

Recap: Linear Separability

- · Up to now: restrictive assumption
 - > Only consider linear decision boundaries
- Classical counterexample: XOR

Linear Separability

- Even if the data is not linearly separable, a linear decision boundary may still be "optimal".
 - Generalization
 - E.g. in the case of Normal distributed data (with equal covariance matrices)

- Choice of the right discriminant function is important and should be based on
- Prior knowledge (of the general functional form)
- Empirical comparison of alternative models
- Linear discriminants are often used as benchmark.

Generalized Linear Discriminants

- Generalization
 - > Transform vector ${\bf x}$ with M nonlinear basis functions $\phi_j({\bf x})$:

$$y_k(\mathbf{x}) = \sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}) + w_{k0}$$

- > Purpose of $\phi_i(\mathbf{x})$: basis functions
- > Allow non-linear decision boundaries.
- $\,\,$ By choosing the right $\phi_{\it j}\text{,}$ every continuous function can (in principle) be approximated with arbitrary accuracy.
- Notation

$$y_k(\mathbf{x}) = \sum_{j=0}^M w_{kj} \phi_j(\mathbf{x})$$
 with $\phi_0(\mathbf{x}) = 1$

Generalized Linear Discriminants

Model

$$y_k(\mathbf{x}) = \sum_{j=0}^M w_{kj} \phi_j(\mathbf{x}) = y_k(\mathbf{x}; \mathbf{w})$$

- ightharpoonup K functions (outputs) $y_k(\mathbf{x}; \mathbf{w})$
- · Learning in Neural Networks
 - > Single-layer networks: ϕ_i are fixed, only weights ${\bf w}$ are learned.
 - » Multi-layer networks: both the ${f w}$ and the ϕ_i are learned.
 - > In the following, we will not go into details about neural networks in particular, but consider generalized linear discriminants in general...

Gradient Descent

- · Learning the weights w:
 - $\succ N$ training data points: $\mathbf{X} = {\mathbf{x}_1, ..., \mathbf{x}_N}$
 - $\succ K$ outputs of decision functions: $y_k(\mathbf{x}_n; \mathbf{w})$
 - > Target vector for each data point: $\mathbf{T} = \{\mathbf{t}_{\scriptscriptstyle 1},\,...,\,\mathbf{t}_{\scriptscriptstyle N}\}$

$$\begin{split} \text{Error function (least-squares error) of linear model} \\ E(\mathbf{w}) &= \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}\right)^2 \\ &= \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn}\right)^2 \end{split}$$

Gradient Descent

- Problem
 - The error function can in general no longer be minimized in closed form.
- Idea (Gradient Descent)
 - Iterative minimization
 - Start with an initial guess for the parameter values $\boldsymbol{w}_{ki}^{(0)}$
 - Move towards a (local) minimum by following the gradient.

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

n: Learning rate

This simple scheme corresponds to a 1st-order Taylor expansion (There are more complex procedures available).

RWTHAACHE

Gradient Descent - Basic Strategies

"Batch learning"

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

 η : Learning rate

> Compute the gradient based on all training data:

$$\frac{\partial E(\mathbf{w})}{\partial w_{kj}}$$

Slide credit: Bernt Schiele

. Leibe

Gradient Descent - Basic Strategies

· "Sequential updating"

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w})$$

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

 η : Learning rate

> Compute the gradient based on a single data point at a time:

$$\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}}$$

Slide credit: Bernt Schiele

B. Leibe

Gradient Descent

Error function

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn} \right)^2$$

$$E_n(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn} \right)^2$$

$$\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} = \left(\sum_{\tilde{j}=1}^{M} w_{k\tilde{j}} \phi_{\tilde{j}}(\mathbf{x}_n) - t_{kn} \right) \phi_j(\mathbf{x}_n)$$

$$= (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}) \phi_j(\mathbf{x}_n)$$

Gradient Descent

• Delta rule (=LMS rule)

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn} \right) \phi_j(\mathbf{x}_n)$$
$$= w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(\mathbf{x}_n)$$

where

$$\delta_{kn} = y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}$$

⇒ Simply feed back the input data point, weighted by the classification error.

Slide credit: Bernt Schiele

B. Leibe

Gradient Descent

· Cases with differentiable, non-linear activation function

$$y_k(\mathbf{x}) = g(a_k) = g\left(\sum_{j=0}^M w_{ki}\phi_j(\mathbf{x}_n)\right)$$

• Gradient descent

$$\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}) \phi_j(\mathbf{x}_n)$$

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(\mathbf{x}_n)$$

$$\delta_{kn} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn})$$

Slide credit: Bernt Schiele

Summary: Generalized Linear Discriminants

- Properties
 - General class of decision functions.
 - Nonlinearity $g(\cdot)$ and basis functions ϕ_j allow us to address linearly non-separable problems.
 - Shown simple sequential learning approach for parameter estimation using gradient descent.
 - Better 2nd order gradient descent approaches available (e.g. Newton-Raphson).
- Limitations / Caveats
 - > Flexibility of model is limited by curse of dimensionality
 - $g(\cdot)$ and ϕ_j often introduce additional parameters.
 - Models are either limited to lower-dimensional input space or need to share parameters,
 - Linearly separable case often leads to overfitting.
 - Several possible parameter choices minimize training error.

Topics of This Lecture

• Fisher's linear discriminant (FLD)

- > Classification as dimensionality reduction
- > Linear discriminant analysis
- > Multiple discriminant analysis
- Applications

· Logistic Regression

- > Probabilistic discriminative models
- > Logistic sigmoid (logit function)
- > Cross-entropy error
- Gradient descent
- > Iteratively Reweighted Least Squares
- Note on Error Functions

eibe

Classification as Dimensionality Reduction

· Classification as dimensionality reduction

- We can interpret the linear classification model as a projection onto a lower-dimensional space.
- Fig., take the D-dimensional input vector ${\bf x}$ and project it down to one dimension by applying the function

$$y = \mathbf{w}^{\mathrm{T}} \mathbf{x}$$

- > If we now place a threshold at $y \geq -w_{\rm o}$, we obtain our standard two-class linear classifier.
- The classifier will have a lower error the better this projection separates the two classes.

⇒ New interpretation of the learning problem

 $\,\succ\,$ Try to find the projection vector ${\bf w}$ that maximizes the class separation.

Classification as Dimensionality Reduction • Measuring class separation • We could simply measure the separation of the class means. \Rightarrow Choose \mathbf{w} so as to maximize $(m_2-m_1)=\mathbf{w}^T(\mathbf{m}_2-\mathbf{m}_1)$ • Problems with this approach 1. This expression can be made arbitrarily large by increasing $\|\mathbf{w}\|$. \Rightarrow Need to enforce additional constraint $\|\mathbf{w}\|=1$. \Rightarrow This constrained minimization results in $\mathbf{w} \propto (\mathbf{m}_2-\mathbf{m}_1)$ 2. The criterion may result in bad separation if the clusters have elongated shapes.

Multiple Discriminant Analysis

Generalization to K classes

$$J(\mathbf{W}) = \frac{|\mathbf{W}^{\mathrm{T}}\mathbf{S}_{B}\mathbf{W}|}{|\mathbf{W}^{\mathrm{T}}\mathbf{S}_{W}\mathbf{W}|}$$

where

$$\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_K]$$

$$\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_K] \qquad \mathbf{m} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n = \frac{1}{N} \sum_{k=1}^{K} N_k \mathbf{m}_k$$

$$\mathbf{S}_B = \sum_{k=1}^K N_k (\mathbf{m}_k - \mathbf{m}) (\mathbf{m}_k - \mathbf{m})^{\mathrm{T}}$$

$$\mathbf{S}_W = \sum_{k=1}^K \sum_{n \in \mathcal{C}_k} (\mathbf{x}_n - \mathbf{m}_k) (\mathbf{x}_n - \mathbf{m}_k)^{\mathrm{T}}$$

Maximizing J(W)

"Rayleigh quotient" ⇒ Generalized eigenvalue problem

$$J(\mathbf{W}) = \frac{|\mathbf{W}^{\mathrm{T}}\mathbf{S}_{B}\mathbf{W}|}{|\mathbf{W}^{\mathrm{T}}\mathbf{S}_{W}\mathbf{W}|}$$

 \succ The columns of the optimal ${f W}$ are the eigenvectors corresponding to the largest eigenvalues of $\mathbf{S}_B\mathbf{w}_i=\lambda_i\mathbf{S}_W\mathbf{w}_i$

$$\mathbf{S}_B \mathbf{w}_i = \lambda_i \mathbf{S}_W \mathbf{w}_i$$

Defining $\mathbf{v}=\mathbf{S}_B^{rac{1}{2}}\mathbf{w}$, we get $\mathbf{S}_B^{rac{1}{2}}\mathbf{S}_W^{-1}\mathbf{S}_B^{rac{1}{2}}\mathbf{v}=\lambda\mathbf{v}$

$$\mathbf{S}_{R}^{\frac{1}{2}}\mathbf{S}_{W}^{-1}\mathbf{S}_{R}^{\frac{1}{2}}\mathbf{v} = \lambda\mathbf{v}$$

which is a regular eigenvalue problem.

 \Rightarrow Solve to get eigenvectors of v, then from that of w.

- For the K-class case we obtain (at most) K-1 projections.
 - (i.e. eigenvectors corresponding to non-zero eigenvalues.)

B. Leibe

What Does It Mean?

· What does it mean to apply a linear classifier?

Classifier interpretation

- Positive contributions where $sign(x_i) = sign(w_i)$.
- ⇒ The weight vector identifies which input dimensions are important for positive or negative classification (large $\left|w_i\right|$) and which ones are irrelevant (near-zero w_i).
- \Rightarrow If the inputs x are normalized, we can interpret w as a "template" vector that the classifier tries to match.

B. Leibe

Fisherfaces: Interpretability

· Resulting weight vector for "Glasses/NoGlasses"

Summary: Fisher's Linear Discriminant

- Properties
 - Simple method for dimensionality reduction, preserves class discriminability.
 - Can use parametric methods in reduced-dim, space that might not be feasible in original higher-dim, space.
 - Widely used in practical applications.
- · Restrictions / Caveats
 - > Not possible to get more than K-1 projections.
 - > FLD reduces the computation to class means and covariances.
 - ⇒ Implicit assumption that class distributions are unimodal and well-approximated by a Gaussian/hyperellipsoid.

Topics of This Lecture

- Fisher's linear discriminant (FLD)
 - Classification as dimensionality reduction
 - Linear discriminant analysis
 - Multiple discriminant analysis
 - Applications
- · Logistic Regression
 - > Probabilistic discriminative models
 - > Logistic sigmoid (logit function)
 - > Cross-entropy error
 - Gradient descent
 - > Iteratively Reweighted Least Squares
- Note on Error Functions

Probabilistic Discriminative Models

We have seen that we can write

$$p(\mathcal{C}_1|\mathbf{x}) = \sigma(a)$$

$$- \qquad 1$$

logistic sigmoid function

$$= \frac{1}{1 + \exp(-a)}$$

· We can obtain the familiar probabilistic model by setting

$$a = \ln \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$$

· Or we can use generalized linear discriminant models

$$a = \mathbf{w}^T \mathbf{x}$$

or
$$a = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x})$$

Probabilistic Discriminative Models

· In the following, we will consider models of the form

$$p(C_1|\boldsymbol{\phi}) = y(\boldsymbol{\phi}) = \sigma(\mathbf{w}^T \boldsymbol{\phi})$$

with

 $p(\mathcal{C}_2|\boldsymbol{\phi}) = 1 - p(\mathcal{C}_1|\boldsymbol{\phi})$

· This model is called logistic regression.

Why should we do this? What advantage does such a model have compared to modeling the probabilities?

$$p(\mathcal{C}_1|\boldsymbol{\phi}) \ = \ \frac{p(\boldsymbol{\phi}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\boldsymbol{\phi}|\mathcal{C}_1)p(\mathcal{C}_1) + p(\boldsymbol{\phi}|\mathcal{C}_2)p(\mathcal{C}_2)}$$

Any ideas?

Comparison

- · Let's look at the number of parameters...
 - > Assume we have an M-dimensional feature space ϕ .
 - And assume we represent $p(\phi | C_k)$ and $p(C_k)$ by Gaussians.
 - How many parameters do we need?
 - For the means:
 - For the covariances: M(M+1)/2
 - Together with the class priors, this gives M(M+5)/2+1 parameters!
 - > How many parameters do we need for logistic regression?

$$p(C_1|\boldsymbol{\phi}) = y(\boldsymbol{\phi}) = \sigma(\mathbf{w}^T \boldsymbol{\phi})$$

Just the values of w ⇒ M parameters.

 \Rightarrow For large M, logistic regression has clear advantages!

Logistic Sigmoid

- Properties
 - Definition: $\sigma(a) = \frac{1}{1 + \exp(-a)}$
 - Inverse:
- $a = \ln\left(\frac{\sigma}{1 \sigma}\right)$

Symmetry property:

$$\sigma(-a) = 1 - \sigma(a)$$

, Derivative: $\frac{d\sigma}{da} = \sigma(1-\sigma)$

Logistic Regression

- Let's consider a data set $\{\phi_n,t_n\}$ with $n=1,\ldots,N$, where $\phi_n=\phi(\mathbf{x}_n)$ and $t_n\in\{0,1\}$, $\mathbf{t}=(t_1,\ldots,t_N)^T$.
- With $y_n=p(\mathcal{C}_1|\pmb{\phi}_n)$, we can write the likelihood as $p(\mathbf{t}|\mathbf{w})=\prod_{n=1}^Ny_n^{t_n}\left\{1-y_n\right\}^{1-t_n}$

$$p(\mathbf{t}|\mathbf{w}) = \prod_{n=1}^{N} y_n^{t_n} \left\{ 1 - y_n \right\}^{1 - t_n}$$

· Define the error function as the negative log-likelihood

$$E(\mathbf{w}) = -\ln p(\mathbf{t}|\mathbf{w})$$

= $-\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$

> This is the so-called cross-entropy error function.

Gradient of the Error Function $y_n = \sigma(\mathbf{w}^T\phi_n)$

• Error function
$$E(\mathbf{w}) \ = \ -\sum_{n=1}^N \left\{ t_n \ln y_n + (1-t_n) \ln(1-y_n) \right\}$$

Gradient

$$\begin{split} \nabla E(\mathbf{w}) &= -\sum_{n=1}^{N} \left\{ t_n \frac{\frac{d}{d\mathbf{w}} y_n}{y_n} + (1 - t_n) \frac{\frac{d}{d\mathbf{w}} (1 - y_n)}{(1 - y_n)} \right\} \\ &= -\sum_{n=1}^{N} \left\{ t_n \frac{y_n (1 - y_n)}{y_n} \phi_n - (1 - t_n) \frac{y_n (1 - y_n)}{(1 - y_n)} \phi_n \right\} \\ &= -\sum_{n=1}^{N} \left\{ (t_n - t_n y_n - y_n + t_n y_n) \phi_n \right\} \\ &= \sum_{n=1}^{N} (y_n - t_n) \phi_n \end{split}$$

Gradient of the Error Function

· Gradient for logistic regression

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \boldsymbol{\phi}_n$$

· Does this look familiar to you?

· This is the same result as for the Delta (=LMS) rule $w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn})\phi_j(\mathbf{x}_n)$

· We can use this to derive a sequential estimation algorithm.

> However, this will be quite slow...

A More Efficient Iterative Method...

· Second-order Newton-Raphson gradient descent scheme $\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \mathbf{H}^{-1} \nabla E(\mathbf{w})$

where $\mathbf{H} = \nabla \nabla E(\mathbf{w})$ is the Hessian matrix, i.e. the matrix of second derivatives.

Properties

- > Local quadratic approximation to the log-likelihood.
- Faster convergence.

Newton-Raphson for Least-Squares Estimation

· Let's first apply Newton-Raphson to the least-squares error function:

$$\begin{split} E(\mathbf{w}) &= \frac{1}{2} \sum_{n=1}^{N} \left(\mathbf{w}^{T} \boldsymbol{\phi}_{n} - t_{n} \right)^{2} \\ \nabla E(\mathbf{w}) &= \sum_{n=1}^{N} \left(\mathbf{w}^{T} \boldsymbol{\phi}_{n} - t_{n} \right) \boldsymbol{\phi}_{n} = \boldsymbol{\Phi}^{T} \boldsymbol{\Phi} \mathbf{w} - \boldsymbol{\Phi}^{T} \mathbf{t} \\ \mathbf{H} &= \nabla \nabla E(\mathbf{w}) &= \sum_{n=1}^{N} \boldsymbol{\phi}_{n} \boldsymbol{\phi}_{n}^{T} = \boldsymbol{\Phi}^{T} \boldsymbol{\Phi} \qquad \text{where } \boldsymbol{\Phi} = \begin{bmatrix} \boldsymbol{\phi}_{1}^{T} \\ \vdots \\ \boldsymbol{\phi}_{N}^{T} \end{bmatrix} \end{split}$$

· Resulting update scheme:

$$\begin{split} \mathbf{w}^{(\tau+1)} &= \mathbf{w}^{(\tau)} - (\mathbf{\Phi}^T\mathbf{\Phi})^{-1}(\mathbf{\Phi}^T\mathbf{\Phi}\mathbf{w}^{(\tau)} - \mathbf{\Phi}^T\mathbf{t}) \\ &= (\mathbf{\Phi}^T\mathbf{\Phi})^{-1}\mathbf{\Phi}^T\mathbf{t} & \text{Closed-form solution!}_{\text{44}} \end{split}$$

Newton-Raphson for Logistic Regression

· Now, let's try Newton-Raphson on the cross-entropy error function:

$$\begin{split} E(\mathbf{w}) &= -\sum_{n=1}^{N} \left\{ t_n \ln y_n + (1-t_n) \ln(1-y_n) \right\} \\ \nabla E(\mathbf{w}) &= \sum_{n=1}^{N} (y_n - t_n) \phi_n = \mathbf{\Phi}^T(\mathbf{y} - \mathbf{t}) \\ \mathbf{H} &= \nabla \nabla E(\mathbf{w}) &= \sum_{n=1}^{N} y_n (1-y_n) \phi_n \phi_n^T = \mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi} \end{split}$$

where ${f R}$ is an $N\!\! imes\!N$ diagonal matrix with $R_{nn}=y_n(1-y_n)$.

 \Rightarrow The Hessian is no longer constant, but depends on w through the weighting matrix ${f R}.$

Iteratively Reweighted Least Squares

Update equations

$$\begin{split} \mathbf{w}^{(\tau+1)} &= \mathbf{w}^{(\tau)} - (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^T (\mathbf{y} - \mathbf{t}) \\ &= (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \left\{ \mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi} \mathbf{w}^{(\tau)} - \mathbf{\Phi}^T (\mathbf{y} - \mathbf{t}) \right\} \\ &= (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{R} \mathbf{z} \end{split}$$

with $\mathbf{z} = \mathbf{\Phi} \mathbf{w}^{(\tau)} - \mathbf{R}^{-1} (\mathbf{v} - \mathbf{t})$

- · Again very similar form (normal equations)
 - But now with non-constant weighing matrix ${f R}$ (depends on ${f w}$).
 - Need to apply normal equations iteratively.
 - ⇒ Iteratively Reweighted Least-Squares (IRLS)

References and Further Reading • More information on Linear Discriminant Functions can be found in Chapter 4 of Bishop's book (in particular Chapter 4.1 - 4.3). Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006