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Recap: Generalization and Overfitting

test error

training error

* Goal: predict class labels of new observations
» Train classification model on limited training set.

» The further we optimize the model parameters, the more the
training error will decrease.

» However, at some point the test error will go up again.
= Overfitting to the training set!

B. Leibe
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Recap: Statistical Learning Theory

¢ |dea

» Compute an upper bound on the actual risk based on the
empirical risk

R(&) © Remp() +€(N,p*, h)

» where
N: number of training examples
p": probability that the bound is correct

h: capacity of the learning machine (“VC-dimension”)
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Slide adanted from Rernt Schiele. B. Leibe

Course Outline

¢ Fundamentals (2 weeks)
. Bayes Decision Theory @ §7'
» Probability Density Estimation K

¢ Discriminative Approaches (5 weeks)
» Linear Discriminant Functions
» Statistical Learning Theory & SVMs

» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

¢ Generative Models (4 weeks)
» Bayesian Networks
» Markov Random Fields

Machine Learning, Summer ‘15
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Recap: Risk

¢ Empirical risk
» Measured on the training/validation set

Romp @) = 5 3 Dlys (x3500)

e Actual risk (= Expected risk)
» Expectation of the error on all data.

R(a) = / Ly, f(x; 0))dPyx y (x,3)

. Pxy(x,y) is the probability distribution of (x,y).
It is fixed, but typically unknown.
= In general, we can’t compute the actual risk directly!

Machine Learning, Summer ‘15
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Recap: VC Dimension
¢ Vapnik-Chervonenkis dimension Exe,:,?;zz
-3

» Measure for the capacity of a learning machine.

¢ Formal definition:

. If a given set of { points can be labeled in all possible 2f ways,
and for each labeling, a member of the set {f(c)} can be found
which correctly assigns those labels, we say that the set of
points is shattered by the set of functions.

» The VC dimension for the set of functions {f(c)} is defined as
the maximum number of training points that can be shattered

by {f()}
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Recap: Upper Bound on the Risk

¢ Important result (Vapnik 1979, 1995)
» With probability (1-7), the following bound holds

RWTHAACHE

h(log(2N/h) + 1) —log(n/4)

R(@)+ Rany(@) .

~ This bound is independent of Px y (x,y)!
» If we know h (the VC dimension),
we can easily compute the risk

bound

R(@) -+ Remp(a) +€(N,p", h)

Machine Learning, Summer ‘15

“VC confidence”

Slide adapted from Bernt Schiele B. Leibe 0

VC dimension k

Topics of This Lecture

¢ Linear Support Vector Machines
» Lagrangian (primal) formulation
» Dual formulation
» Discussion

¢ Linearly non-separable case
» Soft-margin classification
» Updated formulation

¢ Nonlinear Support Vector Machines
» Nonlinear basis functions
» The Kernel trick
» Mercer’s condition
» Popular kernels

¢ Applications

Machine Learning, Summer ‘15
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Support Vector Machine (SVM)
o Let’s first consider linearly separable data
» N training data points {(Xuyz)},]\il x; € R?

. Target values t; e {-1,1}

X3

» Hyperplane separating the data
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Recap: Structural Risk Minimization

¢ How can we implement Structural Risk Minimization?

R(&) © Remp() +€(N,p*, h)

¢ Classic approach
. Keep €(N,p*, h) constant and minimize Remp(cv) .

. €(N,p*, h) can be kept constant by controlling the model
parameters.

e Support Vector Machines (SVMs)
. Keep Repmp () constant and minimize e(N,p*, h) .
» In fact: Repyp () = 0 for separable data.

. Control €(N,p*, h) by adapting the VC dimension
(controlling the “capacity” of the classifier).

Slide credit: Bernt Schiele B. Leibe

Revisiting Our Previous Example...

¢ How to select the classifier with

the best generalization performance? ® o
» Intuitively, we would like to select

the classifier which leaves maximal

“safety room” for future data points.

This can be obtained by maximizing the

margin between positive and negative

data points.

It can be shown that the larger the margin, the lower the

corresponding classifier’s VC dimension.

v

v

¢ The SVM takes up this idea
» It searches for the classifier with maximum margin.

» Formulation as a convex optimization problem
= Possible to find the globally optimal solution!

B. Leibe
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Support Vector Machine (SVM)
e Margin of the hyperplane: d_ +d;
» d,: distance to nearest pos. e .

training example
» d_: distance to nearest neg. ™.
training example -

L]
® °
Origin -@ . /
01 Margin

» We can always choose w, b such that d_ = d = M .
17

ide adapted from Bernt Schiele B. Leibe Image source: €, Burges, 1908




Support Vector Machine (SVM)
¢ Since the data is linearly separable, there exists a
hyperplane with
wix, +b>+1 for t,=+1
wix, +b- —1 for ¢,=—1

* Combined in one equation, this can be written as
tn(wan +b)>1 Vn

= Canonical representation of the decision hyperplane.
» The equation will hold exactly for the points

on the margin
ty(Wwrx, +0) =1

» By definition, there will always be at least
one such point.

Machine Learning, Summer ‘15

Slide adapted from Bernt Schiele 8. Leibe
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Support Vector Machine (SVM)

¢ Optimization problem
» Find the hyperplane satisfying

arg min - [[w]|
w,b 2
under the constraints

to(wrx, +0)>1 Vn

» Quadratic programming problem with linear constraints.
» Can be formulated using Lagrange multipliers.

e Who is already familiar with Lagrange multipliers?
» Let’s look at a real-life example...

Machine Learning, Summer ‘15
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Recap: Lagrange Multipliers

e Problem
» We want to maximize K(x) subject to constraints f(x) = 0.

» Example: we want to get as close as
possible, but there is a fence.

» How should we move?

fx)=0
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Support Vector Machine (SVM)

¢ We can choose w such that
w x,+b=+1 forone t,=+1

wix, +b=—1 forone t,=—1

¢ The distance between those two hyperplanes is then the
margin d d 1
_=di= —
[[wll
2
d_+dy = —
[[wll

= We can find the hyperplane with maximal margin by
minimizing [|w]|°,

Slide credit: Bernt Schiele B. Leibe

Recap: Lagrange Multipliers

¢ Problem
» We want to maximize K(x) subject to constraints f(x) = 0.

» Example: we want to get as close as
possible, but there is a fence.
» How should we move?

» But we can only move parallel
to the fence, i.e. along

VK = VK + \Vf w%*‘ o~
with \ # 0. 1

ide adapted from Mario Frit; B. Leibe
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Recap: Lagrange Multipliers

e Problem
» Now let’s look at constraints of the form f(x) > 0.

» Example: There might be a hill from
which we can see better...

Optimize max L(x,)\) = K(x) + Mf(x)

v

¢ Two cases
» Solution lies on boundary

= f(x) =0 for some A >0

» Solution lies inside f(x) >0

= Constraint inactive: A = 0
» In both cases
= \f(x)=0

Fence f 53
B. Leibe




Recap: Lagrange Multipliers

¢ Problem
~ Now let’s look at constraints of the form f(x) > 0.

~ Example: There might be a hill from
which we can see better...

Optimize max L(x,)\) = K(x) + M (x)

v

F(x) =0 255 Karush-Kuhn-Tucker (KKT)
conditions: A > 0

fx) =0
Af(x) 0

e Two cases
» Solution lies on boundary

= f(x) =0 for some A >0
» Solution lies inside f(x) >0 "
= Constraint inactive: A = 0

» In both cases
= \f(x)=0

Machine Learning, Summer ‘15

Fence f 14
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SVM - Lagrangian Formulation
¢ Lagrangian primal form

N
1
L = ; W = an {ta(wx, +b) — 1}
n=1

N
1
= 5 HW”2 - Zan {tny(xn) - 1}
n=1

* The solution of L, needs to fulfill the KKT conditions
» Necessary and sufficient conditions

KKT:
Qn > 0 A >0
thy(xn) =1 > 0 fx) >0
(2 {tny(xn)fl} =0 )‘f(x) =0

Machine Learning, Summer ‘15
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SVM - Support Vectors

¢ The training points for which a, > 0 are called “support
vectors”.

e Graphical interpretation:
» The support vectors are the

points on the margin. N\ @
. s ~, '\ )
2 » They define the margin .
5 and thus the hyperplane. o w
£
: ~~ .
) => Robustness to “too correct” %
o il s,
= points! .
z @ [ ]
5
3 Origin NANE
g ®, /
-{;, o Margin
=
28
Slide adapted from Bernt Schiele B. Leibe Image source: C, Burges, 1908
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SVM - Lagrangian Formulation

« Find hyperplane minimizingHwH2 under the constraints
th(wix, +0) —1>0 Vn
¢ Lagrangian formulation
» Introduce positive Lagrange multipliers: a, >0 Vn
» Minimize Lagrangian (“primal form”)
1
L(w,b,a) = 5 [w]* = an {tn(wTx +b) — 1}

n=1

» l.e., find w, b, and a such that

N N
oL oL
5 = 0 = n§:1antn: 0 pe 0 =|w :nEZlantnxn

Machine Learning, Summer ‘15

25

B. Leibe

SVM - Solution (Part 1)

¢ Solution for the hyperplane
» Computed as a linear combination of the training examples

N
W= E antnXy,
n=1

» Because of the KKT conditions, the following must also hold

an, (tn(wa,n +b) — 1) =0 )\f(K)ST:: 0

~ This implies that a, > 0 only for training data points for which
(tn(Wix, +b) —1) =0

= Only some of the data points actually influence the decision
boundary!

Machine Learning, Summer ‘15

ide adapted from Bernt Schiele B. Leibe

SVM - Solution (Part 2)

¢ Solution for the hyperplane
» To define the decision boundary, we still need to know b.
» Observation: any support vector x, satisfies

KKT:
tay(xn) =ty E UmbmXox, +b) =1 [f(x)>0
0 meS
]
: . Using t2 = 1, we can derive: b=t, — Z At XX,
@ mes
= » In practice, it is more robust to average over all support vectors:
=
I
4 1 T
g = = tn - a""LtTVLxmx’IL
£ Ns 2 2
S nes meS
=

B. Leibe




SVM - Discussion (Part 1)

e Linear SVM
» Linear classifier
Approximative implementation of the SRM principle.
In case of separable data, the SVM produces an empirical risk of
zero with minimal value of the VC confidence
(i.e. a classifier minimizing the upper bound on the actual risk).

» SVMs thus have a “guaranteed” generalization capability.
» Formulation as convex optimization problem.
= Globally optimal solution!

v

v

¢ Primal form formulation
- Solution to quadratic prog. problem in 1M variables is in O(M?).
» Here: D variables = O(D?)
» Problem: scaling with high-dim. data (“curse of dimensionality”)

Machine Learning, Summer ‘15
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SVM - Dual Formulation
1 N N
L, = 3 HW”2 - Z anthTxn + Z an
n=1 n=1
N
oL
» Using the constraint w :Z aptpX, , we obtain —P =
— ow
v 1 N N N
!;6 Lp = 5 HWH2 - Z antn Z aTrLtTYLX;XTL + Z Ap,
E n=1 m=1 n=1
@ 1 N N N
> 2 T
E’ =3 w]|? — Z Z nQmtntm (XpXn) + Zan
Gl n=1m=1 n=1
ot
g
S
[
= ; 32
lide adapted from Bernt Schiele B. Leibe
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SVM - Dual Formulation

¢ Maximize

N 1 N N
TS SO ) 9) SRR
n=1

n=1m=1

under the conditions

v
=]
<
S

[
N
§ apt, = 0
n=1

» The hyperplane is given by the Ng support vectors:

Ns
W= E antnXy
n=1

Slide adanted from Rernt Schiele. B. Leibe
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SVM - Dual Formulation

* Improving the scaling behavior: rewrite L, in a dual form

N
1
Ly= 5 IWl* = 3" an {ta(wx, +1) — 1}
n=1

N

1 N =0 N
= 5 HWH2 - Z anthTxn —b ntn + Z QA
n=1 =1 n=1

d aL
» Using the constraint Z apty, =0, we obtain B_bp
n=1

1 N N
L,= 3 HW||2 — Zant"wan + Zan
n=1 n=1

=0

Machine Learning, Summer ‘15

Slide adapted from Bernt Schiele B. Leibe
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SVM - Dual Formulation

1 N N N
L= 5 HWH2 - Z Z anamtntm(xfnxn) + Zan
n=1

n=1m=1
N

1 1
. Applying 5 |Iwl|[?= §WTW and again using w :Z AntnXp

n=1

1 1 N N
2—wTw =3 Z Z A Umtntm (xaxn)

n=1m=1

» Inserting this, we get the Wolfe dual

N 1 N N
Ly(a) = Z an — 3 Z Z anamtntm(x;rnxn)

n=1 n=1m=1

Machine Learning, Summer ‘15

ide adapted from Bernt Schiele B. Leibe

SVM - Discussion (Part 2)

¢ Dual form formulation
» In going to the dual, we now have a problem in N variables (a,).
» Isn’t this worse??? We penalize large training sets!

¢ However...
1. SVMs have sparse solutions: a, # 0 only for support vectors!
= This makes it possible to construct efficient algorithms
- e.g. Sequential Minimal Optimization (SMO)
- Effective runtime between O(N) and O(N?).

2. We have avoided the dependency on the dimensionality.

= This makes it possible to work with infinite-dimensional feature
spaces by using suitable basis functions ¢(x).

= We’'ll see that in a few minutes...
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So Far...

¢ Only looked at linearly separable case...
» Current problem formulation has no
solution if the data are not linearly
separable! L
» Need to introduce some tolerance to
outlier data points.

Machine Learning, Summer ‘15
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SVM - Soft-Margin Classification

¢ Slack variables
~ One slack variable £, > 0 for each training data point.

¢ Interpretation
» &, = 0 for points that are on the correct side of the margin.
= It, — y(x,)| for all other points (linear penalty).

Point on decision
boundary: £, =1

Misclassified point:
£, >1

~ We do not have to set the slack variables ourselves!

Machine Learning, Summer ‘15

= They are jointly optimized together with w.
40
B. Leibe

SVM - New Primal Formulation
e New SVM Primal: Optimize

= —IIWHZJrCZEH Zan tay(xn) = 1+&) —

Z fin&n

n=1 n=1
H/_/
Constraint Constraint
thy(xn) > 1 -6, £ >0
; e KKT conditions
£ KKT:
g thy(xn) —1+&, > 0 n > f(x) >0
E n(tny(xn)_1+§n) =0 Mngn = )\f(X) =0

42
B. Leibe
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SVM - Non-Separable Data

¢ Non-separable data
» l.e. the following inequalities cannot be satisfied for all data

points
wx,+b>+1 for t,=+1
wix, +b- —1 for t,=-1
» Instead use
wan +b>+1-¢, for t,=+1
wix, +b- —1+&, for t,=-1
with “slack variables” &, >0 Vn
B. Leibe 3
RWTH/CHEN
SVM - Non-Separable Data
e Separable data 1 ) Trade-off
» Minimize = HW” parameter!

* Non-separable data 1
» Minimize = HWH2

N
>
n=1

B. Leibe

4
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SVM - New Dual Formulation

¢ New SVM Dual: Maximize

La(a) = Zan _Z Z Ut (X, %n)
n=1m=1
under the conditions This i
0- a,  C is is all

that changed!

N
Zantn =0
n=1

¢ This is again a quadratic programming problem
= Solve as before... (more on that later)

ide adapted from Berpt Schiele B. Leibe
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SVM - New Solution Interpretation of Support Vectors

¢ Solution for the hyperplane
» Computed as a linear combination of the training examples

¢ Those are the hard examples!
» We can visualize them, e.g. for face detection

N
NON-FACES
W= E antnXy o pto
n=1 0 0
m =

) -~ Again sparse solution: a,, = 0 for points outside the margin. ) T
E = The slack points with £, > 0 are now also support vectors! E H S
Ef H y
H » Compute b by averaging over all N, points with 0 < a,, < C: @ )
g g
£ 1 £ =
[ @ .
g b= — E ty — E amtmx;rnxn g :
© Npm P - v (TN
£ nem mem = § 0
S S FACES i
= =

44
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So Far... Nonlinear SVM
Only looked at linearly separable case...
Current problem formulation has no

solution if the data are not linearly
separable! i

¢ Linear SVMs
» Datasets that are linearly separable with some noise work well:

|
of

2ol X
Need to introduce some tolerance to

outlier data points.

» But what are we going to do if the dataset is just too hard?
= Slack variables.

¢ Only looked at linear decision boundaries... 0 X
. This is not sufficient for many applications. S > How about... mapping data to a higher-dimensional space:
» Want to generalize the ideas to non-linear 4 R
boundaries. e

Machine Learning, Summer ‘15
Machine Learning, Summer ‘15
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image source: B. Schoelkopf, A Smola, 2000

B. Leibe ide credit: Ravmond Moone B. Leibe

RWTH ACHET RWTH ACHET
Another Example Another Example
¢ Non-separable by a hyperplane in 2D ¢ Separable by a surface in 3D
° °
L BN °
L ]
£ .. L]
i ° & . 2
g .. o® ° (X ] X g
£ % ® o0 £
7] ) 5 7]
? ® o ™ E’
§ e ¥ ¢ %
a E ° 4
£ ° a¥ @ 2 * £
= o 49 = 50
ide credit: Bill Freeman ide credit: Bill Freeman
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Nonlinear SVM - Feature Spaces
¢ General idea: The original input space can be mapped to

some higher-dimensional feature space where the
training set is separable:

Machine Learning, Summer ‘15

Slide credit: Raymond Moone:

What Could This Look Like?

e Example:
» Mapping to polynomial space, x, y € RZ:

08
72 06
-1 04
P(x) = | V2zizs | 02
2 ]
T3

[ et
> Motivation: Easier to separate data in higher-dimensional space.
» But wait - isn’t there a big problem?

- How should we evaluate the decision function?

Machine Learning, Summer ‘15
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Image source: C, Burges, 1994
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Solution: The Kernel Trick

¢ Important observation
> ¢(x) only appears in the form of dot products ¢(x)"é(y):

y(x) = wro(x)+b

Z antn¢(xn)T¢(x) +b

n=1

» Trick: Define a so-called kernel function k(x,y) = ¢(x)T¢(y)-

» Now, in place of the dot product, use the kernel instead:
N
y(X) = Z antnk(xmx) +b
n=1

» The kernel function implicitly maps the data to the higher-
dimensional space (without having to compute ¢(x) explicitly)!

©
=
=
]
£
E
5
(7]
=3
5
<
<
@
4
o
5
=
S
s
=

55

B. Leibe

Nonlinear SVM

¢ General idea
» Nonlinear transformation ¢ of the data points x,,:

xeRP ¢:RP 5 H
~ Hyperplane in higher-dim. space # (linear classifier in #)

wlpx)+b=0

= Nonlinear classifier in RP.

Machine Learning, Summer ‘15

Slide credit: Bernt Schiele B. Leibe

TWTHACHE
Problem with High-dim. Basis Functions

¢ Problem
» In order to apply the SVM, we need to evaluate the function

y(x) = w'o(x) +b

» Using the hyperplane, which is itself defined as

N
w :Z antn¢(xn)
n=1

= What happens if we try this for a million-dimensional
feature space ¢(x)?
» Oh-oh...

Machine Learning, Summer ‘15

B. Leibe

Back to Our Previous Example...

e 2nd degree polynomial kernel:

T 3 Ui
d(X)To(y) = | V2zia || V2 | ¢
2 2

Ty Y3 02

= 239} + 22122192 + T3Y3

= (x"y)? = k(x,y)

» Whenever we evaluate the kernel function k(x,y) = (xTy)2, we
implicitly compute the dot product in the higher-dimensional
feature space.
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SVMs with Kernels

¢ Using kernels
~ Applying the kernel trick is easy. Just replace every dot product
by a kernel function...
T
xy — k(xy)
» ..and we’re done.

» Instead of the raw input space, we’re now working in a higher-
dimensional (potentially infinite dimensional!) space, where the
data is more easily separable.

“Sounds like magic...”

¢ Wait - does this always work?

» The kernel needs to define an implicit mapping
to a higher-dimensional feature space ¢(x).

> When is this the case?

B. Leibe

RWTH CHE
Recap: Kernels Fulfilling Mercer’s Condition

¢ Polynomial kernel
k(x,y) = (x'y +1)P

¢ Radial Basis Function kernel

k(x,y) = exp{fw

952 } e.g. Gaussian
g

¢ Hyperbolic tangent kernel

k(x,y) = tantmdy o)

Actually, this was wrong in
the original SVM paper...

e.g. Sigmoid

(and many, many more...)

lide credit: Bernt Schiele B. Leibe

RWTHAACHER
Nonlinear SVM - Dual Formulation

¢ SVM Dual: Maximize
N N N

v
Ly(a) = Z a, — %Z Z anmtntm k(X %)

mn=1 n=1m=1

under the conditions

0 a, - C
N
Zantn =0
n=1

¢ Classify new data points using

N
y(x) = S antuk(x,.x)+b

n=1

B. Leibe
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TWTH/ZCEN
Which Functions are Valid Kernels?

-
¢ Mercer’s theorem (modernized version):
RN

» Every positive definite symmetric function is a kernel. €33

¢ Positive definite symmetric functions correspond to a
positive definite symmetric Gram matrix:

k(xyx;) | k(Xy%o) | k(Xy,Xs) k(Xy,Xq)
k(X2 Xp) | K(X2%p) | K(Xo,X3) K%z %)
K=
kOGx) | kO6Xa) | K(XqXa) k(%)
(positive definite = all eigenvalues are > 0)
58
Slide credit: Raymond Moaone: B. Leibe

TRWTH/ T
Example: Bag of Visual Words Representation

¢ General framework in visual recognition
» Create a codebook (vocabulary) of prototypical image features
» Represent images as histograms over codebook activations
» Compare two images by any histogram kernel, e.g. x2 kernel

By — )*
k(b h') = exp (_‘] Z (i — 1 )
T

hy + 1

ide adapted from Christoph Lampert B. Leibe

RWTH/ACHET
VC Dimension for Polynomial Kernel

¢ Polynomial kernel of degree p:
k(x,y) = (x"y)

» Dimensionality of #: (D +§ B 1)
» Example: D = 16 x 16 = 256
p =4
dim(#H) = 183.181.376

» The hyperplane in H then has VC-dimension
dim(H) +1

B. Leibe




RWTHACIEN
VC Dimension for Gaussian RBF Kernel

* Radial Basis Function:

k(x,y) = exp {_M}

202

> In this case, H is infinite dimensional!
-1 x  x? x"
exp(x) = +ﬁ+§+...+m+i..

» Since only the kernel function is used by the SVM, this is no
problem.

» The hyperplane in { then has VC-dimension
dim(H) +1=o00

Machine Learning, Summer ‘15

B. Leibe

Example: RBF Kernels

¢ Decision boundary on toy problem

RBF Kernel width (o)

Machine Learning, Summer ‘15
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B. Leibe Image source: B, Schoelkopf, A, Smola, 2000

RWTH/ T
Theoretical Justification for Maximum Margins

¢ Vapnik has proven the following:
» The class of optimal linear separators has VC dimension h
bounded from above as D2
h< minﬂ—zw, m0}+1
P
where p is the margin, D is the diameter of the smallest sphere

that can enclose all of the training examples, and m, is the
dimensionality.

¢ Intuitively, this implies that regardless of dimensionality
m, we can minimize the VC dimension by maximizing the
margin p.

¢ Thus, complexity of the classifier is kept small
regardless of dimensionality.

©
=
=
]
£
E
5
7}
=3
5
<
<
@
4
o
5
=
S
<]
=

ide credit: Ravmand Moone: B. Leibe

RWTHACIEN
VC Dimension for Gaussian RBF Kernel

¢ Intuitively

» If we make the radius of the RBF kernel sufficiently small, then
each data point can be associated with its own kernel.

» However, this also means that we can get finite VC-dimension if
we set a lower limit to the RBF radius.

Machine Learning, Summer ‘15
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But... but... but...

¢ Don’t we risk overfitting with those enormously high-
dimensional feature spaces?

» No matter what the basis functions are, there are really only up
to N parameters: a,, a,,..., ay and most of them are usually set
to zero by the maximum margin criterion.

» The data effectively lives in a low-dimensional subspace of H.

* What about the VC dimension? | thought low VC-dim was
good (in the sense of the risk bound)?
» Yes, but the maximum margin classifier “magically” solves this.

» Reason (Vapnik): by maximizing the margin, we can reduce the
VC-dimension.

» Empirically, SVMs have very good generalization performance.

Machine Learning, Summer ‘15
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SVM Demo
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Applet from libsvm
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
B. Leibe

10


http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Machine Learning, Summer ‘15

Machine Learning, Summer ‘15

©
=
=
]
£
E
5
(7]
=3
5
<
<
@
4
o
5
=
S
s
=

Summary: SVMs

¢ Properties
Empirically, SVMs work very, very well.
SVMs are currently among the best performers for a number of
classification tasks ranging from text to genomic data.
SVMs can be applied to complex data types beyond feature
vectors (e.g. graphs, sequences, relational data) by designing
kernel functions for such data.
SVM techniques have been applied to a variety of other tasks
- e.g. SV Regression, One-class SVMs, ...
The kernel trick has been used for a wide variety of
applications. It can be applied wherever dot products are in use
- e.g. Kernel PCA, kernel FLD, ...
- Good overview, software, and tutorials available on

http://www.kernel-machines.org/

v

v

v

v

v

B. Leibe

Topics of This Lecture

¢ Applications

B. Leibe
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Example Application: Text Classification

¢ Results:

SVM (poly) SVM (1)
degree d = width v =
Bayes|Rocchio|C4.5[k-NN|| 1 | 2 | 3 4 5 ||06]08]1.0 I 1.2

‘earn 95.9 | 96.1 |96.1]|97.3 [[98.2[08.4[08.5[98.4]98.3][98.5]98.5]98.4[98.3
acq 915 | 92.1 |85.3]92.0 ||92.6/94.6/95.2]/95.2/95.3(95.0(95.3/95.3|05.4
money-fx || 62.9 | 67.6 [69.4]78.2 [[66.9[72.5]75.4|74.9(76.2][74.0|75.1|76.3| 75.9
grain 725 | 79.5 [89.1]82.2/91.3(93.1{92.4/91.3|89.9(93.1(91.9[91.9]90.6
crude 81.0 | 81.5 |75.5|85.7 ||86.0|87.3|88.6|88.9/87.8][88,9|80.0[88.0]88.2
trade 500 | 77.4 |59.2|77.4 (|69.2|75.5|76.6]77.3|77.1|| 76.9(|78.0[77.8]76.8

interest 58.0 | 72.5 [49.1]74.0 [69.8|63.3[67.9[73.1|76.2(/74.4(75.0/76.2]76.1

ship 787 | 83.1 |80.9]79.2 [|82.0[85.4]86.0]86.5]86.0 ||85.4]86.5[87.6 [87.1
'wheat 60.6 | 79.4 |[85.5|76.6 [|83.1|84.5[85.2[85.9]83.8([85.2(85.9/85.9]85.9
corn 473 | 622 7.7] 77.9 ||86.0[86.5/85.3 [85.7|83.0 ||85.1|85.7|85.7|84.5

. 84.2{85.1|85.9|86.2[85.9 [|86.4 |86.5|86.3 | 86.2
microavg. || 72.0 | 79.9 |79.4|82.3
& H combined: 86.0 combined: 86.4

B. Leibe
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Summary: SVMs

¢ Limitations
» How to select the right kernel?
- Still something of a black art...
» How to select the kernel parameters?
- (Massive) cross-validation.
- Usually, several parameters are optimized together in a grid search.
» Solving the quadratic programming problem
- Standard QP solvers do not perform too well on SVM task.
- Dedicated methods have been developed for this, e.g. SMO.
» Speed of evaluation
- Evaluating y(x) scales linearly in the number of SVs.
- Too expensive if we have a large number of support vectors.
= There are techniques to reduce the effective SV set.
» Training for very large datasets (millions of data points)
- Stochastic gradient descent and other approximations can be used 0
B. Leibe
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Example Application: Text Classification

¢ Problem:
» Classify a document in a number of categories

d=-
¢ Representation:

“Bag-of-words” approach
» Histogram of word counts (on learned dictionary)
- Very high-dimensional feature space (~10.000 dimensions)
- Few irrelevant features

¢ This was one of the first applications of SVMs
» T. Joachims (1997)

B. Leibe
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Example Application: Text Classification

¢ This is also how you could implement a simple spam

filter...

Dictionary 4

——] | ]
2

Incoming email Word activations "' I

=

Mailbox

Trash

B. Leibe
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Example Application: OCR

¢ Handwritten digit
recognition
~ US Postal Service Database

» Standard benchmark task
for many learning algorithms '
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33014230.0320422312021013
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33 Tae a1 812505 7800310
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RWTH CHE
Example Application: OCR
¢ Results
» Almost no overfitting with higher-degree kernels.
degree of || dimensionality of | support | raw
polynornial feature space vectors | error
1 256 282 8.9
2 A2 33000 227 4.7
3 =~ 1 x 109 274 4.0
4 &1 x 10° 321 4.2
5 = 1x 102 374 4.3
6 a1 x 1011 377 4.5
7 ~ 1 x 1016 422 4.5
B. Leibe 7
RWTH ACHET

Example Application: Pedestrian Detection

N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

79
B. Leibe
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Historical Importance

e USPS benchmark

» 2.5% error: human performance

« Different learning algorithms
» 16.2% error: Decision tree (C4.5)
> 5.9% error: (best) 2-layer Neural Network
> 5.1% error: LeNet 1 - (massively hand-tuned) 5-layer network

« Different SVMs

» 4.0% error: Polynomial kernel (p=3, 274 support vectors)
> 4.1% error: Gaussian kernel (¢=0.3, 291 support vectors)

B. Leibe
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Example Application: Object Detection
o Slldlng -window approach cﬁpe bt""e

ley

N Obj./non-obj.
Classifier

¢ E.g. histogram representation (HOG)
» Map each grid cell in the input window to a
histogram of gradient orientations.
» Train a linear SVM using training set of
pedestrian vs. non-pedestrian windows.

[Dalal & Triggs, CVPR 2005’
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RWTH ACHET
Many Other Applications

¢ Lots of other applications in all fields of technology
» OCR
» Text classification
» Computer vision

» High-energy physics

» Monitoring of household appliances

» Protein secondary structure prediction

» Design on decision feedback equalizers (DFE) in telephony

(Detailed references in Schoelkopf & Smola, 2002, pp. 221)

B. Leibe
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You Can Try It At Home...

¢ Lots of SVM software available, e.g.
» svmlight (http://svmlight.joachims.org/)
- Command-line based interface
- Source code available (in C)
- Interfaces to Python, MATLAB, Perl, Java, DLL,...

» libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
- Library for inclusion with own code
- C++ and Java sources
- Interfaces to Python, R, MATLAB, Perl, Ruby, Weka, C+ .NET,...

» Both include fast training and evaluation algorithms, support for
multi-class SVMs, automated training and cross-validation, ...
= Easy to apply to your own problems!

B. Leibe
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RWTH//CHEN
References and Further Reading
¢ More information on SVMs can be found in Chapter 7.1

of Bishop’s book. You can also look at Scholkopf & Smola
(some chapters available online).

Christopher M. Bishop
Pattern Recognition and Machine Learning ~
Springer, 2006

B. Scholkopf, A. Smola

Learning with Kernels

MIT Press, 2002
http://www.learning-with-kernels.org/

¢ A more in-depth introduction to SVMs is available in the
following tutorial:
» C. Burges, A Tutorial on Support Vector Machines for Pattern

Recognition, Data Mining and Knowledge Discovery, Vol. 2(2),
pp. 121-167 1998.

B. Leibe
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