Machine Learning - Lecture 8

Linear Support Vector Machines
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Course Outline

e Fundamentals (2 weeks)
- Bayes Decision Theory
~ Probability Density Estimation

e Discriminative Approaches (5 weeks)
> Linear Discriminant Functions
~ Statistical Learning Theory & SVMs
- Ensemble Methods & Boosting
> Randomized Trees, Forests & Ferns

e Generative Models (4 weeks)
> Bayesian Networks
> Markov Random Fields
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RWTH
Recap: Generalization and Overfitting

A

test error

training error

_I —————————————————————————

e Goal: predict class labels of new observations
~ Train classification model on limited training set.

» The further we optimize the model parameters, the more the
training error will decrease.

- However, at some point the test error will go up again.
= Overfitting to the training set!

B. Leibe
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Recap: Risk

e Empirical risk
- Measured on the training/validation set

e Actual risk (= Expected risk)
» Expectation of the error on all data.

R(a) = /L(yi,f(x; «))dPx y(x,y)

. Pxy(x,y) is the probability distribution of (x,).
It is fixed, but typically unknown.
= In general, we can’t compute the actual risk directly!

0
M
S
)
€
=
S
7]
o)
=
c
S
@
)
i
o
=
c
3)
a
p=

Slide adapted from Bernt Schiele B. Leibe



RWNTH
Recap: Statistical Learning Theory

e Idea

~» Compute an upper bound on the actual risk based on the
empirical risk

R(a) - Remp(a) +€(N,p*, h)

> where

N: number of training examples
p": probability that the bound is correct

h: capacity of the learning machine (“VC-dimension”)
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Recap: VC Dimension

e Vapnik-Chervonenkis dimension Exorer®

e
. . . Se 2.3
~ Measure for the capacity of a learning machine. ’

e Formal definition:

- If a given set of { points can be labeled in all possible ¢ ways,
and for each labeling, a member of the set { f(«)} can be found

which correctly assigns those labels, we say that the set of
points is shattered by the set of functions.

» The VC dimension for the set of functions { f(«)} is defined as
the maximum number of training points that can be shattered

by {f(a)}.
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RWTH
Recap: Upper Bound on the Risk

e Important result (Vapnik 1979, 1995)
- With probability (1-n), the following bound holds

R(Q) - Rump(a) + | BN/ + 1) ~ o6/

“VC confidence”

- This bound is independent of Px y (X, y)! e
» If we know h (the VC dimension),

we can easily compute the risk
bound

R(a) © Remp(a) +€(N,p*, h)

Error
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RWTH
Recap: Structural Risk Minimization

e How can we implement Structural Risk Minimization?

R(a) - Remp(a) +€(N,p*, h)

e Classic approach
. Keep €(IV,p*, h) constant and minimize Ry, ().

. €(IN,p", h) can be kept constant by controlling the model
parameters.

e Support Vector Machines (SVMs)
. Keep Remp() constant and minimize €(N, p*, h) .
. In fact: Rerp () = 0 for separable data.

. Control €(N,p*, h) by adapting the VC dimension
(controlling the “capacity” of the classifier).
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Topics of This Lecture

e Linear Support Vector Machines
> Lagrangian (primal) formulation
> Dual formulation
> Discussion

e Linearly non-separable case
> Soft-margin classification
> Updated formulation

 Nonlinear Support Vector Machines
> Nonlinear basis functions
> The Kernel trick
> Mercer’s condition
» Popular kernels

e Applications
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Revisiting Our Previous Example...

e How to select the classifier with o @

the best generalization performance? @ ® ®
> Intuitively, we would like to select

the classifier which leaves maximal
“safety room” for future data points.

~ This can be obtained by maximizing the
margin between positive and negative
data points.

» It can be shown that the larger the margin, the lower the
corresponding classifier’s VC dimension.

e The SVM takes up this idea

> It searches for the classifier with maximum margin.

> Formulation as a convex optimization problem
= Possible to find the globally optimal solution!
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Support Vector Machine (SVM)

e Let’s first consider linearly separable data
> N training data points 1(xs, yz)}i\;l X; € R4

. Target values t; € {—1,1}

» Hyperplane separating the data
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Support Vector Machine (SVM)

e Margin of the hyperplane: d_ +d

> d,: distance to nearest pos.

.y @ ®
training example
> d_: distance to nearest neg. ™. ® °

training example ‘ \ ¢
=
T o
()
S
: -
7] @ ®
o .
<
= Origin .
g Q, /
c o1 Margin
=
3 . We can always choose w, bsuchthat d_ =d, = —.
= [wl ;

B. Leibe
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Support Vector Machine (SVM)

e Since the data is linearly separable, there exists a
hyperplane with

wix, +b>+1 for t, =+1

wix,+b- —1 for t,=—1

e Combined in one equation, this can be written as
t,(Wix, +b) >1 Vn

= Canonical representation of the decision hyperplane.

» The equation will hold exactly for the points
on the margin

t,(wix, +b) =1

~ By definition, there will always be at least
one such point.
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Support Vector Machine (SVM)

e We can choose w such that
wix, +b=+1 forone %, 1
wix, +b=—1 forone t,=—1

e The distance between those two hyperplanes is then the

margin 1
d_ — d_|_ —
il
2
d_ —I— d_|_ —
Iw]

= We can find the hyperplane with maximal margin by
minimizing |[w]|,

. 19
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Support Vector Machine (SVM)

e Optimization problem

~ Find the hyperplane satisfying

1
arg min —||W||
w,b

under the constraints

th(W X, +b)>1 Vn

> Quadratic programming problem with linear constraints.
~ Can be formulated using Lagrange multipliers.

e Who is already familiar with Lagrange multipliers?
» Let’s look at a real-life example...
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Recap: Lagrange Multipliers

e Problem
- We want to maximize K(x) subject to constraints f(x) = 0.

» Example: we want to get as close as
possible, but there is a fence.

> How should we move?

> We want to maximize VK .

~ But we can only move parallel
to the fence, i.e. along

V”K = VK +A\Vf
with \ = 0.
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Recap: Lagrange Multipliers

e Problem
- We want to maximize K(x) subject to constraints f(x) = 0.

- Example: we want to get as close as
possible, but there is a fence.

> How should we move?

qg’ = Optimize

= ma;\XL(X, A =K(x)+ Af
< IV ,

g — =V K=0

: o~ VI

S OL

=

N
8>\ B. Leibe



Recap: Lagrange Multipliers

e Problem
» Now let’s look at constraints of the form f(x) > 0.

> Example: There might be a hill from
which we can see better...

. Optimize max L(x,\) = K(x) + \f(x)

> Solution lies on boundary
= f(x) =0 for some A >0
~ Solution lies inside f(x) >0

= Constraint inactive: A= 0

> In both cases
= A f(x)=0
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Recap: Lagrange Multipliers

e Problem
» Now let’s look at constraints of the form f(x) > 0.

> Example: There might be a hill from
which we can see better...

- Optimize max L(x, \) = K(x) + Af(x)

X, A\
Fx) =0 o~ Karush-Kuhn-Tucker (KKT)
conditions: A > 0
e Two cases f(x) >0
> Solution lies on boundary Af(x) = 0

= f(x) =0 for some A >0
~ Solution lies inside f(x) >0

= Constraint inactive: A= 0

> In both cases
= A f(x)=0
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SVM - Lagrangian Formulation

e Find hyperplane minimizingHwH2under the constraints
th(W X, +b)—1>0 Vn

e Lagrangian formulation

» Introduce positive Lagrange multipliers:

> Minimize Lagrangian (“primal form”)

N
1
L(w,b,a) = > wl® = " an {tn(w"x, +b) — 1}
n=1

> l.e., find w, b, and a such that

N

oL

=0 = Zantn:O
n=1

B. Leibe
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gw )T

a, >0 Vn

N
W = g AntnXn
n—=1
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SVM - Lagrangian Formulation
e Lagrangian primal form

N
1
L, = 5 [w]|* — Zan {t,(W'x, +b) — 1}
n=1

N
1
— 2_ ||WH2 o Zan {tny(xn) o 1}
n=1

e The solution of L, needs to fulfill the KKT conditions

» Necessary and sufficient conditions

KKT:
thy(x,) =1 = 0 f(x) >
A, {tny(xn)_l} = 0 AM(x) =
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SVM - Solution (Part 1)

e Solution for the hyperplane
» Computed as a linear combination of the training examples

N
W = E antnXy,
n=1

~ Because of the KKT conditions, the following must also hold

a., (tn(WTXn +b) — 1) =0 KKT:

Af(x) =0

- This implies that a, > 0 only for training data points for which

=> Only some of the data points actually influence the decision
boundary!
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SVM - Support Vectors

e The training points for which a, > 0 are called “support
vectors”.

e Graphical interpretation:

~ The support vectors are the
points on the margin.

» They define the margin
and thus the hyperplane. o

= Robustness to “too correct”
points!

o I/I\4/Iargin

28

Image source: C. Burges, 1998
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SVM - Solution (Part 2)

e Solution for the hyperplane
» To define the decision boundary, we still need to know b.
~ Observation: any support vector x  satisfies

KKT:
by (Xn) =ty Z GmtmXo X, +b ] =1 | f(x)=0
meS
> Using t% = 1, we can derive: b=1t, — Z amthTTnxn

meS
> In practice, it is more robust to average over all support vectors:

— Nis Z by — Z amtmxﬁxn

nes meS
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SVM - Discussion (Part 1)

e Linear SVM

» Linear classifier
~ Approximative implementation of the SRM principle.

> In case of separable data, the SVM produces an empirical risk of
zero with minimal value of the VC confidence
(i.e. a classifier minimizing the upper bound on the actual risk).

> SVMs thus have a “guaranteed” generalization capability.
> Formulation as convex optimization problem.
= Globally optimal solution!

e Primal form formulation
- Solution to quadratic prog. problem in M variables is in O(M3).
- Here: D variables = O(D?)
» Problem: scaling with high-dim. data (“curse of dimensionality”)
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RWNTH
SVM - Dual Formulation

 Improving the scaling behavior: rewrite L in a dual form

» Using the constraint Z a,t, = 0, we obtain R p—

n=1

! N N
L, = 5 [w]|? — Z antn W X, + Z ap,
n=1 n=1
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SVM - Dual Formulation

| N N
L, = 5 [w]|* — Z antnW X, + Z anp,
n=1 n=1

N
OL
> Using the constraint w = E antnX, , we obtain (9—p 0
W
n=1

Slide adapted from Bernt Schiele B. Leibe
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SVM - Dual Formulation

L:%HWHZ ZZanamt ton (X- X, —I—Zan

n=1m=1

N
1 1
- Applying 5 [w||?= inw and again using w :7; AntnXn
1 1 N N
2—WTW =3 S: S: UnGmtntm (X X,)
n=1m=1

> Inserting this, we get the Wolfe dual

N 1 N N
= Z Ap — 5 Z Z anamtntm(xgzxn)
n=1

n=1m=1

Slide adapted from Bernt Schiele B. Leibe

33



SVM - Dual Formulation

¢ Maximize

N | NN
Lgy(a) = Z an — 5 Sj Sj UnGmtntm (X X,,)
n=1

n=1m=1

under the conditions

IV
-

Vn

Ap,
N
E antn
n=1

~ The hyperplane is given by the N support vectors:

Ns
W = E AntnXn
n=1

Slide adapted from Bernt Schiele B. Leibe
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SVM - Discussion (Part 2)

e Dual form formulation
- In going to the dual, we now have a problem in NV variables (a ).
~ Isn’t this worse??? We penalize large training sets!

e However...
1. SVMs have sparse solutions: a, # 0 only for support vectors!

= This makes it possible to construct efficient algorithms
- e.g. Sequential Minimal Optimization (SMO)
- Effective runtime between O(N) and O(N?).

2. We have avoided the dependency on the dimensionality.

= This makes it possible to work with infinite-dimensional feature
spaces by using suitable basis functions ¢(x).

= We'll see that in a few minutes...
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So Far...

> Current problem formulation has no
solution if the data are not linearly
separable!

> Need to introduce some tolerance to
outlier data points.
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SVM - Non-Separable Data

e Non-separable data

> l.e. the following inequalities cannot be satisfied for all data
points

wix, +b>+1 for t, =+1

wix, +b- —1 for t, =-—1

> Instead use
wix, +b>+1— &, for t, =—+1
wix, +b- —1+ &, for t, =-—1

with “slack variables” &, > 0 Vn

B. Leibe
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SVM - Soft-Margin Classification

e Slack variables
- One slack variable ¢, > 0 for each training data point.

e Interpretation
> & =0 for points that are on the correct side of the margin.
- & =|t, — y(x,)| for all other points (linear penalty).

Point on decision
boundary: £, =1

Misclassified point:
&n > 1

® o
> We do not have to set the slack variables ourselves!

= They are jointly optimized together with w.
40
B. Leibe
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SVM - Non-Separable Data

e Separable data 1

> Minimize —

2
* Non-separable data §
> Minimize 5

5 Trade-off
[w| parameter!

N
Iwl? +C)S ",
o n=1

B. Leibe
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SVM - New Primal Formulation

e New SVM Primal: Optimize

N
L, = _||w||2+025n Zan tny (%) — 1+ &) — Zunﬁn
Const?amt Constraint

" tny(Xn) Z 1 o fn fn Z O
la:a e KKT conditions
£ KKT:
7 an = 0 pn = 0 A >0
g tny(Xn)_1+£n > 0 gn > 0 (X) > 0
L atyG) 146 = 0 e = 0 (MG = 0
-

42
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SVM - New Dual Formulation

e New SVM Dual: Maximize

N | NN
Lgy(a) = Z an — 5 Sj Sj UnGmtntm (X X,,)
n=1

n=1m=1

under the conditions
0 a, -

N
Zantn = 0
n=1

e This is again a quadratic programming problem
= Solve as before... (more on that later)

O This is all
that changed!

Slide adapted from Bernt Schiele B. Leibe
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SVM - New Solution

e Solution for the hyperplane
» Computed as a linear combination of the training examples

N
W = E antnXy,
n=1

- Again sparse solution: a, = 0 for points outside the margin.
= The slack points with £, > 0 are now also support vectors!

- Compute b by averaging over all V,, points with0 < a,, < C:

1 T
TR Sl [ pravaeces
neM meM

B. Leibe
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RWTH
Interpretation of Support Vectors

e Those are the hard examples!
> We can visualize them, e.g. for face detection

NON-FACES
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RWTHAACHEN
UNIVERSITY

So Far...

» Current problem formulation has no
solution if the data are not linearly
separable!

> Need to introduce some tolerance to
outlier data points.

= Slack variables. Q/

e Only looked at linear decision boundaries...
> This is not sufficient for many applications.

> Want to generalize the ideas to non-linear
boundaries.

47
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Nonlinear SVM

e Linear SVMs

~ Datasets that are linearly separable with some noise work well:

—eo o-@|®—o "

~ But what are we going to do if the dataset is just too hard?

B. Leibe

Slide credit: Raymond Mooney
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RWTHAACHEN

UNIVERSITY
Another Example
e Non-separable by a hyperplane in 2D
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Another Example

e Separable by a surface in 3D
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Nonlinear SVM - Feature Spaces

e General idea: The original input space can be mapped to
some higher-dimensional feature space where the
training set is separable:
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Nonlinear SVM

e General idea
- Nonlinear transformation ¢ of the data points x_:

xeRP ¢:RP - H
» Hyperplane in higher-dim. space H (linear classifier in )

wlig(x)+b=0

= Nonlinear classifier in R?.

Slide credit: Bernt Schiele B. Leibe
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What Could This Look Like?

e Example:
- Mapping to polynomial space, x, y € RZ2:

~ Motivation: Easier to separate data in higher-dimensional space.

» But wait - isn’t there a big problem?
- How should we evaluate the decision function?
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RWTH
Problem with High-dim. Basis Functions

e Problem
> In order to apply the SVM, we need to evaluate the function

y(x) =w' P(x) + b

> Using the hyperplane, which is itself defined as

N
4 :Z antn¢(xn)
n=1

= What happens if we try this for a million-dimensional
feature space ¢(x)?

> Oh-oh...

B. Leibe
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Solution: The Kernel Trick

e Important observation
> ¢(x) only appears in the form of dot products ¢(x)"¢(y):

y(x) = wio(x)+b

N
— Z antnqb(xn)Tqb(X) - b
n=1

.- Trick: Define a so-called kernel function k(x,y) = ¢(x)To(y).

> Now, in place of the dot product, use the kernel instead:

N
y(x) = Z aptnk(Xn,X) + b
n=1

> The kernel function implicitly maps the data to the higher-
dimensional space (without having to compute ¢(x) explicitly)!
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Back to Our Previous Example...

e 2"d degree polynomial kernel:

-
L7 Y1
(%) o(y) = | V2r172 || V25192

= 2793 + 221 T2Y1 Y0 + T35

= (x'y)? = k(x,y)

- Whenever we evaluate the kernel function k(x,y) = (x'y)?, we
implicitly compute the dot product in the higher-dimensional
feature space.
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Image source: C. Burges, 1998
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SVMs with Kernels

e Using kernels
~ Applying the kernel trick is easy. Just replace every dot product
by a kernel function...
T
x'y — kxy)
> ..and we’re done.

~ Instead of the raw input space, we’re now working in a higher-
dimensional (potentially infinite dimensional!) space, where the
data is more easily separable.

e Wait - does this always work?

> The kernel needs to define an implicit mapping
to a higher-dimensional feature space ¢(x).

> When is this the case?
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RWNTH
Which Functions are Valid Kernels?

e Mercer’s theorem (modernized version):
» Every positive definite symmetric function is a kernel.

e Positive definite symmetric functions correspond to a
positive definite symmetric Gram matrix:

Slide credit: Raymond Mooney

B. Leibe

T

lq:, K(Xp.Xq) | K(XpXp) | K(Xp,X3) K(X1,Xp)
E K(XzX1) | K(X5%5) | K(XpX3) K(X2:X)
7]

o

c

c

g

FIJ k(Xnixl) k(Xn’XZ) k(XmXB) k(Xn,Xn)
c

£

CE% (positive definite = all eigenvalues are > 0)
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RWNTH
Recap: Kernels Fulfilling Mercer’s Condition

e Polynomial kernel
k(x,y) = (x'y + 1)

e Radial Basis Function kernel

AN\2
k(X, y) = exXp {— (X Y) } e.g. Gaussian

202
e Hyperbolic tangent kernel

k(X, y);ﬁl —W e.g. Sigmoid

——

Actually, this was wrong in

the original SVM paper...
(and many, many more...)

. 59
Slide credit: Bernt Schiele B. Leibe
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Example: Bag of Visual Words Representation

e General framework in visual recognition
» Create a codebook (vocabulary) of prototypical image features
» Represent images as histograms over codebook activations
. Compare two images by any histogram kernel, e.g. x? kernel

ky2(h, h') = exp (_} Z (hj = hj) )

g

hi + !

0
M
S
)
€
=
S
7]
o)
=
c
S
S
)
1
o)
=
c
3)
a
p=

bl b0kl cctiard SNILLIRHN) oLl L M ,:--‘..‘,4..:,::.:‘5\__‘,,.;1 HE et b gl Ao et b e sa il ln L) oiLiiinie L1 NI UL,

) I N “' i :"._.-' d UO
B. Leibe

Slide adapted from Christoph Lampert



0
M
S
)
€
=
S
7]
o)
=
c
S
S
)
1
o)
=
c
3)
a
p=

RWNTH
Nonlinear SVM - Dual Formulation "

¢ SVM Dual: Maximize

N
Ly(a) = Z Y Y U O tntmk (X, X5
n=1 n=1m=1

under the conditions

0- a,- C
N
Zantn = 0
n=1

e Classify new data points using
N

y(x) = Z aptnk(X,,x)+b

n=1

B. Leibe
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RWNTH
VC Dimension for Polynomial Kernel

e Polynomial kernel of degree p:
k(x,y) = (x"y)

D —1
» Dimensionality of 7{: ( +£ )

> Example: D = 16 x 16 = 256
p =4
dim(#H) = 183.181.376

» The hyperplane in H then has VC-dimension
dim(H) +1

B. Leibe
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RWNTH
VC Dimension for Gaussian RBF Kernel

e Radial Basis Function:

k(x,y) = exp {— (x_y) }

202

> In this case, H is infinite dimensional!
2 x™

X X
eXp(X)zl—Fi—l—?—l—...—l—F—i—...

> Since only the kernel function is used by the SVM, this is no
problem.

» The hyperplane in H then has VC-dimension
dim(H) +1 =00

B. Leibe
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RWNTH
VC Dimension for Gaussian RBF Kernel

e [ntuitively

~ If we make the radius of the RBF kernel sufficiently small, then
each data point can be associated with its own kernel.

NN
A s
\ A [\
//E\ ~n /O /N
A
JANILN

- However, this also means that we can get finite VC-dimension if
we set a lower limit to the RBF radius.

64
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Example: RBF Kernels

e Decision boundary on toy problem

RBF Kernel width (o)
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Image source: B. Schoelkopf, A. Smola, 2002
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But... but... but...

e Don’t we risk overfitting with those enormously high-
dimensional feature spaces?

- No matter what the basis functions are, there are really only up
to N parameters: a, a,,..., a,y and most of them are usually set
to zero by the maximum margin criterion.

» The data effectively lives in a low-dimensional subspace of H.

e What about the VC dimension? | thought low VC-dim was
good (in the sense of the risk bound)?
> Yes, but the maximum margin classifier “magically” solves this.

> Reason (Vapnik): by maximizing the margin, we can reduce the
VC-dimension.

~ Empirically, SVMs have very good generalization performance.
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Theoretical Justification for Maximum Margins

e Vapnik has proven the following:
» The class of optimal linear separators has VC dimension h
bounded from above as 5
. D
h< mmﬂ—], m0}+1

2

Jo,

where p is the margin, D is the diameter of the smallest sphere
that can enclose all of the training examples, and m, is the
dimensionality.

e Intuitively, this implies that regardless of dimensionality
m,we can minimize the VC dimension by maximizing the
margin p.

e Thus, complexity of the classifier is kept small
regardless of dimensionality.
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SVM Demo

Change |Run| Clear | Save | Load I-t1-d1-r1-c1DDDD

Applet from libsvm
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
B. Leibe
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http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Summary: SVMs

e Properties
~ Empirically, SVMs work very, very well.

- SVMs are currently among the best performers for a number of
classification tasks ranging from text to genomic data.

- SVMs can be applied to complex data types beyond feature
vectors (e.g. graphs, sequences, relational data) by designing
kernel functions for such data.

~» SVM techniques have been applied to a variety of other tasks

- e.g. SV Regression, One-class SVMs, ...

» The kernel trick has been used for a wide variety of

applications. It can be applied wherever dot products are in use
- e.g. Kernel PCA, kernel FLD, ...

- Good overview, software, and tutorials available on
http://www.kernel-machines.org/
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Summary: SVMs

e Limitations
> How to select the right kernel?
- Still something of a black art...
> How to select the kernel parameters?
- (Massive) cross-validation.
- Usually, several parameters are optimized together in a grid search.
~ Solving the quadratic programming problem
- Standard QP solvers do not perform too well on SVM task.
- Dedicated methods have been developed for this, e.g. SMO.
» Speed of evaluation
- Evaluating y(x) scales linearly in the number of SVs.
- Too expensive if we have a large number of support vectors.
= There are techniques to reduce the effective SV set.
> Training for very large datasets (millions of data points)
- Stochastic gradient descent and other approximations can be used
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Topics of This Lecture

Linear Support Vector Machines (Recap)
» Lagrangian (primal) formulation

» Dual formulation

> Discussion

Linearly non-separable case
> Soft-margin classification
> Updated formulation

Nonlinear Support Vector Machines
> Nonlinear basis functions
» The Kernel trick
» Mercer’s condition

Popular kernels

\!

Applications

B. Leibe

CHEN
UNIVERSITY
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RWTH
Example Application: Text Classification

e Problem:
» Classify a document in a number of categories

d<
e Representation:

~ “Bag-of-words” approach

~ Histogram of word counts (on learned dictionary) u_.l..J_._,

- Very high-dimensional feature space (~10.000 dimensions)
- Few irrelevant features

e This was one of the first applications of SVMs
> T. Joachims (1997)
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Example Application: Text Classification

e Results:

SVM (poly) SVM (rbf)
degree d = width v =
Bayes|Rocchio{C4.5(k-NN{l 1 | 2 3 4 5 06 (08110112
earn 95.9 96.1 [96.1197.3 [198.2]98.4/98.5/98.4198.3/198.5]|08.5/98.4|98.3
lacq 91.5 | 92.1 |85.3192.0|]92.6/94.6{95.2/95.2195.3((95.0}95.3/95.3/95.4
money-fx || 62.9 67.6 |69.4]78.2 1|166,9172.5175.4174.9176.2]174.0|75.4/76.3] 75.9
0 grain 72.5 79.5 [189.1]82.2 [191.3(93.1]92.4/91.3]189.91{93.1/91.9/91.9190.6
- crude 81.0 1 81.5 |75.5]185.7 ||86.0]87.3|88.6(88.9187.8{|88.9[R9.0/88.9/88.2
GE, trade 50.0 77.4 [59.2177.4 1169.2175.5176.6|77.3177.11176.9178.0|77.8/76.8
g mterest 58.0 72.5 149.1]74.0 |169.8{63.3/67.9{73.1(76.2|174.4175.0176.2|76.1
"’_ ship 787 | 83.1 [80.9]79.2 |I182.0/85.4]86.0/86.5]/86.01[85.4/86.5/87.6[87.1
=4 wheat 60.6 79.4 |85.5]76.6 {|83.1|84.5/85.285.9/83.81185.2|85.9/85.9/85.9
§ corn 47.3 | 62.2 |87.7|77.9 ||86.0|86.5|85.3 [85.7]/83.9 ||85.1{85.7/85.784.5
o . 84.2[85.1185.9[86.2[85.9|[86.4 [86.5|86.3 [ 86.2
FCIJ microavg.)| 72.0 | 79.9 |79.4/82.3 combined: 86.0 combined: 86.4
%
=

B. Leibe
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Example Application: Text Classification

e This is also how you could implement a simple spam

*

filter...

Dictionary

Incoming email

o—

—

el .

Word activations

B. Leibe

/4

SVM

Mailbox

ei
L

Trash
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Example Application: OCR

+ Handwritten digit
" P el art s L 102 6o pREET
recognition 1610330 102304028100290.12
> US Postal Service Database “{ﬁ%aigkligu’%g&%g%g?%i%gg%
Vol 1700 003257013 I 4RkREY
- Standard benchmark task 0y 9e0g7 1 7Y e 00159701827
for many learning algorithms )" <7%5'c 73 1 257008 822157 4004
e Er5 129015362 ]23033 43379
350121 1272808515053880319
1331 a 111 aL8719284)8)08LY
T T 1s12673600izusb L Lok
(35939202293927225.00 670
SABAATAS L) D%l S EREl ORIl
o LE1030475262000119964
531208k 1RESSTLILATIES Y60
Lol 130187 11299108 1110781
G 1097075512319730) 5817085
157 A8 L RasS (28 u318000163
73 EmL 88 e0sst60aste08s

L8255 | PESAIRES A0 A1k L

. 75
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Historical Importance

e USPS benchmark

> 2.5% error: human performance

e Different learning algorithms
> 16.2% error: Decision tree (C4.5)
> 95.9% error: (best) 2-layer Neural Network
> 5.1% error: LeNet 1 - (massively hand-tuned) 5-layer network

e Different SVMs

> 4.0% error: Polynomial kernel (p=3, 274 support vectors)
> 4.1% error: Gaussian kernel (0=0.3, 291 support vectors)

B. Leibe
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Example Application: OCR

e Results

> Almost no overfitting with higher-degree kernels.

degree of || dimensionality of | support | raw
polynomial feature space vectors | error
1 256 282 8.9

2 ~ 33000 227 4.7

3 ~ 1 x 10° 274 4.0)

4 ~ 1 x 10% 321 4.2

5! 2 1 x 1012 374 4.3

6 ~ 1 x 10 377 4.5

7 ~ 1 x 1018 422 4.5

B. Leibe
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Example Application: Object Detection

o Sliding-window approach gf;;time
Obj./non-obj.
Classifier
q y

e E.g. histogram representation (HOG)

> Map each grid cell in the input window to a
histogram of gradient orientations.

> Train a linear SVM using training set of
pedestrian vs. non-pedestrian windows.
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[Dalal & Triggs, CVPR 2005]
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Example Application: Pedestrian Detection

N. Dalal, B. Triggs, Hi rams of Oriented Gradients for Human Detection, CVPR 2005

Machine Learning, Summer ‘15

79
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Many Other Applications

e Lots of other applications in all fields of technology
> OCR
> Text classification
> Computer vision

» High-energy physics

> Monitoring of household appliances

~ Protein secondary structure prediction

» Design on decision feedback equalizers (DFE) in telephony

(Detailed references in Schoelkopf & Smola, 2002, pp. 221)
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You Can Try It At Home...

e Lots of SVM software available, e.g.

> svmlight (http://svmlight.joachims.org/)
- Command-line based interface

- Source code available (in C)
- Interfaces to Python, MATLAB, Perl, Java, DLL,...

> libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
- Library for inclusion with own code
- C++ and Java sources
- Interfaces to Python, R, MATLAB, Perl, Ruby, Weka, C+ .NET,...

> Both include fast training and evaluation algorithms, support for
multi-class SVMs, automated training and cross-validation, ...

= Easy to apply to your own problems!
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References and Further Reading

* More information on SVMs can be found in Chapter 7.1
of Bishop’s book. You can also look at Scholkopf & Smola
(some chapters available online).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Learning with Kernels Springer, 2006

B. Scholkopf, A. Smola

Learning with Kernels

MIT Press, 2002
http://www.learning-with-kernels.org/

e A more in-depth introduction to SVMs is available in the
following tutorial:
> C. Burges, A Tutorial on Support Vector Machines for Pattern

Recognition, Data Mining and Knowledge Discovery, Vol. 2(2),
pp. 121-167 1998.
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