Machine Learning - Lecture 5

Linear Discriminant Functions

28.04.2015

Bastian Leibe
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Many slides adapted from B. Schiele



Course Outline

e Fundamentals (2 weeks)
- Bayes Decision Theory
~ Probability Density Estimation

e Discriminative Approaches (5 weeks)
> Linear Discriminant Functions
~ Support Vector Machines
- Ensemble Methods & Boosting
> Randomized Trees, Forests & Ferns

e Generative Models (4 weeks)
> Bayesian Networks
> Markov Random Fields
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Recap: Mixture of Gaussians (MoG)

e “Generative model”

1

\

. “Weight” of mixture
p(j) = m; component

2! 3
. Mixture
p( )‘ M p(z|0;) component
a’/"

Slide credit: Bernt Schiele
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B. Leibe

Mixture density
M

p(zl0) = > p(«l0;)p(5)

j=1



RWNTH
Recap: Estimating MoGs - Iterative Strategy

e Assuming we knew the values of the hidden variable...

JS(x)
X
L ML for Gaussian #1 T T ML for Gaussian #2
g assumed known —> 1 111 22 2 2 il
i h(j=1z,)= 1111 00 0 O
£ hj =2|zn) = 0 000 11 1 1
3 N . N .
£ 1y = D =1 MJ = 1zp)zn iy = D n—1 MJ = 2|zn )z,
S — N . — :
S iz MJ = 1]zn) D im1 h(J = 2|zy)

Slide credit: Bernt Schiele B. Leibe



RWNTH
Recap: Estimating MoGs - Iterative Strategy

e Assuming we knew the mixture components...

f ( x) assumed known
X
p(i=1la) | | pUj = 2o)
1 111 22 2 2 17

e Bayes decision rule: Decide j =1 if

p(j = 1|zpn) > p(J = 2|z,)
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Slide credit: Bernt Schiele B. Leibe



Recap: K-Means Clustering

e |terative procedure ; .
1. Initialization: pick K arbitrary T .2 %e® ceee °@o°:e°°
o ®» T, 2 S oo o & ° o
centroids (cluster means) it @'3:03‘;:83‘:% o s .
o ® ° & o 00 ooo %o L]
. 0.5 ® %000, 0@ S 8 3°
2. Assign each sample to the closest %ffgo%,?ofo o @ o
centroid. T A mEs
_05k %00809 go
0 3. Adjust the centroids to be the %
\-F . -1 1 L o 1 I 1
. means of the samples assighed N
£ to them. ’
g 15} o ° ® . ° o °°o°o°
. o %0 @% o °°o°°° ooo
n 4. Go to step 2 (until no change) IR L PR |
g) 6%0& 00 Cg" o, 00 &ooﬁo cﬂ&o
i o ° o & © °0 oco %o o
c . . 05 8 000 %, o S8 9 8°
= « Algorithm is guaranteed to %‘:’f@o%fofo . ® o
o ° ° ° ° 0 o ° °: O%Ocpog ©
= converge after finite #iterations. S ol
c . 05} °88 %o
< . Local optimum : o,
S . Final result depends on initialization. ™ <= © &

Slide credit: Bernt Schiele B. Leibe



Recap: EM Algorithm

e Expectation-Maximization (EM) Algorithm
~ E-Step: softly assign samples to mixture components
WJN(Xn“‘ja Ej)

N
Zk:l 7"'k:-/\/‘(xnhjlka Zk)

> M-Step: re-estimate the parameters (separately for each mixture
component) based on the soft assignments

Vi (Xn) < Vj=1,....K, n=1,...,N

4 N
e N; + Z% X, ) = soft number of samples labeled ;
£ n=1
g A
& ThRew o %
g g N
= Lo
© N
3 “?ew VA N Z’yj (Xn)Xn
o J n 1
=
S 3 . ~ T
é Z?GW Z 73 Xn Xn . new>(xn . “?GW)
J n=1 7

Slide adapted from Bernt Schiele B. Leibe



Topics of This Lecture

e Linear discriminant functions
> Definition
» Extension to multiple classes

e Least-squares classification
> Derivation
> Shortcomings

e Generalized linear models
> Connection to neural networks
» Generalized linear discriminants & gradient descent
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Discriminant Functions

Ce)p(C
e Bayesian Decision Theory p(Crlz) = p(z|Cr)p(Ck)

~ Model conditional probability densities p (a:‘)
p(z|Cy,) and priors p(Ck)
~ Compute posteriorsp(Cx|z) (using Bayes’ rule)

. Minimize probability of misclassification by maximizing p(C|x) .

e New approach
~ Directly encode decision boundary
> Without explicit modeling of probability densities
> Minimize misclassification probability directly.
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Slide credit: Bernt Schiele B. Leibe
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Recap: Discriminant Functions

e Formulate classification in terms of comparisons
> Discriminant functions

y1(2), .- -, Yk ()
. Classify z as class C, if
yk() >y;(x) Vj#k
e Examples (Bayes Decision Theory)
yr() = p(Ck|w)
ye(z) = p(z|Ck)p(Ck)
yr(z) = logp(|Ck) + log p(Cy)

Slide credit: Bernt Schiele B. Leibe
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Discriminant Functions

e Example: 2 classes

y1(z) > ya(x)
& yi(x) —y2(z) >0
& y(x) >0

e Decision functions (from Bayes Decision Theory)
y(z) = p(C1]x) — p(C2|z)

p(x|Cy) p(C1)
@G P

y(z) =1In

Slide credit: Bernt Schiele B. Leibe
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RWTH
Learning Discriminant Functions

e General classification problem
- Goal: take a new input x and assign it to one of K classes C,.

- Given: training set X = {x, ..., x,}
with target values T ={t, ..., t,}.

= Learn a discriminant function y(x) to perform the classification.

e 2-class problem
. Binary target values: t, € {0,1}

e K-class problem
. 1-of-K coding scheme, e.g. t, =(0,1,0,0, 0)T

B. Leibe
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Linear Discriminant Functions

e 2-class problem
> y(x) >0 : Decide for class C', else for class C,

e In the following, we focus on linear discriminant
functions

/ - “’»0\
weight vector “bias”

(= threshold)

~ |If a data set can be perfectly classified by a linear discriminant,

then we call it linearly separable.

Slide credit: Bernt Schiele B. Leibe
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RWNTH
Linear Discriminant Functions

e Decision boundary y(X) = () defines a hyperplane
> Normal vector: w

Offset: ——
y — O ‘xZ

% y <0
Q
£
£
7
= X
= T
= y(x) = W™ x + wo :
4
£
L
S
=

14

Slide credit: Bernt Schiele B. Leibe



Linear Discriminant Functions

e Notation 1
> D : Number of dimensions To
X = W —

y(x) = wx + wp

D

- E W;T; + Wy
i—1
D

— E w;x; with g = 1 constant
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Extension to Multiple Classes

e Two simple strategies

One-vs-all classifiers One-vs-one classifiers

not Cs

> How many classifiers do we need in both cases?

~ What difficulties do you see for those strategies?
B. Leibe
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Image source: C.M. Bishop, 2006




Extension to Multiple Classes

e Problem

~ Both strategies result in regions for which
the pure classification result (y, > 0) is
ambiguous.

> In the one-vs-all case, it is still possible

to classify those inputs based on the
continuous classifier outputs y, > y, Vj#k.

e Solution

> We can avoid those difficulties by taking
K linear functions of glbe form
Yk (X) = Wi X + wo
and defining the decision boundaries directly
by deciding for C, iff y, > y. Vj=k.
~ This corresponds to a 1-of-K coding scheme
t, =(0,1,0,...,0,0)"

B. Leibe

0
M
15
@
€
€
S
/)
o]
=
<
S
®
)
-
)
IE
=
)
®
=

17
Image source: C.M. Bishop, 2006




Extension to Multiple Classes

e K-class discriminant
> Combination of K linear functions
Y (X) = Wj X + wio R,

~ Resulting decision hyperplanes: —
(Wi, —w;) ' x + (wko — wjo) =0

Ry
___.XB
~
X

XA o=

» It can be shown that the decision regions of such a discriminant
are always singly connected and convex.

> This makes linear discriminant models particularly suitable for
problems for which the conditional densities p(x|w;) are
unimodal.
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Topics of This Lecture

e Least-squares classification
> Derivation
> Shortcomings

B. Leibe

UNIVERSIT)
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General Classification Problem

e Classification problem
» Let’s consider K classes described by linear models

Uk (X) = Wi X 4 Wy, k=1,....K

- We can group those together using vector notation

y(x) = WTx

where  wip ... WKO |
—~ B N W11 WK1
W =[wy,...,Wg| =

wip ... WKD

> The output will again be in 1-of-K notation.

= We can directly compare it to the target valuet = |t1, ..., tk]T .
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General Classification Problem

e Classification problem
> For the entire dataset, we can write

Y(X) = XW
and compare this to the target matrix T where

S~

W = |[wy,...,Wg]|
I g
X1 t4
X = . T = .
T T
XN ty]

> Result of the comparison:

}NCW _ T Goal: Choose W such

that this is minimal!
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Least-Squares Classification

e Simplest approach
> Directly try to minimize the sum-of-squares error
> We could write this as

E(w) = % S: Sj (e (%5 W) — L)’

n=1 k=1

> But let’s stick with the matrix notation for now...

> (The result will be simpler to express and we’ll learn some
nice matrix algebra rules along the way...)

B. Leibe
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Least-Squares Classification using:
aj; = Tr{A"A}
e Multi-class case ; J

» Let’s formulate the sum-of-squares error in matrix notation

I~

Ep(W) = %Tr [XW - T)"(XW - T)]

» Taking the derivative yields chain rule:
0 0 — 1 0 -~ NN 0Z  O0Z 0Y
5 ——Ep(W) = -—Tr{XW-T)H(XwW-T ~ - AV A%
1 ™ - { " )} |ax T avax
£ L _
& _ 9 Tr{(XW—T)T(XW—T)}
S 20(XW — T)T(XW — T)
£ 9 e
: ——(XW - T)"(XW - T) using:
- oW 9
£ e 2 Tr{A} =1
S = X'XW-1T) OA tAS
©
=

25
B. Leibe



Least-Squares Classification

e Minimizing the sum-of-squares error

9 _Bp(W) =XT(XW —T) £ 0
W

XW =T
W = (XTX) !XT
— X' “pseudo-inverse”

> We then obtain the discriminant function as
— ~ T
y(x) = WTK = TT(XT ) %

= Exact, closed-form solution for the discriminant function
parameters.
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-6 -6
-8} | -8}
4 -2 0 2 4 6 8 4 -2 0 2 4 6 8

e Least-squares is very sensitive to outliers!

> The error function penalizes predictions that are “too correct”.

27
Image source: C.M. Bishop, 2006
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Problems with Least-Squares

6

e Another example:
> 3 classes (red, green, blue) 4 % K
~ Linearly separable problem 2|

~ Least-squares solution:
Most green points are misclassified!

e Deeper reason for the failure %

~ Least-squares corresponds to
Maximum Likelihood under the
assumption of a Gaussian conditional distribution.

- However, our binary target vectors have a distribution that is
clearly non-Gaussian!

= Least-squares is the wrong probabilistic tool in this case!
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Topics of This Lecture

e Generalized linear models
> Connection to neural networks
» Generalized linear discriminants & gradient descent

B. Leibe
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Generalized Linear Models

e Linear model
T

Y(X) =W X + wy
e Generalized linear model
y(x) = g(w'x + wp)

> ¢( - ) is called an activation function and may be nonlinear.

~ The decision surfaces correspond to

T

y(x) = const. < W X+ wy = const.

> If g is monotonous (which is typically the case), the resulting
decision boundaries are still linear functions of x.

B. Leibe

30



0
M
S
@
£
€
S
/)
o]
=
<
S
®
)
-
)
IE
=
o
®
=

Generalized Linear Models

e Consider 2 classes:

B p(x|C1)p(C1)
PaR) = RemC) + pICPC)

1

p(x|C2)p(C2)
L+ Seeoeen

p(x|C1)p(Cy)

with a=1n

p(x|C2)p(C2)

Slide credit: Bernt Schiele B. Leibe
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Logistic Sigmoid Activation Function =~

Example: Normal distributions

g(a) = 1 with identical covariance
- 1+ exp(—a)
5 p(z|a) p(z|b)
% X
“
g p(alz) p(b|z)
é L 3

Slide credit: Bernt Schiele B. Leibe
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Normalized Exponential

e General case of K > 2 classes:

 p(x|Cr)p(C)
PCkIx) = s~ R IC(C)

exp(a)

Zj exp(a;)

with ax = In p(x|Cr)p(Ck)

» This is known as the normalized exponential or softmax function

» Can be regarded as a multiclass generalization of the logistic
sigmoid.

. 33
Slide credit: Bernt Schiele B. Leibe
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RWNTH
Relationship to Neural Networks

e 2-Class case

D
y(X) =g (Z fw,,;a?,,;) with g = 1 constant

i=0
e Neural network (“single-layer perceptron”)

y(x) output

Slide credit: Bernt Schiele B. Leibe
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RWNTH
Relationship to Neural Networks "

e Multi-class case
D

Yk (X) — g (Z wkimi) with g = 1 constant

1=0

e Multi-class perceptron
Y1 (X) V(X) outputs

thresholds weights

Slide credit: Bernt Schiele B. Leibe
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Logistic Discrimination

e |f we use the logistic sigmoid activation function...
1 (x) output

1 + exp(—a)

weights

y(x) _— g(wTX + wO) .................

X, =1 b S — X, 1nputs

... then we can interpret the y(x) as posterior probabilities!

36

Slide adapted from Bernt Schiele B. Leibe



Other Motivation for Nonlinearity

e Recall least-squares classification

> One of the problems was that data
points that are “too correct” have a
strong influence on the decision

surface under a squared-error criterion.
N

Bw) =Y (y(xniw) — t,)’

n=1

- Reason: the output of y(x, ;w) can grow
arbitrarily large for some x :

T

Y(X; W) =W X + wy

» By choosing a suitable nonlinearity (e.g.
a sigmoid), we can limit those influences

y(x; W) = g(w"x + )

0
M
15
@
€
€
S
/)
o]
=
<
S
®
)
-
)
IE
=
)
®
=

B. Leibe



0
M
15
@
€
€
S
/)
o]
=
<
S
®
)
-
)
IE
=
)
®
=

RWNTH
Discussion: Generalized Linear Models

e Advantages
> The nonlinearity gives us more flexibility.
> Can be used to limit the effect of outliers.
~ Choice of a sigmoid leads to a nice probabilistic interpretation.

e Disadvantage

~ Least-squares minimization in general no longer leads to a
closed-form analytical solution.

= Need to apply iterative methods.
= Gradient descent.

B. Leibe
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Linear Separability

e Up to now: restrictive assumption
> Only consider linear decision boundaries

e (Classical counterexample: XOR

Ly

C
O

o &

Slide credit: Bernt Schiele

Ly

B. Leibe
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Linear Separability

e Even if the data is not linearly 4 M%) = y(x)
separable, a linear decision X,
boundary may still be “optimal”.

> Generalization

» E.g. in the case of Normal distributed
data (with equal covariance matrices)

e Choice of the right discriminant function is important
and should be based on
» Prior knowledge (of the general functional form)
» Empirical comparison of alternative models
» Linear discriminants are often used as benchmark.
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Slide credit: Bernt Schiele B. Leibe
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RWNTH
Generalized Linear Discriminants

e Generalization
> Transform vector x with M nonlinear basis functions ¢ (x):

Zwk3¢] + Wko

» Purpose of gbj(x): basis functions
> Allow non-linear decision boundaries.

» By choosing the right qu, every continuous function can (in
principle) be approximated with arbitrary accuracy.

e Notation Iy
Yk (X) — Zwqubj (X) with qbQ(X) =1
7=0

Slide credit: Bernt Schiele B. Leibe
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RWNTH
Generalized Linear Discriminants

e Model
y(X) = ) wr;d; (%) = yr(x; W)

> K functions (outputs) y,.(x;w)

e Learning in Neural Networks
- Single-layer networks: ¢, are fixed, only weights w are learned.
- Multi-layer networks: both the w and the ¢, are learned.

> In the following, we will not go into details about neural
networks in particular, but consider generalized linear
discriminants in general...

. 42
Slide credit: Bernt Schiele B. Leibe
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Gradient Descent

e Learning the weights w:
> NN training data points:
> K outputs of decision functions:
» Target vector for each data point:

X={x,...., Xy}

T={t, ..t}

> Error function (least squares error) of linear model

S‘S‘ (yk (303 W

nlkl

tkn)Q

) 3 Ml DTS

n=1 k=1 j:].

Slide credit: Bernt Schiele B. Leibe
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Gradient Descent

e Problem

> The error function can in general no longer be minimized in
closed form.

e |dea (Gradient Descent)
> lterative minimization
~ Start with an initial guess for the parameter values w,(;;-).
> Move towards a (local) minimum by following the gradient.

OF(w)
T+1 T

OWkj | ()
7. Learning rate

~ This simple scheme corresponds to a 1st-order Taylor expansion
(There are more complex procedures available).
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RWNTH
Gradient Descent - Basic Strategies

e “Batch learning”

S _ ) OE(W)
kj kj 77 8wkj

w(7'>

7. Learning rate

» Compute the gradient based on all training data:
OF (w)
8wkj

Slide credit: Bernt Schiele B. Leibe

45



RWNTH
Gradient Descent - Basic Strategies

e “Sequential updating”
N
n=1

OF,(w)
7+1 T n

Owy; w(m)

7. Learning rate

» Compute the gradient based on a single data point at a time:
OFE, (w)
8wkj
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. 46
Slide credit: Bernt Schiele B. Leibe



Gradient Descent

e Error function

E(w) =) En(w) = %ZZ Zwk;jqﬁj(xn)—tkn

1 K M 2
10 En(w) = 52 Zwkj¢g(xn) Tkn
e k=1 \j=1
- v
n OF,,(w
5 W) D wi05(%n) = thn | 65(xn)
= (‘9wa <
5 i=1
.é = (Yr(Xn; W) — tkn) oy (%n)
:

47
Slide credit: Bernt Schiele B. Leibe
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Gradient Descent

e Delta rule (=LMS rule)

wi ™ = wl) = (%0 W) — tn) 65(%n)
— w](;;) — n(sknqu (Xn)
> where
5kn — yk(Xn; W) — Tkn

= Simply feed back the input data point, weighted by the
classification error.

Slide credit: Bernt Schiele B. Leibe
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Gradient Descent

o Cases with differentiable, non-linear activation function

yk(x) = glax) =g Zwki¢j (%n)

e Gradient descent

OF, (w) _ dg(a) (yr(Xn; W) — tien) &5 (%)

8wkj 8wkj
w;i}“) = w,(;.) — N0kn@; (Xn)
_ Og(ag) |
5kn — awkj (yk(Xn,W) tkn)

. 49
Slide credit: Bernt Schiele B. Leibe
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RWTH
Summary: Generalized Linear Discriminants

e Properties
> General class of decision functions.

- Nonlinearity g(-) and basis functions ¢ allow us to address
linearly non-separable problems.

> Shown simple sequential learning approach for parameter
estimation using gradient descent.

- Better 2"d order gradient descent approaches available
(e.g. Newton-Raphson).

e Limitations / Caveats
> Flexibility of model is limited by curse of dimensionality

- ¢(-) and gbj often introduce additional parameters.

- Models are either limited to lower-dimensional input space
or need to share parameters.

» Linearly separable case often leads to overfitting.
- Several possible parameter choices minimize training error. 50
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RO INVERSITY
References and Further Reading

e More information on Linear Discriminant Functions can
be found in Chapter 4 of Bishop’s book (in particular
Chapter 4.1).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

52
B. Leibe



