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Recap: Linear Discriminant Functions
¢ Basic idea

» Directly encode decision boundary
> Minimize misclassification probability directly.

o Linear discriminant functions ¥ =0 [%

y(x) = wIx +wyp

“bias”
(= threshold)

weight vector

» w, w, define a hyperplane in RP.

» If a data set can be perfectly classified by a linear discriminant,
then we call it linearly separable.

lide adaoted from Bernt Schiele B. Leibe
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Recap: Problems with Least Squares
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o Least-squares is very sensitive to outliers!

» The error function penalizes predictions that are “too correct”.

5

B. Leibe lmage source: CM, Bishop, 2004
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Course Outline

¢ Fundamentals (2 weeks)
~ Bayes Decision Theory
» Probability Density Estimation

¢ Discriminative Approaches (5 weeks)
» Linear Discriminant Functions
» Support Vector Machines

» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

¢ Generative Models (4 weeks)
» Bayesian Networks
» Markov Random Fields

B. Leibe
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Recap: Least-Squares Classification

¢ Simplest approach
» Directly try to minimize the sum-of-squares error
N

E(w) =Y (y(xn;w) — t,)°

n=1

Ep(W) = %Tr {(ﬁ”v —T)T(XW — T)}
» Setting the derivative to zero yields
W = (XTX)1XIT = XIT = (XTX)XIT
> We then obtain the discriminant function as
y(x) = WTx = TT(X*)T;(

= Exact, closed-form solution for the discriminant function
parameters.

B. Leibe
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Recap: Generalized Linear Models

¢ Generalized linear model
T
y(x) = g(w"x + wo)
» g( - ) is called an activation function and may be nonlinear.
» The decision surfaces correspond to

y(x) = const. < WIX 4wy = const.

» If g is monotonous (which is typically the case), the resulting
decision boundaries are still linear functions of x.

¢ Advantages of the non-linearity
» Can be used to bound the influence of outliers
and “too correct” data points.
» When using a sigmoid for g(-), we can interpret - 1
the y(x) as posterior probabilities. g9(a)

=17 exp(—a)
6

B. Leibe




Recap: Linear Separability

¢ Up to now: restrictive assumption
~ Only consider linear decision boundaries

¢ Classical counterexample: XOR

Machine Learning, Summer ‘15

Slide credit: Bernt Schiele B. Leibe

Generalized Linear Discriminants

¢ Generalization
» Transform vector x with M nonlinear basis functions ¢ (x):

M
k(%) = Y wi;d;(x) + wio
=1

» Purpose of ¢,(x): basis functions

> Allow non-linear decision boundaries.

- By choosing the right ¢;, every continuous function can (in
principle) be approximated with arbitrary accuracy.

¢ Notation

y(x) = Zwk]-tbj (x) with ¢p(x) =1

Machine Learning, Summer ‘15

lide credit: Bernt Schiele B. Leibe

RWTHACHEN

» Error function (least-squares error) of linear model

Bw) = 233 (e w) — i)’

n=1k=1
2

1 X
o

n=1k=1

M
Z wkj¢j (Xn) - tkn
j=1
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Slide credit: Bernt Schiele LA
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Gradient Descent
¢ Learning the weights w:
» N training data points: X ={x,, ..., Xy}
» K outputs of decision functions: Yu(x,, W)
» Target vector for each data point: T={t, ... ty}
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RWTH/CET
Linear Separability

¢ Even if the data is not linearly W) = 3:(x)

separable, a linear decision
boundary may still be “optimal”.
» Generalization

» E.g. in the case of Normal distributed
data (with equal covariance matrices)

¢ Choice of the right discriminant function is important
and should be based on
» Prior knowledge (of the general functional form)
» Empirical comparison of alternative models
» Linear discriminants are often used as benchmark.

Slide credit: Bernt Schiele B. Leibe

RWTHACHE
Generalized Linear Discriminants
e Model M
k(%) = > wiid;(x) = yr(x; W)
7=0

» K functions (outputs) y,,(x;w)

¢ Learning in Neural Networks
» Single-layer networks: ¢; are fixed, only weights w are learned.
- Multi-layer networks: both the w and the ¢; are learned.

» In the following, we will not go into details about neural
networks in particular, but consider generalized linear
discriminants in general...

ide credit: Bernt Schiele B. Leibe
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RWTH ACHET
Gradient Descent
e Problem
» The error function can in general no longer be minimized in

closed form.

¢ |dea (Gradient Descent)
» lterative minimization
» Start with an initial guess for the parameter values w,(c(;»).
» Move towards a (local) minimum by following the gradient.
(1) _ (m) _ OB(W)
Wy =Wy —1N o —
Bwk j

7: Learning rate

wi(T)

» This simple scheme corresponds to a 1st-order Taylor expansion
(There are more complex procedures available).

13
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Gradient Descent - Basic Strategies

¢ “Batch learning”
(+) _ 0, OEW)

Wy, =w
kj kj awkj )

n: Learning rate

» Compute the gradient based on all training data:
OE(w)
8wk j

Machine Learning, Summer ‘15

Slide credit: Bernt Schiele B. Leibe
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Gradient Descent
¢ Error function
N 1N K (M ’
W= B = B (Yo
n—1 n=1k=1 \j=1
2
LS
. Enw) = 52 (wa%("")
> 6E \i%
':; an( ) _ Zwk3¢3 (Xn) — tkn ¢j(xn)
£ Whj ;
£ =t
g
E = (Yp(Xn; W) — tn) 05 (xn)
e
b i i
lide credit: Bernt Schiele Bilebe

RWTHAACHER
Gradient Descent

* Cases with differentiable, non-linear activation function

M
(%) = glar) = g | D writ;(xn)
7=0

58 o Gradient descent

- OE,(w) _ Bglax)

£ 95nlW) oy '

fl:{ awk]. 8wkj (yk(xnww) tkn) ¢](Xn)
E w}(;]—_Jrl) — wl(e? kb (%)

£ dala

| e 2w

Slide credit: Bernt Schiele LA
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Gradient Descent - Basic Strategies

¢ “Sequential updating”
N

= ZEn(w
n=1

(r+1) () OE,(w)
Yki T W T

wi(T)
7: Learning rate

» Compute the gradient based on a single data point at a time:
OE, (w)
Bwkj

Machine Learning, Summer ‘15

Slide credit: Bernt Schiele B. Leibe

Gradient Descent

¢ Delta rule (=LMS rule)
(T+1) ()

w0 = wyy = Yk (ks W) = ten) (%)
» where

51€n = Yk (xn; W) - tkn

= Simply feed back the input data point, weighted by the
classification error.

Machine Learning, Summer ‘15

ide credit: Bernt Schiele B. Leibe
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Summary: Generalized Linear Discriminants

¢ Properties

» General class of decision functions.
Nonlinearity g(-) and basis functions ¢; allow us to address
linearly non-separable problems.
Shown simple sequential learning approach for parameter
estimation using gradient descent.
Better 2"d order gradient descent approaches available
(e.g. Newton-Raphson).

v

v

v

¢ Limitations / Caveats
» Flexibility of model is limited by curse of dimensionality
- g(-) and ¢, often introduce additional parameters.

- Models are either limited to lower-dimensional input space
or need to share parameters.

» Linearly separable case often leads to overfitting.
- Several possible parameter choices minimize training error. 22
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Topics of This Lecture

¢ Fisher’s linear discriminant (FLD)
» Classification as dimensionality reduction
» Linear discriminant analysis
> Multiple discriminant analysis
» Applications

¢ Logistic Regression
» Probabilistic discriminative models
» Logistic sigmoid (logit function)
» Cross-entropy error
» Gradient descent
» lteratively Reweighted Least Squares

¢ Note on Error Functions

Machine Learning, Summer ‘15

B. Leibe
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Classification as Dimensionality Reduction

bad separation good separation

o

\\",I B
s

L/

ll,,%

-2 2 6 -2 2 6

e Two questions
» How to measure class separation?
» How to find the best projection (with maximal class separation)?

Machine Learning, Summer ‘15

25
B. Leibe

Image source; C,M, Bishop, 200¢

RWTH//CHET]
Fisher’s Linear Discriminant Analysis (FLD)

¢ Better idea:

» Find a projection that maximizes the ratio of the between-class
variance to the within-class variance:

2
mo —m
J(w) = % with  s2 = Z (Y — my,)?
51+ 53 neCy
» Usually, this is written as
T
w-Spw
Jw)= — 2B~
wTSyw

» where

between-class

Sp = (mp —my)(my —my)” ;
scatter matrix

2
Sw = Z Z (%, — my)(x, — my)T

k=1neCy

within-class
scatter matrix
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RWTH/CET
Classification as Dimensionality Reduction

¢ Classification as dimensionality reduction

» We can interpret the linear classification model as a projection
onto a lower-dimensional space.

» E.g., take the D-dimensional input vector x and project it down
to one dimension by applying the function
Y=w'X
~ If we now place a threshold at y > —w,, we obtain our standard
two-class linear classifier.

» The classifier will have a lower error the better this projection
separates the two classes.

= New interpretation of the learning problem

» Try to find the projection vector w that maximizes the class
separation.

B. Leibe
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Classification as Dimensionality Reduction

¢ Measuring class separation

» We could simply measure the
separation of the class means. 2

= Choose w so as to maximize
(mg —my) = wT(my — my)

¢ Problems with this approach
1. This expression can be made arbitrarily large by increasingHWH.
= Need to enforce additional constraint||w|=1.
= This constrained minimization results in W o< (1my —1my; )

2. The criterion may result in bad separation if the clusters have
elongated shapes. 2%

B. Leibe Image source: CM, Bishoo,
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Fisher’s Linear Discriminant Analysis (FLD)

* Maximize distance between classes
Minimize distance within a class

wlSpw
wiSyw

Criterion: J(w) =

Sj ... between-class scatter matrix
Sy ... within-class scatter matrix

* The optimal solution for w can be
obtained as:

w o< iyt (mgp — my)

.

Classification function:
Class 1

yx)=wix+wy z 0

Class 2

ide adapted from Ales L egnardi




Multiple Discriminant Analysis

¢ Generalization to K classes

[WTSpW)|
JW)= ———
(W) [WTSy,, W|
» where
1 1 &
% W = [wi,...,Wk] m:Nan7NZNkmk
@ n=1 k=1
E
E K
@ T
S SB:ZNk(mk7 )(mkfm)
=
3 K
2 Sw=3 > (%0 —my)(x, —my)"
e k=1neCy
s

B. Leibe
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What Does It Mean?

¢ What does it mean to apply a linear classifier?

y(x) = WX

™

Weight vector Input vector

¢ Classifier interpretation
» The weight vector has the same dimensionality as x.
» Positive contributions where sign(z;) = sign(w;).
= The weight vector identifies which input dimensions are
important for positive or negative classification (large |w;|)
and which ones are irrelevant (near-zero w;).

= If the inputs x are normalized, we can interpret w as a
“template” vector that the classifier tries to match.
wlx =|wl|||x||cos 6

W
o,

Machine Learning, Summer ‘15
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Fisherfaces: Interpretability

¢ Resulting weight vector for “Glasses/NoGlasses*
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Slide credit: Peter B. Leibe [Belhumeur et.al. 199:

RWTH//CHET]
Maximizing J(W)

« "Rayleigh quotient” = Generalized eigenvalue problem
_[WTSpW|
TW) = s, wr

» The columns of the optimal W are the eigenvectors correspon-
ding to the largest eigenvalues of
Spw; = ASww;
1
. Defining V.= SZW, we get
L 1
re-lQiy
SESw Spv=Av
which is a regular eigenvalue problem.
= Solve to get eigenvectors of v, then from that of w.

¢ For the K-class case we obtain (at most) K-1 projections.
» (i.e. eigenvectors corresponding to non-zero eigenvalues.)

B. Leibe
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Example Application: Fisherfaces

¢ Visual discrimination task
» Training data:

C,: Subjects with glasses C,: Subjects without glasses

299909 89999
09220 092920

» Test: @
— glasses?

Take each image as a vector
of pixel values and apply FLD...

Machine Learning, Summer ‘15

32

B. Leibe Image source: Yale Face Databa:

RWTH ACHET
Summary: Fisher’s Linear Discriminant

¢ Properties

Simple method for dimensionality reduction, preserves class
discriminability.

Can use parametric methods in reduced-dim. space that might
not be feasible in original higher-dim. space.

Widely used in practical applications.

v

v

v

e Restrictions / Caveats
» Not possible to get more than K-1 projections.
» FLD reduces the computation to class means and covariances.

= Implicit assumption that class distributions are unimodal and
well-approximated by a Gaussian/hyperellipsoid.
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Topics of This Lecture

¢ Logistic Regression
» Probabilistic discriminative models
» Logistic sigmoid (logit function)
» Cross-entropy error
» Gradient descent
Iteratively Reweighted Least Squares

v

B. Leibe

Probabilistic Discriminative Models

¢ In the following, we will consider models of the form
p(Cil¢) = y(@) =o(w'9)

p(Ca|d) = 1-p(Ci9)

¢ This model is called logistic regression.

with

* Why should we do this? What advantage does such a
model have compared to modeling the probabilities?
p(Ci|p) = p(P|C1)p(C1)
p(9[C1)p(C1) + p(9[C2)p(Cz)

¢ Any ideas?

B. Leibe
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Logistic Sigmoid

¢ Properties 1
- Definition: o(a) = ———

» Inverse: a

Il

—_

B
VRS

—
I'1Q

S
N~

» Symmetry property:
o(—a) =1—o0(a)

do
Efa(lfo)

» Derivative:

B. Leibe

“logit” function
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Probabilistic Discriminative Models

* We have seen that we can write
p(Cilx) = o(a)

logistic sigmoid

function
1
1+exp(—a)
¢ We can obtain the familiar probabilistic model by setting

_ 1p PICLP(C1)

p(x|C2)p(Cz2)
e Or we can use generalized linear discriminant models

a=w'x
or a=wlp(x)

B. Leibe

Comparison

¢ Let’s look at the number of parameters...
» Assume we have an )M-dimensional feature space ¢.
» And assume we represent p(¢|C,) and p(C;) by Gaussians.
» How many parameters do we need?
- For the means: 2M
M(M+1)/2
- Together with the class priors, this gives M()/+5)/2+1 parameters!

- For the covariances:

» How many parameters do we need for logistic regression?
— _ T
p(Cil9) = y(¢) =o(w ¢)
- Just the values of w = M parameters.
= For large M, logistic regression has clear advantages!

38
B. Leibe
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RWTH ACHET
Logistic Regression

* Let’s consider a data set {¢,,t,} withn=1,...,N,
where ¢, = ¢(x,,) andt,, € {0,1}, t = (t,...,tn)" .

e With y,, = p(Cy|¢,), we can write the likelihood as
N

p(tlw) = T ol {1 v} ™"
n=1

* Define the error function as the negative log-likelihood
E(w) = —Inp(tjw)

N
= =) {talnyn + (1 —t,) In(1 - y,)}
n=1
» This is the so-called cross-entropy error function.

40
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Gradient of the Error Function

Yn U(WT¢n)
- dyn,
« Error function — = Yl = yn) @,
N dw
E(W) = - Z {tn Iny, + (1 - tn) ln(l - yn)}

n=1

N d d
_ FoYn g,y dwll )
D {tn - +(1 t")i(l — }

n=1

_ ,g {th@L —a- tn)m%}

¢ Gradient
VE(w)

=)
N
= - Z{(tn 7*7»;(1@ ~Yn J"M)q&n}
Nn:l
= Z(yn - tn)¢n
n=1

41
B. Leibe
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A More Efficient Iterative Method...
¢ Second-order Newton-Raphson gradient descent scheme
w™) = w() _H-1VE(w)
where H = VVE(w) is the Hessian matrix, i.e. the

matrix of second derivatives.

¢ Properties
» Local quadratic approximation to the log-likelihood.
~ Faster convergence.

43

B. Leibe
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RWTH/ACHEN
Newton-Raphson for Logistic Regression

¢ Now, let’s try Newton-Raphson on the cross-entropy
error function:

N
BE(w) = = {talnga+ (1~ t.)In(1 -~ )}
n=1
v Z‘L‘; = yn(l = yn)®,
VEW) = Y (4o —ta)dp, =2 (y — )
n=1

N
H=VVEW) = > y(l-y.)0,0, =" RE
n=1
where R is an Nx N diagonal matrix with R,,,, = y,,(1 — y»,) -

= The Hessian is no longer constant, but depends on w through
the weighting matrix R..

45
B. Leibe
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Gradient of the Error Function

¢ Gradient for logistic regression
N
VE(w) = Z(yn —tn) P,

n=1

¢ Does this look familiar to you?

¢ This is the same result as for the Delta (=LMS) rule
(r+1) (m) .
W5 = Wy — "7(3/16 (Xn; W) — tkn)¢j (%n)
¢ We can use this to derive a sequential estimation
algorithm.
» However, this will be quite slow...

42
B. Leibe
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Newton-Raphson for Least-Squares Estimation

¢ Let’s first apply Newton-Raphson to the least-squares
error function:

1 N 2
E(W) = 52 (lepn - t")
Nn:l
VE(w) = Y (w'e, —tn) ¢, =2 dw— 3"t
n=1 T
N &
H=VVE(w) = > ¢,¢0. =3"® where & — | :
n=1 d"T
N

¢ Resulting update scheme:
w(r+1) _ W(T) _ (@T@)*l(@T@W(T) _ <I>Tt)
= (@T@)_IQTt Closed-form solution!
44
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RWTH ACHET
Iteratively Reweighted Least Squares

¢ Update equations
w) = w() _ (3TR®) &7 (y —t)
- (8"R®)"! {@TR‘I)W(T) —eT(y - t)}
= (®"R®) &Rz
with z=®w( —R (y —t)

¢ Again very similar form (normal equations)
» But now with non-constant weighing matrix R. (depends on w).
» Need to apply normal equations iteratively.

= Iteratively Reweighted Least-Squares (IRLS) “
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Summary: Logistic Regression

¢ Properties
- Directly represent posterior distribution p(¢|C;)

Requires fewer parameters than modeling the likelihood + prior.
Very often used in statistics.

v

v

v

It can be shown that the cross-entropy error function is concave
- Optimization leads to unique minimum
- But no closed-form solution exists
- Iterative optimization (IRLS)

» Both online and batch optimizations exist

» There is a multi-class version described in (Bishop Ch.4.3.4).

e Caveat

» Logistic regression tends to systematically overestimate odds
ratios when the sample size is less than ~500.

©
=
=
]
£
E
5
(7]
=3
5
<
<
@
4
o
5
=
S
s
=

47
B. Leibe
RWTH CHE
Note on Error Functions
t, C { 1: 1} E[K:”) Ideal misclassification error]
Not differentiable! ——
) I N4 1 3 Zn = tay(%n)
¢ |deal misclassification error function (black)
» This is what we want to approximate,
» Unfortunately, it is not differentiable.
» The gradient is zero for misclassified points.
= We cannot minimize it by gradient descent. ) - Z:g
RWTH ACHET

Comparing Error Functions (Loss Functions)
E(z,)

Ideal misclassification error]
Squared error
Cross-entropy error

) 7 0 T > Zn = tny(xn)

e Cross-Entropy Error
» Minimizer of this error is given by posterior class probabilities.
» Concave error function, unique minimum exists.
> Robust to outliers, error increases only roughly linearly

» But no closed-form solution, requires iterative estimation. 51
lmage source: Bishop, 2004

t,C{ 1.1}

Robust to outliers!

RWTH/ACHEN
Topics of This Lecture
£
£
@
4| * Note on Error Functions
B. Leibe 8
RWTH/CHEN
Note on Error Functions
E[::”) Ideal misclassification error]

t, c{ L1}

Squared error
Sensitive to outliers!

Penalizes “too correct”
data points!

) I 0 : 7 = (%)

e Squared error used in Least-Squares Classification
» Very popular, leads to closed-form solutions.
» However, sensitive to outliers due to squared penalty.
» Penalizes “too correct” data points
= Generally does not lead to good classifiers. 50

Image source; Bishop, 200

Machine Learning, Summer ‘15

Overview: Error Functions

te@

¢ |deal Misclassification Error
» This is what we would like to optimize.
» But cannot compute gradients here.

e Quadratic Error
-2 -1
» Easy to optimize, closed-form solutions exist.
» But not robust to outliers.

¢ Cross-Entropy Error
» Minimizer of this error is given by posterior class probabilities.
» Concave error function, unique minimum exists.
» But no closed-form solution, requires iterative estimation.

= Analysis tool to compare classification approaches
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References and Further Reading

¢ More information on Linear Discriminant Functions can
be found in Chapter 4 of Bishop’s book (in particular
Chapter 4.1 - 4.3).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006
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