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Topics of This Lecture

¢ Recap: Bayes Decision Theory

* Parametric Methods
> Recap: Maximum Likelihood approach
» Bayesian Learning

¢ Non-Parametric Methods
Histograms

Kernel density estimation
» K-Nearest Neighbors

> k-NN for Classification

» Bias-Variance tradeoff
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Recap: Bayes Decision Theory

* Decision regions: R,, R,, R,, ...

Slide credit: Bernt Schiele LA
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Course Outline

¢ Fundamentals (2 weeks)
~ Bayes Decision Theory
» Probability Density Estimation

¢ Discriminative Approaches (5 weeks)
» Linear Discriminant Functions
» Support Vector Machines

» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

¢ Generative Models (4 weeks)
» Bayesian Networks
» Markov Random Fields

B. Leibe

Recap: Bayes Decision Theory

e Optimal decision rule
» Decide for C, if

p(Cilz) > p(Calz)
» This is equivalent to

p(x|C1)p(C1) > p(x|C2)p(C2)

» Which is again equivalent to (Likelihood-Ratio test)
p(|C1) _ p(Cs)
p(z|C2) = p(C1)
—

Decision threshold 6

ide credit: Bernt Schiele B. Leibe
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Recap: Classifying with Loss Functions

¢ We can formalize the intuition that different decisions
have different weights by introducing a loss matrix L,;

Ly; = loss for decision C; if truth is Cy.

e Example: cancer diagnosis
Decision

cancer normal

cancer ( 0 1000 )

=

l =]
7 g — 3

cancer dmgnoszs = normal 1 0

B. Leibe
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Recap: Minimizing the Expected Loss

¢ Optimal solution is the one that minimizes the loss.
» But: loss function depends on the true class, which is unknown.

¢ Solution: Minimize the expected loss
E[L] = ZZ/ Lyp(x,Cy) dx
kg YRi

¢ This can be done by choosing the regionsRv such that

E[L] =3 Lijp(Celx)
k

= Adapted decision rule:
p(x/C1) (L21 — Laz) p(C2)
p(x|C2) (L12 — L11) p(C1)

Machine Learning Summer ‘15
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Recap: Maximum Likelihood Approach
¢ Computation of the likelihood

» Single data point: p($n|9)

» Assumption: all data points X = {xl, ...,z,} are independent

L(0) = p(X|0) = H p(n]0)
» Log-likelihood
E®)=—-InL() =

S inp(el0)
=1

« Estimation of the parameters 0 (Learning)

» Maximize the likelihood (=minimize the negative log-likelihood)
= Take the denvatlve and set it to zero.

Z 3917 (zn|0) Ly
171‘9

lide credit: Bernt Schiele B. Leibe

Machine Learning Summer ‘15

RWTH ACHET
Recap: Maximum Likelihood - Limitations
¢ Maximum Likelihood has several significant limitations

» It systematically underestimates the variance of the distribution!
» E.g. consider the case

N:l,X:{Il}

= Maximum-likelihood estimate:

» We say ML overfits to the observed data.

> We will still often use ML, but it is important to know about this
effect.
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Slide adanted from Rernt Schiele. B. Leibe
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Recap: Gaussian (or Normal) Distribution
¢ One-dimensional case

» Mean p
» Variance o2

Nzlp,o?)

(z—p)?

1
e

¢ Multi-dimensional case O

» Mean p \

» Covariance X
1 1 _
N(x|p, ) = WQXP {_f(x -w)TE T (x - H)}

B. Leibe
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Image source: CM, Bishop,

RWTH CHE
Topics of This Lecture
¢ Parametric Methods
» Recap: Maximum Likelihood approach
» Bayesian Learning
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Deeper Reason

¢ Maximum Likelihood is a Frequentist concept

» In the Frequentist view, probabilities are the frequencies of
random, repeatable events.

» These frequencies are fixed, but can be estimated more
precisely when more data is available.

¢ This is in contrast to the Bayesian interpretation

» In the Bayesian view, probabilities quantify the uncertainty
about certain states or events.

» This uncertainty can be revised in the light of new evidence.

* Bayesians and Frequentists do not like
each other too well...
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Bayesian vs. Frequentist View

¢ To see the difference...

» Suppose we want to estimate the uncertainty whether the Arctic
ice cap will have disappeared by the end of the century.
This question makes no sense in a Frequentist view, since the
event cannot be repeated numerous times.
In the Bayesian view, we generally have a prior, e.g. from
calculations how fast the polar ice is melting.
If we now get fresh evidence, e.g. from a new satellite, we may
revise our opinion and update the uncertainty from the prior.

v

v

v

Posterior o< Likelihood X Prior

This generally allows to get better uncertainty estimates for
many situations.

v

¢ Main Frequentist criticism

» The prior has to come from somewhere and if it is wrong, the
result will be worse.
B. Leibe

Bayesian Learning Approach

e Bayesian view:
. Consider the parameter vector 6 as a random variable.
» When estimating the parameters from a dataset X, we compute

Assumption: given 0, this
doesn’t depend on X anymore

p(e|X) = / p(ie,0]X)d0

P, 61X) = p(lf, X)p(6]X)
pa]X) = / p(z|0)p(0]X)do
——

This is entirely determined by the parameter 0
(i.e., by the parametric form of the pdf).

lide adaoted from Bernt Schiele B. Leibe
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Bayesian Learning Approach

* Discussion Likelihood of the parametric

form 6 given the data set X.

Estimate for z based on
parametric form 6

Prior for the
parameters 0

—
Bl L)
J L(O)p(0)do
VN

I

Normalization: integrate
over all possible values of §

pa|X) =

» If we now plug in a (suitable) prior p(6), we can estimate p(z|X)
from the data set X.

17
B. Leibe
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Bayesian Approach to Parameter Learning

¢ Conceptual shift

» Maximum Likelihood views the true parameter vector 6 to be
unknown, but fixed.

» In Bayesian learning, we consider 6 to be a random variable.

¢ This allows us to use knowledge about the parameters 6
posterior
p(01Y)

» i.e., to use a prior for 6

» Training data then converts this
prior distribution on 6 into prior
a posterior probability density. p(8)

» The prior thus encodes knowledge we have about the type of
distribution we expect to see for 6.

Slide adapted from Bernt Schiele B. Leibe

Bayesian Learning Approach

pla]X) = / p(z]6)p(6]X)do

N

a4
—p(X|0)p(0) _ p(6)
p(0|X) = W = ML(Q)

p(X) = [ pxio)pes = [ Le)wio)d0

¢ Inserting this above, we obtain

) [ [t

ide credit: Bernt Schiele B. Leibe
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RWTH/ACHEN
Bayesian Density Estimation
e Discussion
0)L(0)p(6
ptelX) = [ pteloyp(oix)an = [ 2T oy

. The probability p(6|X) makes the dependency of the estimate
on the data explicit.

. If p(8|X) is very small everywhere, but is large for one 0, then
p(a|X) ~ p(|0)

= In this case, the estimate is determined entirely by 6 .
= The more uncertain we are about ¢, the more we average over
all parameter values.

ide credit: Bernt Schiele B. Leibe




Bayesian Density Estimation

e Problem

> In the general case, the integration over 6 is not possible
(or only possible stochastically).

* Example where an analytical solution is possible
> Normal distribution for the data, o> assumed known and fixed.
» Estimate the distribution of the mean:
p(] X) = p(X|p)p(p)
p(X)
» Prior: We assume a Gaussian prior over y,
2
plp) =N (ulpo, o5) -

Machine Learning Summer ‘15

Slide credit: Bernt Schiele B. Leibe
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Summary: ML vs. Bayesian Learning

¢ Maximum Likelihood
» Simple approach, often analytically possible.
» Problem: estimation is biased, tends to overfit to the data.
= Often needs some correction or regularization.
» But:
- Approximation gets accurate for N — oo.

¢ Bayesian Learning
» General approach, avoids the estimation bias through a prior.
» Problems:
- Need to choose a suitable prior (not always obvious).
- Integral over 6 often not analytically feasible anymore.
» But:
- Efficient stochastic sampling techniques available.

Machine Learning Summer ‘15

(In this lecture, we’ll use both concepts wherever appropriate)

21
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Non-Parametric Methods

¢ Non-parametric representations
» Often the functional form of the distribution is unknown

X

¢ Estimate probability density from data
» Histograms
~ Kernel density estimation (Parzen window / Gaussian kernels)
» k-Nearest-Neighbor
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Slide credit: Bernt Schiele LA

Bayesian Learning Approach

N
1
o Sample mean: = Zzn
n=1

¢ Bayes estimate:
o?up+ Nodz 5
BN = =2 Noz p(ulX)
1 1 N N=10

= — 4+ —
2 2 2
O'N O'O [oa

N=0 N-x N=0 £ \
HN Ho HML /

2 2 0
TN ag 0 e

Machine Learning Summer ‘15
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Image source: CM, Bishop,

Slide adapted from Bernt Schiele B. Leibe

Topics of This Lecture

¢ Non-Parametric Methods
» Histograms
» Kernel density estimation
» K-Nearest Neighbors
» k-NN for Classification
» Bias-Variance tradeoff

Machine Learning Summer ‘15
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Histograms

¢ Basic idea:

» Partition the data space into distinct
bins with widths A; and count the
number of observations, n;, in each
bin.

0
0 05 1

» Often, the same width is used for all bins, A, = A.

» This can be done, in principle, for any dimensionality D...

. 2:72 ...but the required
— number of bins
I ‘:I grows exponen-
. tially with D!
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ot n=2 © p-3
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Image source: C.M, Bishop, 200
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Histograms

¢ The bin width A acts as a smoothing factor.

3 A=0.04
not smooth enough
0 -
0 0.5 1
A = 0.08
0 about OK
g 0
E 0 0.5 1
E 5
a Tl A=0.25
2 too smooth
c
3 0
3 0 05 1
£
£
8
=
8. Leibe \

mage source: C.M, Bishop, 200
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Statistically Better-Founded Approach

¢ Data point x comes from pdf p(x)
» Probability that = falls into small region R

P= / p(y)dy

¢ If R is sufficiently small, p(x) is roughly constant
» Let V be the volume of R

P= /R py)dy = p(x)V

¢ If the number N of samples is sufficiently large, we can
estimate Pas

K
NV

Machine Learning Summer ‘15

K
P:N = p(x) ~

Slide credit: Bernt Schiele B. Leibe

Kernel Methods

e Parzen Window
» Hypercube of dimension D with edge length h:

1 |- 3 i=1,...,D
k(u)—{ 0, else

“Kernel function”

» Probability density estimate:
N

K 1 X — X,
p(x)"N—V*NhD;k( P
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Slide credit: Bernt Schiele LA

Summary: Histograms

¢ Properties
» Very general. In the limit (N—oc), every probability density can
be represented.
» No need to store the data points once histogram is computed.
» Rather brute-force

¢ Problems

» High-dimensional feature spaces
— D-dimensional space with M bins/dimension will require A/” bins!
= Requires an exponentially growing number of data points
=“Curse of dimensionality”

» Discontinuities at bin edges

» Bin size?
- too large: too much smoothing
- too small: too much noise

Machine Learning Summer ‘15

de credit: Bernt Schiele B. Leibe
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Statistically Better-Founded Approach

K
p(x) = NV

fixed V fixed K
determine K determine V

w
= Kernel Methods  K-Nearest Neighbor
£
£
3
12}
g ¢ Kernel methods .
B » Example: Determine — .
2 the number K of data ="
£ points inside a fixed -]
g window... CR—
28
ide credit: Bernt Schiele B. Leibe

Kernel Methods: Parzen Window

¢ Interpretations
1. We place a kernel window k at
location x and count how many
data points fall inside it.

2. We place a kernel window k around
each data point x, and sum up
their influences at location x.

= Direct visualization of the density.

« Still, we have artificial discontinuities at the cube
boundaries...

» We can obtain a smoother density model if we choose a
smoother kernel function, e.g. a Gaussian
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Kernel Methods: Gaussian Kernel

¢ Gaussian kernel
> Kernel function

k(u) = 7(27rh12)1/2 exp {—;722}
N
KZZk(X*Xn) V:/k(u)duzl

> Probability density estimate

o~ 1 AT . % — %] [2
~N = __ _  ex -
PSRNV~ N & @npren

Machine Learning Summer ‘15

Slide credit: Bernt Schiele B. Leibe

Kernel Methods

¢ In general
» Any kernel such that

ku) = 0, /k(u)du =1
can be used. Then

N
K= E k(x —xp)
n=1
» And we get the probability density estimate

N
K 1
p(x) ~ NV N;k(xfxn)

Machine Learning Summer ‘15

Slide adapted from Bernt Schiele B. Leibe

K-Nearest Neighbor

¢ Nearest-Neighbor density estimation
» Fix K, estimate V from the data. K=3
» Consider a hypersphere centred @ y
on x and let it grow to a volume V* se @
that includes K of the given N data °
points.
» Then

plx) =~

a8
NV

¢ Side note

» Strictly speaking, the model produced by K-NN is not a true
density model, because the integral over all space diverges.
» E.g. consider K =1 and a sample exactly on a data point x = ;.
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Gauss Kernel: Examples
3 h = 0.005
not smooth enough
0
0 0.5 1
h=0.07

i about OK M
[} 0 —
£
: 0 05 1
5
@ h=02
= too smooth /BJ—A
c
© 0 — —
{ 0 0.5 1
= h acts as a smoother.
S
<
=

B. Leibe Image source; C.M, Bishop,
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Statistically Better-Founded Approach

K
p(x) = NV

fixed V fixed K
determine K determine V

0
= Kernel Methods  K-Nearest Neighbor
£
£
S
12}
é’ - o K-Nearest Neighbor
g Bl EE » Increase the volume V
2 - until the K next data
= . points are found.
= .
< -
- " 34
ide credit: Bernt Schiele B. Leibe
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k-Nearest Neighbor: Examples

5
K=1
not smooth enough
0 —
50 0.5 1
| K=8 L ‘
0 about OK
‘E 0 e i \
E S0 0.5 1
@ | k=30
2 too smooth
c
S 0
5 0 0.5 1
£ K acts as a smoother.
S
<
=
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Summary: Kernel and k-NN Density Estimation

¢ Properties
» Very general. In the limit (N—occ), every probability density can
be represented.
> No computation involved in the training phase
= Simply storage of the training set

¢ Problems
» Requires storing and computing with the entire dataset.
= Computational cost linear in the number of data points.
= This can be improved, at the expense of some computation
during training, by constructing efficient tree-based search
structures.
> Kernel size / K in K-NN?
- Too large: too much smoothing
- Too small: too much noise

Machine Learning Summer ‘15
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K-Nearest Neighbors for Classification
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B. Leibe Image source; C.M. Bishop, 200¢

Bias-Variance Tradeoff

¢ Probability density estimation

» Histograms: bin size?

- A too large: too smooth

- A too small: not smooth enough
» Kernel methods: kernel size?

— h too large: too smooth

— h too small: not smooth enough
» K-Nearest Neighbor: K?

— K too large: too smooth

— K too small: not smooth enough

Too much bias
Too much variance

¢ This is a general problem of many probability density
estimation methods
> Including parametric methods and mixture models

K-Nearest Neighbor Classification

¢ Bayesian Classification

p(x/C;)p(C;)
p(Ci|x) = ————
e = 2
¢ Here we have
K
g p(x) ~ NV
- K; K, NNV K,
£ J J Yy J
= C ~ —_— C ~ _ = =
Vg” p(x| J) NjV p( J|X) NjV N K K
§ ; k-N t Neighb:
é p(Cj) ~ % celaarses:ﬁcai;in o
. Slide credit: Bernt Schiel B. Leibe 38
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K-Nearest Neighbors for Classification

¢ Results on an example data set
K=1 K-=3

Ldipm et Lo igm et

“
°

* K acts as a smoothing parameter.

¢ Theoretical guarantee

» For N—oo, the error rate of the 1-NN classifier is never more
than twice the optimal error (obtained from the true conditional
class distributions).

Machine Learning Summer ‘15
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Discussion

¢ The methods discussed so far are all simple and easy to
apply. They are used in many practical applications.
¢ However...
» Histograms scale poorly with increasing dimensionality.
= Only suitable for relatively low-dimensional data.

» Both k-NN and kernel density estimation require the entire data
set to be stored.

= Too expensive if the data set is large.

» Simple parametric models are very restricted in what forms of
distributions they can represent.

= Only suitable if the data has the same general form.

¢ We need density models that are efficient and flexible!
= Next lecture...
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slide credit: Bernt Schiele
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References and Further Reading

¢ More information in Bishop’s book
» Gaussian distribution and ML:  Ch. 1.2.4 and 2.3.1-2.3.4.

» Bayesian Learning: Ch. 1.2.3 and 2.3.6.
» Nonparametric methods: Ch. 2.5.
¢ Additional information can be found in Duda & Hart
» ML estimation: Ch. 3.2
~ Bayesian Learning: Ch. 3.3-3.5

» Nonparametric methods: Ch. 4.1-4.5

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

R.O. Duda, P.E. Hart, D.G. Stork

Pattern Classification

27 Ed., Wiley-Interscience, 2000
B. Leibe
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