm

= (eo‘m/Q ) Zw(m)l m(Xn) 7 tn)

B. Leibe
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AdaBoost - Minimizing Exponential Error -

N
E = Z w,,(,bm) exp {—%tnamhm(xn)}
n=1

- Observation:
- Correctly classified points: ¢ h _(x,) = +1 = collectin 7
- Misclassified points: t,h,(x,)=-1 = collect in F,

> Rewrite the error function as

B 5 3

|

— (eo‘m/2 — e_o"m/2) Zw,,(,bm)l( m(Xn) # ty) + e m/? Zw(m)

n=1

2
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RWNTH
AdaBoost - Minimizing Exponential Error

. e . OF
¢ Minimize with respect to h,,(x): 7~ o =0
E = (eo‘m/Q O‘m/2> Zw(m)f m(Xn) # ty) + e~ %m/? Zw(m)
N \p J - ~ J
= const. = const.
= This is equivalent to minimizing
N
=3 W (i (%) # t)
n=1

(our weighted error function from step 2a) of the algorithm)

= We’re on the right track. Let’s continue...
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AdaBoost - Minimizing Exponential Error

ok

¢ Minimize with respect to a,: 35— =0

B (eozm/Z am/2> Z W™ [ (B (%) # ) + e~ m/2 Z w(™

N N
(}zeam/2 z —am/2> Zw<m>1 (%) # b)) = Ze—amﬂ > wi™
n=1
welghted n=1 Wn Xn,) _ e
error (m) e¥m/2 4 e—0m/2

1—¢€,,
= Update for the o coefficients: Qp = In { }

0
M
| 59
)
€
€
S
(7]
o)
=
c
S
S
)
1
o)
=
c
3)
a
p=

48

B. Leibe



0
M
| 59
)
€
€
S
(7]
o)
=
c
S
S
)
1
o
=
c
3)
a
p=

RWNTH
AdaBoost - Minimizing Exponential Error

e Remaining step: update the weights
> Recall that

N
E = Z wgm) exp {—%tnamhm(xn)}

n=1
g J

o
This becomes w?(,bmﬂ)

in the next iteration.

> Therefore
1
wgmH) = w,flm) exp {—§tnamhm(xn)}

= wgm) exp {md (hm (X)) # tn)}
= Update for the weight coefficients.

B. Leibe
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AdaBoost - Final Algorithm

1.

Initialization: Set (! = JLV forn=1,...,N.

2. For m=1,...,M iterations

a) Train a new weak classifier h_(x) using the current weighting
coefficients W (™ by minimizing the weighted error function
N

= > W (e (x) # tn)
b) Estimate the weight:ed error of this classifier on X:

Sy o (i () # )
me ZN (m)

n 1

c) Calculate a weighting coefficient for h, (x):

1_ m
amzln{ ‘ }
€m

d) Update the weighting coefficients:
wq(%mﬂ) — wq(,bm) exp{aml (hm(x,) # tn)}

B. Leibe
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AdaBoost - Analysis

e Result of this derivation

> We now know that AdaBoost minimizes an exponential error
function in a sequential fashion.

~ This allows us to analyze AdaBoost’s behavior in more detail.
> In particular, we can see how robust it is to outlier data points.

B. Leibe
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Recap: Error Functions

E (Zn) Ideal misclassification error

tn € {—1,1}

Not differentiable! S

=2 y N\ 1 7™ #n = tnl(%n)

e |deal misclassification error function (black)
> This is what we want to approximate,
> Unfortunately, it is not differentiable.
» The gradient is zero for misclassified points.
= We cannot minimize it by gradient descent. 52

Image source: Bishop, 2006
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Recap: Error Functions

E (Zn) Ideal misclassification error
Squared error

tn € {—1,1}

Sensitive to outliers!

Penalizes “too correct”
data points!

", #

—2 1 0 1

2"' Zn = tny(xn)

e Squared error used in Least-Squares Classification
~ Very popular, leads to closed-form solutions.
» However, sensitive to outliers due to squared penalty.
» Penalizes “too correct” data points
= Generally does not lead to good classifiers. 53

Image source: Bishop, 2006
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RWNTH
Recap: Error Functions

E (Zn) Ideal misclassification error
Squared error
Hinge error

Robust to outliers!

Favors sparse
/ solutions!
e “Hinge error” used in SVMs

- Lero error for points outside the margin (z, > 1) =
sparsity
> Linear penalty for misclassified points (:, < 1) = robustness

~ Not differentiable around 2 = 1 = Cannot be optimized directly«
B."Leibe Image source: Bishop, 2006

Not differentiable! \

—2 -1 0
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Discussion: AdaBoost Error Function

! E (Zn) Ideal misclassification error
Squared error
Hinge error
Exponential error

=2 y 7™ %n = tn}(Xn)

e Exponential error used in AdaBoost
> Continuous approximation to ideal misclassification function.
> Sequential minimization leads to simple AdaBoost scheme.
> Properties?
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Image source: Bishop, 2006
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Discussion: AdaBoost Error Function

A

E (Zn) Ideal misclassification error
Squared error
Hinge error

.y . Exponential error
Sensitive to outliers!

=2 y 7™ %n = tn}(Xn)

e Exponential error used in AdaBoost
> No penalty for too correct data points, fast convergence.
» Disadvantage: exponential penalty for large negative values!
= Less robust to outliers or misclassified data points!
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Image source: Bishop, 2006
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Discussion: Other Possible Error Functions

A
E (Zn) Ideal misclassification error

Squared error
Hinge error
Exponential error
Cross-entropy error

E=— Z{tn Iny, + (1 —t,)In(1 —yy)}

=2 y o1 2% = tal(Xn)

e “Cross-entropy error” used in Logistic Regression
> Similar to exponential error for z>0.
> Only grows linearly with large negative values of z.

= Make AdaBoost more robust by switching to this error function.
= “GentleBoost” B. Leibe
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Summary: AdaBoost

e Properties

>

>

Simple combination of multiple classifiers.
Easy to implement.

Can be used with many different types of classifiers.
- None of them needs to be too good on its own.

- In fact, they only have to be slightly better than chance.

Commonly used in many areas.
Empirically good generalization capabilities.

e Limitations
» Original AdaBoost sensitive to misclassified training data points.

>

- Because of exponential error function.

- Improvement by GentleBoost
Single-class classifier

- Multiclass extensions available

B. Leibe
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Topics of This Lecture

e Ensembles of Classifiers

Constructing Ensembles
> Cross-validation

~ Bagging
e Combining Classifiers
> Stacking

» Bayesian model averaging
> Boosting

e AdaBoost
Intuition
> Algorithm
»  Analysis

> Extensions

e Applications

\
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RWNTH
Example Application: Face Detection

 Frontal faces are a good example of a class where
global appearance models + a sliding window
detection approach fit well:

~ Regular 2D structure
~ Center of face almost shaped like a “patch”/window

e Now we’ll take AdaBoost and see how the Viola-
Jones face detector works

Slide credit; Kristen Grauman B. Leibe
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Feature extraction

“Rectangular” filters

Feature output is difference
between adjacent regions

Value at (x,y) is

) .. sum of pixels
T Efficiently computable above and to the
o o o A B
| with integral image: any left of (x,y) 1 ,
= sum can be computed )
¥ in constant time x.y) !
C
£ Avoid scaling images 2>
il) Scale features direCtly Integral image D=1+4-(2+3)
= for same cost = A+(A+B+C+D)—(A+C+ A+B)
= =D
(@]
©
=

: 61
Slide credit: Kristen Grauman B. Leibe [Viola & Jones, CVPR 2001]



Large Library of Filters
I = Considering all

—

possible filter
parameters:
position, scale,

e | and type:

|
180,000+ possible
features

]
B |
associated with

each 24 x 24
- . = window

Use AdaBoost both to select the informative features
and to form the classifier
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Slide credit: Kristen Grauman B. Leibe [Viola & Jones, CVPR 2001]



RWNTH
AdaBoost for Feature+Classifier Selection

e Want to select the single rectangle feature and threshold
that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

Resulting weak classifier:

hg _ { +1 if £(x)> 0,

feature on faces
and non-faces.

H
'g M -1 otherwise
= 4+—o—o—o_o+o_w
o BLE
> IE | . For next round, reweight the
= I _t[(.'?()H .
= examples according to errors,
§ Outputs of a choose another filter/threshold
© possible rectangle combo.
§
=

: 63
Slide credit: Kristen Grauman B. Leibe [Viola & Jones, CVPR 2001]



RWNTH
AdaBoost for Efficient Feature Selection

 Image features = weak classifiers

e For each round of boosting:
~ Evaluate each rectangle filter on each example
~ Sort examples by filter values

> Select best threshold for each filter (min error)
- Sorted list can be quickly scanned for the optimal threshold

> Select best filter/threshold combination
~ Weight on this features is a simple function of error rate
> Reweight examples

P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004.

(first version appeared at CVPR 2001)
B. Leibe
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Slide credit: Kristen Grauman


http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
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RWNTH
Viola-Jones Face Detector: Results

B. Leibe

Slide credit: Kristen Grauman
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Slide credit: Kristen Grauman

B. Leibe
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RWNTH
Viola-Jones Face Detector: Results

Slide credit; Kristen Grauman B. Leibe
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RWNTH
References and Further Reading

e More information on Classifier Combination and Boosting
can be found in Chapters 14.1-14.3 of Bishop’s book.

= PATTERN RECOGNITION &

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

e A more in-depth discussion of the statistical interpre-
tation of AdaBoost is available in the following paper:

» J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic
Regression: a Statistical View of Boosting, The Annals of
Statistics, Vol. 38(2), pages 337-374, 2000.
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http://www-stat.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf
http://www-stat.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf

