

Machine Learning - Lecture 2

Probability Density Estimation

16.04.2015

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Announcements

- Course webpage
 - http://www.vision.rwth-aachen.de/teaching/
 - Slides will be made available on the webpage
- L2P electronic repository
 - Exercises and supplementary materials will be posted on the L2P

- Please subscribe to the lecture on the Campus system!
 - Important to get email announcements and L2P access!

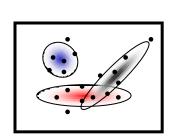
Announcements

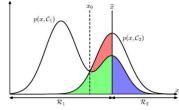
- Exercise sheet 1 is now available on L2P
 - Bayes decision theory
 - Maximum Likelihood
 - Kernel density estimation / k-NN
 - ⇒ Submit your results to Ishrat/Michael until evening of 29.04.
- Work in teams (of up to 3 people) is encouraged
 - Who is not part of an exercise team yet?

RWTHAACHEN UNIVERSITY

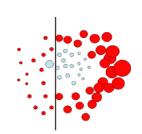
Course Outline

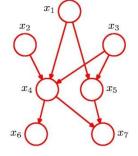
- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation



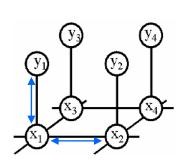


- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns





- Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields



Topics of This Lecture

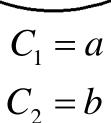
- Bayes Decision Theory
 - Basic concepts
 - Minimizing the misclassification rate
 - Minimizing the expected loss
 - Discriminant functions
- Probability Density Estimation
 - General concepts
 - Gaussian distribution
- Parametric Methods
 - Maximum Likelihood approach
 - Bayesian vs. Frequentist views on probability
 - Bayesian Learning

Recap: Bayes Decision Theory Concepts

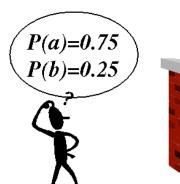
Concept 1: Priors (a priori probabilities)

$$p(C_k)$$

- What we can tell about the probability before seeing the data.
- **Example:**



$$C_2 = b$$



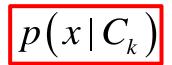
$$p\left(C_{1}\right) = 0.75$$

$$p(C_1) = 0.75$$
$$p(C_2) = 0.25$$

In general:
$$\sum_{k} p(C_k) = 1$$

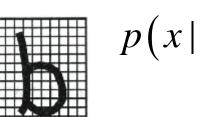
Recap: Bayes Decision Theory Concepts

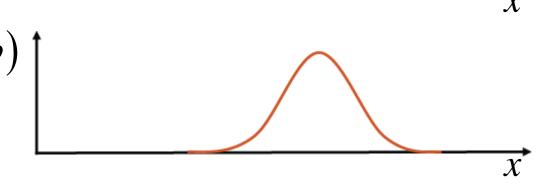
Concept 2: Conditional probabilities



- Let x be a feature vector.
- > x measures/describes certain properties of the input.
 - E.g. number of black pixels, aspect ratio, ...
- $p(x|C_k)$ describes its likelihood for class C_k .

p(x|a)





7

Bayes Decision Theory Concepts

• Concept 3: Posterior probabilities

$$p(C_k \mid x)$$

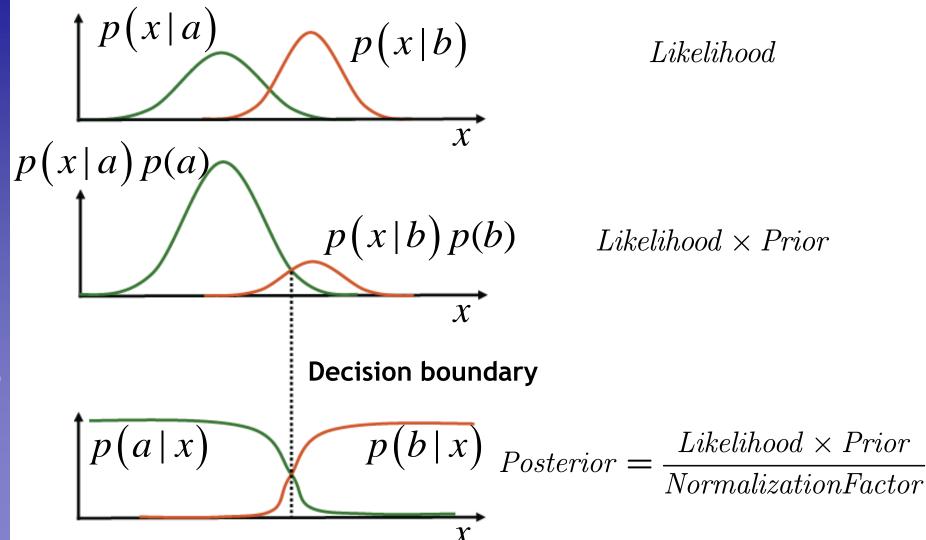
- We are typically interested in the *a posteriori* probability, i.e. the probability of class C_k given the measurement vector x.
- Bayes' Theorem:

$$p(C_k | x) = \frac{p(x | C_k) p(C_k)}{p(x)} = \frac{p(x | C_k) p(C_k)}{\sum_i p(x | C_i) p(C_i)}$$

Interpretation

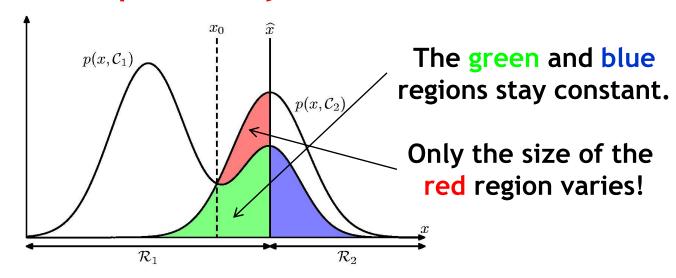
$$Posterior = \frac{Likelihood \times Prior}{Normalization \ Factor}$$

Bayes Decision Theory



Bayesian Decision Theory

Goal: Minimize the probability of a misclassification



$$p(\text{mistake}) = p(\mathbf{x} \in \mathcal{R}_1, \mathcal{C}_2) + p(\mathbf{x} \in \mathcal{R}_2, \mathcal{C}_1)$$

$$= \int_{\mathcal{R}_1} p(\mathbf{x}, \mathcal{C}_2) d\mathbf{x} + \int_{\mathcal{R}_2} p(\mathbf{x}, \mathcal{C}_1) d\mathbf{x}.$$

$$= \int_{\mathcal{R}_1} p(\mathcal{C}_2 | \mathbf{x}) p(\mathbf{x}) d\mathbf{x} + \int_{\mathcal{R}_2} p(\mathcal{C}_1 | \mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

Image source: C.M. Bishop, 2006

Bayes Decision Theory

- Optimal decision rule
 - ▶ Decide for C₁ if

$$p(\mathcal{C}_1|x) > p(\mathcal{C}_2|x)$$

> This is equivalent to

$$p(x|\mathcal{C}_1)p(\mathcal{C}_1) > p(x|\mathcal{C}_2)p(\mathcal{C}_2)$$

Which is again equivalent to (Likelihood-Ratio test)

$$\frac{p(x|\mathcal{C}_1)}{p(x|\mathcal{C}_2)} > \underbrace{\frac{p(\mathcal{C}_2)}{p(\mathcal{C}_1)}}$$

Decision threshold θ

Generalization to More Than 2 Classes

• Decide for class k whenever it has the greatest posterior probability of all classes:

$$p(\mathcal{C}_k|x) > p(\mathcal{C}_j|x) \quad \forall j \neq k$$

$$p(x|\mathcal{C}_k)p(\mathcal{C}_k) > p(x|\mathcal{C}_j)p(\mathcal{C}_j) \quad \forall j \neq k$$

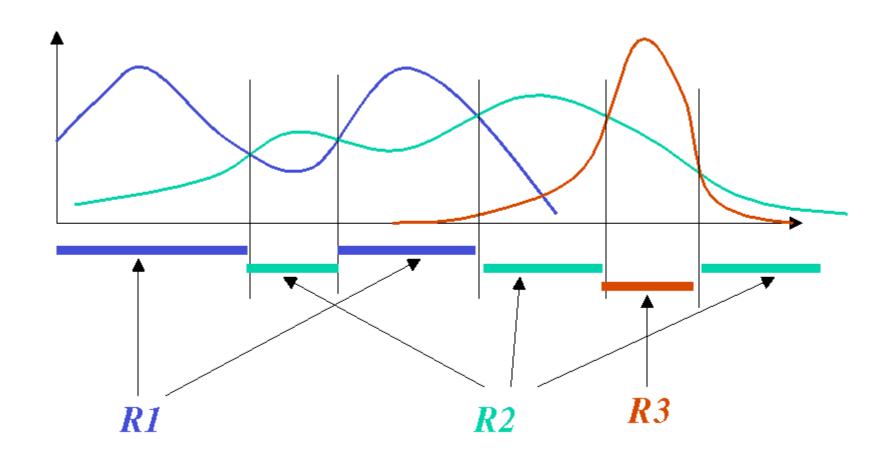
Likelihood-ratio test

$$\frac{p(x|\mathcal{C}_k)}{p(x|\mathcal{C}_j)} > \frac{p(\mathcal{C}_j)}{p(\mathcal{C}_k)} \quad \forall j \neq k$$

14

Bayes Decision Theory

• Decision regions: \mathcal{R}_{1} , \mathcal{R}_{2} , \mathcal{R}_{3} , ...



Classifying with Loss Functions

- Generalization to decisions with a loss function
 - Differentiate between the possible decisions and the possible true classes.
 - Example: medical diagnosis

- Decisions: diagnosis is sick or healthy

(or: further examination necessary)

- Classes: patient is *sick* or *healthy*

The cost may be asymmetric:

$$loss(decision = healthy|patient = sick) >>$$

 $loss(decision = sick|patient = healthy)$

Decision

Classifying with Loss Functions

• In general, we can formalize this by introducing a loss matrix ${\cal L}_{ki}$

$$L_{kj} = loss for decision C_j if truth is C_k$$
.

Example: cancer diagnosis

$L_{cancer\ diagnosis} = \mathbf{\Xi}_{normal}^{cancer} \begin{pmatrix} 0 & 1000 \\ 1 & 0 \end{pmatrix}$

Classifying with Loss Functions

Loss functions may be different for different actors.

Example:

$$L_{stocktrader}(subprime) = \begin{pmatrix} -\frac{1}{2}c_{gain} & 0\\ 0 & 0 \end{pmatrix}$$

$$L_{bank}(subprime) = \begin{pmatrix} -\frac{1}{2}c_{gain} & 0\\ 0 \end{pmatrix}$$

⇒ Different loss functions may lead to different Bayes optimal strategies.

Minimizing the Expected Loss

- Optimal solution is the one that minimizes the loss.
 - > But: loss function depends on the true class, which is unknown.
- Solution: Minimize the expected loss

$$\mathbb{E}[L] = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x}$$

• This can be done by choosing the regions \mathcal{R}_j such that

$$\mathbb{E}[L] = \sum_{k} L_{kj} p(\mathcal{C}_k | \mathbf{x})$$

which is easy to do once we know the posterior class probabilities $p(C_k|\mathbf{x})$.

Minimizing the Expected Loss

Example:

- > 2 Classes: C_1 , C_2
- > 2 Decision: α_1 , α_2
- Loss function: $L(\alpha_j|\mathcal{C}_k) = L_{kj}$
- Expected loss (= risk R) for the two decisions:

$$\mathbb{E}_{\alpha_1}[L] = R(\alpha_1|\mathbf{x}) = L_{11}p(\mathcal{C}_1|\mathbf{x}) + L_{21}p(\mathcal{C}_2|\mathbf{x})$$

$$\mathbb{E}_{\alpha_2}[L] = R(\alpha_2|\mathbf{x}) = L_{12}p(\mathcal{C}_1|\mathbf{x}) + L_{22}p(\mathcal{C}_2|\mathbf{x})$$

- Goal: Decide such that expected loss is minimized
 - I.e. decide α_1 if $R(\alpha_2|\mathbf{x}) > R(\alpha_1|\mathbf{x})$

Minimizing the Expected Loss

$$R(\alpha_{2}|\mathbf{x}) > R(\alpha_{1}|\mathbf{x})$$

$$L_{12}p(C_{1}|\mathbf{x}) + L_{22}p(C_{2}|\mathbf{x}) > L_{11}p(C_{1}|\mathbf{x}) + L_{21}p(C_{2}|\mathbf{x})$$

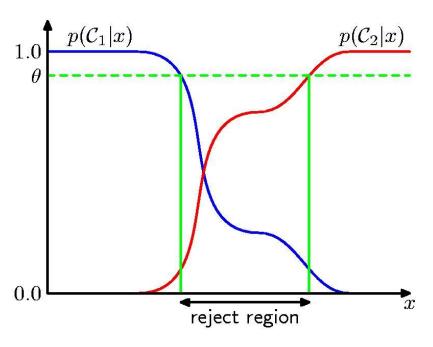
$$(L_{12} - L_{11})p(C_{1}|\mathbf{x}) > (L_{21} - L_{22})p(C_{2}|\mathbf{x})$$

$$\frac{(L_{12} - L_{11})}{(L_{21} - L_{22})} > \frac{p(C_{2}|\mathbf{x})}{p(C_{1}|\mathbf{x})} = \frac{p(\mathbf{x}|C_{2})p(C_{2})}{p(\mathbf{x}|C_{1})p(C_{1})}$$

$$\frac{p(\mathbf{x}|C_{1})}{p(\mathbf{x}|C_{2})} > \frac{(L_{21} - L_{22})}{(L_{12} - L_{11})} \frac{p(C_{2})}{p(C_{1})}$$

 \Rightarrow Adapted decision rule taking into account the loss.

The Reject Option



- Classification errors arise from regions where the largest posterior probability $p(C_k|\mathbf{x})$ is significantly less than 1.
 - These are the regions where we are relatively uncertain about class membership.
 - For some applications, it may be better to reject the automatic decision entirely in such a case and e.g. consult a human expert.

Discriminant Functions

- Formulate classification in terms of comparisons
 - Discriminant functions

$$y_1(x),\ldots,y_K(x)$$

ightharpoonup Classify x as class C_k if

$$y_k(x) > y_j(x) \quad \forall j \neq k$$

Examples (Bayes Decision Theory)

$$y_k(x) = p(\mathcal{C}_k|x)$$

$$y_k(x) = p(x|\mathcal{C}_k)p(\mathcal{C}_k)$$

$$y_k(x) = \log p(x|\mathcal{C}_k) + \log p(\mathcal{C}_k)$$

RWTHAACHEN UNIVERSITY

Different Views on the Decision Problem

- $y_k(x) \propto p(x|\mathcal{C}_k)p(\mathcal{C}_k)$
 - First determine the class-conditional densities for each class individually and separately infer the prior class probabilities.
 - > Then use Bayes' theorem to determine class membership.
 - \Rightarrow Generative methods
- $y_k(x) = p(\mathcal{C}_k|x)$
 - First solve the inference problem of determining the posterior class probabilities.
 - \triangleright Then use decision theory to assign each new x to its class.
 - \Rightarrow Discriminative methods
- Alternative
 - Directly find a discriminant function $y_k(x)$ which maps each input x directly onto a class label.

Topics of This Lecture

- Bayes Decision Theory
 - Basic concepts
 - Minimizing the misclassification rate
 - Minimizing the expected loss
 - Discriminant functions
- Probability Density Estimation
 - General concepts
 - Gaussian distribution
- Parametric Methods
 - Maximum Likelihood approach
 - Bayesian vs. Frequentist views on probability
 - Bayesian Learning

Probability Density Estimation

- Up to now
 - Bayes optimal classification
 - » Based on the probabilities $p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)$
- How can we estimate (=learn) those probability densities?
 - Supervised training case: data and class labels are known.
 - ightarrow Estimate the probability density for each class \mathcal{C}_k separately:

$$p(\mathbf{x}|\mathcal{C}_k)$$

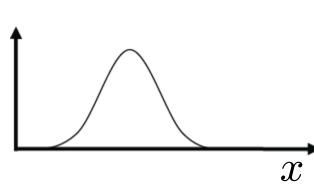
> (For simplicity of notation, we will drop the class label \mathcal{C}_k in the following.)

Probability Density Estimation

• Data: x_1 , x_2 , x_3 , x_4 , ...

 $\frac{}{\downarrow}$

• Estimate: p(x)



Methods

- Parametric representations
- Non-parametric representations
- Mixture models (next lecture)

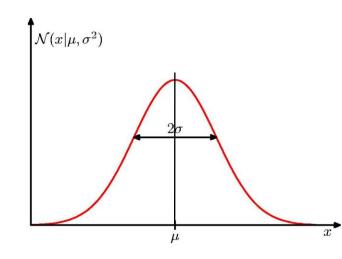
RWTHAACHEN UNIVERSITY

The Gaussian (or Normal) Distribution

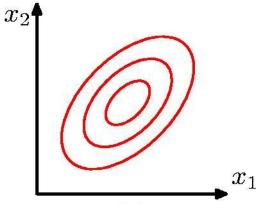
One-dimensional case

- \blacktriangleright Mean μ
- ightharpoonup Variance σ^2

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$



- Multi-dimensional case
 - \triangleright Mean μ
 - ightharpoonup Covariance Σ



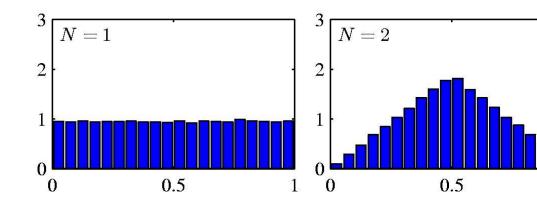
$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

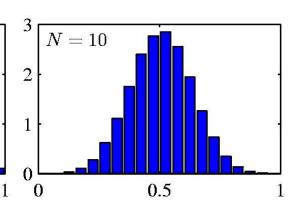
28

Central Limit Theorem

- \rightarrow "The distribution of the sum of N i.i.d. random variables becomes increasingly Gaussian as N grows."
- > In practice, the convergence to a Gaussian can be very rapid.
- > This makes the Gaussian interesting for many applications.

• Example: N uniform [0,1] random variables.



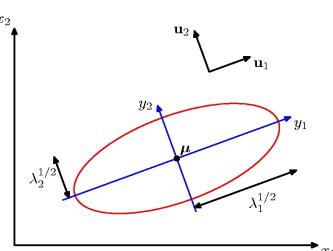


Quadratic Form

 $ightarrow \mathcal{N}$ depends on \mathbf{x} through the exponent

$$\Delta^2 = (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

Here, \triangle is often called the Mahalanobis distance from μ to x.



Shape of the Gaussian

- \succ Σ is a real, symmetric matrix.
- We can therefore decompose it into its eigenvectors

$$oldsymbol{\Sigma} = \sum_{i=1}^D \lambda_i \mathbf{u}_i \mathbf{u}_i^{\mathrm{T}}$$
 $oldsymbol{\Sigma}^{-1} = \sum_{i=1}^D rac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^{\mathrm{T}}$ and thus obtain $\Delta^2 = \sum_{i=1}^D rac{y_i^2}{\lambda_i}$ with $y_i = \mathbf{u}_i^{\mathrm{T}} (\mathbf{x} - oldsymbol{\mu})$.

 \Rightarrow Constant density on ellipsoids with main directions along the eigenvectors \mathbf{u}_i and scaling factors $\sqrt{\lambda_i}$.

Image source: C.M. Bishop, 2006

30

- Special cases
 - Full covariance matrix

$$\mathbf{\Sigma} = [\sigma_{ij}]$$

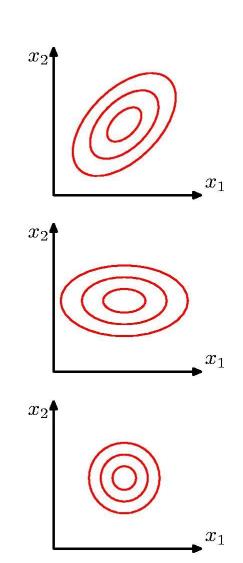
- ⇒ General ellipsoid shape
- Diagonal covariance matrix

$$\Sigma = diag\{\sigma_i\}$$

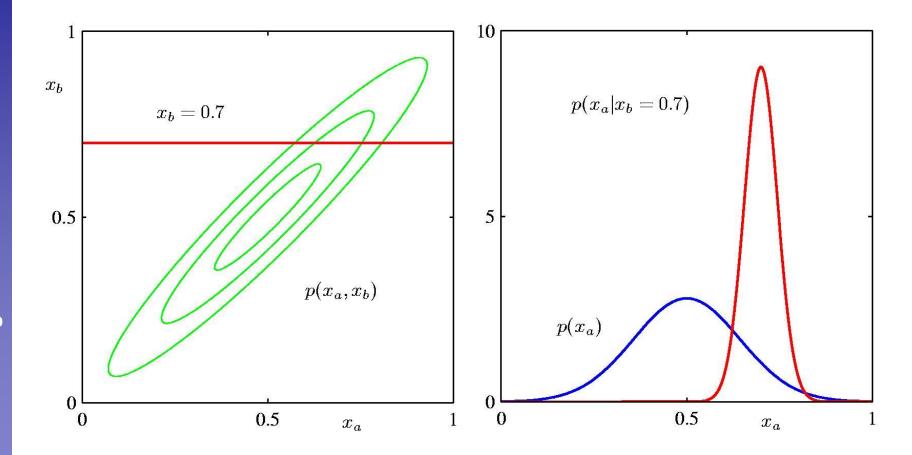
- ⇒ Axis-aligned ellipsoid
- Uniform variance

$$\Sigma = \sigma^2 \mathbf{I}$$

⇒ Hypersphere



The marginals of a Gaussian are again Gaussians:



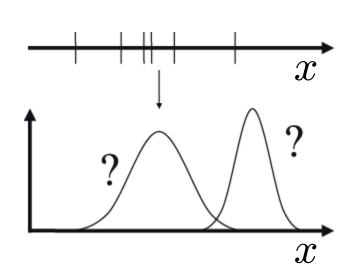
Topics of This Lecture

- Bayes Decision Theory
 - Basic concepts
 - Minimizing the misclassification rate
 - Minimizing the expected loss
 - Discriminant functions
- Probability Density Estimation
 - General concepts
 - > Gaussian distribution
- Parametric Methods
 - Maximum Likelihood approach
 - Bayesian vs. Frequentist views on probability
 - Bayesian Learning

Parametric Methods

Given

- ullet Data $X=\{x_1,x_2,\ldots,x_N\}$
- > Parametric form of the distribution with parameters $\boldsymbol{\theta}$
- $ilde{}$ E.g. for Gaussian distrib.: $heta=(\mu,\sigma)$



Learning

 \succ Estimation of the parameters θ

• Likelihood of heta

> Probability that the data X have indeed been generated from a probability density with parameters θ

$$L(\theta) = p(X|\theta)$$

- Computation of the likelihood
 - > Single data point: $p(x_n|\theta)$
 - > Assumption: all data points are independent

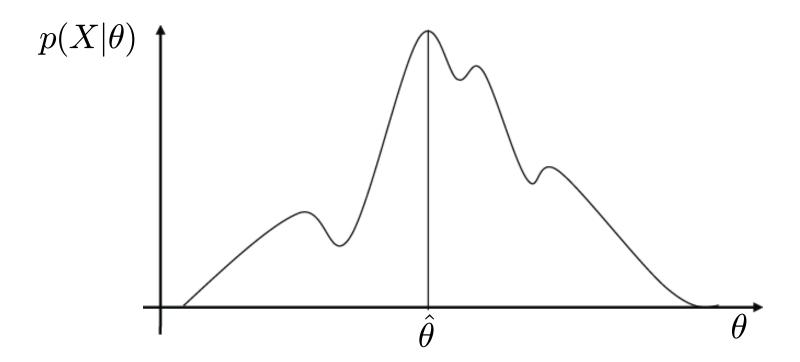
$$L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$

Log-likelihood

$$E(\theta) = -\ln L(\theta) = -\sum_{n=1}^{N} \ln p(x_n | \theta)$$

- \triangleright Estimation of the parameters θ (Learning)
 - Maximize the likelihood
 - Minimize the negative log-likelihood

- Likelihood: $L(\theta) = p(X|\theta) = \prod_{n=1}^{\infty} p(x_n|\theta)$
- We want to obtain $\hat{\theta}$ such that $L(\hat{\theta})$ is maximized.



36

- Minimizing the log-likelihood
 - How do we minimize a function?
 - \Rightarrow Take the derivative and set it to zero.

$$\frac{\partial}{\partial \theta} E(\theta) = -\frac{\partial}{\partial \theta} \sum_{n=1}^{N} \ln p(x_n | \theta) = -\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \theta} p(x_n | \theta)}{p(x_n | \theta)} \stackrel{!}{=} 0$$

Log-likelihood for Normal distribution (1D case)

$$E(\theta) = -\sum_{n=1}^{N} \ln p(x_n | \mu, \sigma)$$

$$= -\sum_{n=1}^{N} \ln \left(\frac{1}{\sqrt{2\pi}\sigma} \exp\left\{ -\frac{||x_n - \mu||^2}{2\sigma^2} \right\} \right)$$

Minimizing the log-likelihood

$$\frac{\partial}{\partial \mu} E(\mu, \sigma) = -\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \mu} p(x_n | \mu, \sigma)}{p(x_n | \mu, \sigma)}$$

$$= -\sum_{n=1}^{N} -\frac{2(x_n - \mu)}{2\sigma^2}$$

$$= \frac{1}{\sigma^2} \sum_{n=1}^{N} (x_n - \mu)$$

$$= \frac{1}{\sigma^2} \left(\sum_{n=1}^{N} x_n - N\mu\right)$$

$$\frac{\partial}{\partial \mu} E(\mu, \sigma) \stackrel{!}{=} 0 \qquad \Leftrightarrow \qquad \hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$p(x_n|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{||x_n-\mu||^2}{2\sigma^2}}$$

Maximum Likelihood Approach

We thus obtain

$$\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

"sample mean"

• In a similar fashion, we get

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \hat{\mu})^2$$

"sample variance"

- $\hat{\theta}=(\hat{\mu},\hat{\sigma})$ is the Maximum Likelihood estimate for the parameters of a Gaussian distribution.
- This is a very important result.
- Unfortunately, it is wrong...

Maximum Likelihood Approach

- Or not wrong, but rather biased...
- Assume the samples x_1 , x_2 , ..., x_N come from a true Gaussian distribution with mean μ and variance σ^2
 - We can now compute the expectations of the ML estimates with respect to the data set values. It can be shown that

$$\mathbb{E}(\mu_{\mathrm{ML}}) = \mu$$

$$\mathbb{E}(\sigma_{\mathrm{ML}}^2) = \left(\frac{N-1}{N}\right)\sigma^2$$

- \Rightarrow The ML estimate will underestimate the true variance.
- Corrected estimate:

$$\tilde{\sigma}^2 = \frac{N}{N-1}\sigma_{\text{ML}}^2 = \frac{1}{N-1}\sum_{n=1}^{N}(x_n - \hat{\mu})^2$$

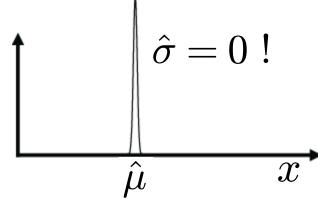
Maximum Likelihood - Limitations

- Maximum Likelihood has several significant limitations
 - It systematically underestimates the variance of the distribution!
 - E.g. consider the case

$$N = 1, X = \{x_1\}$$

- x

⇒ Maximum-likelihood estimate:



- > We say ML overfits to the observed data.
- We will still often use ML, but it is important to know about this effect.

Deeper Reason

- Maximum Likelihood is a Frequentist concept
 - In the Frequentist view, probabilities are the frequencies of random, repeatable events.
 - > These frequencies are fixed, but can be estimated more precisely when more data is available.
- This is in contrast to the Bayesian interpretation
 - In the Bayesian view, probabilities quantify the uncertainty about certain states or events.
 - This uncertainty can be revised in the light of new evidence.
- Bayesians and Frequentists do not like each other too well...

Bayesian vs. Frequentist View

- To see the difference...
 - > Suppose we want to estimate the uncertainty whether the Arctic ice cap will have disappeared by the end of the century.
 - This question makes no sense in a Frequentist view, since the event cannot be repeated numerous times.
 - In the Bayesian view, we generally have a prior, e.g. from calculations how fast the polar ice is melting.
 - If we now get fresh evidence, e.g. from a new satellite, we may revise our opinion and update the uncertainty from the prior.

$Posterior \propto Likelihood \times Prior$

This generally allows to get better uncertainty estimates for many situations.

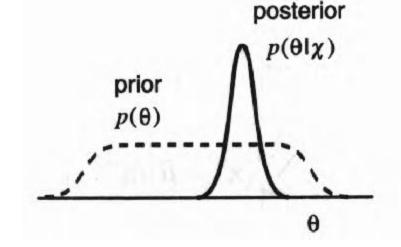
Main Frequentist criticism

> The prior has to come from somewhere and if it is wrong, the result will be worse.

Bayesian Approach to Parameter Learning

Conceptual shift

- > Maximum Likelihood views the true parameter vector $\boldsymbol{\theta}$ to be unknown, but fixed.
- > In Bayesian learning, we consider heta to be a random variable.
- This allows us to use knowledge about the parameters heta
 - ightharpoonup i.e. to use a prior for heta
 - > Training data then converts this prior distribution on θ into a posterior probability density.



The prior thus encodes knowledge we have about the type of distribution we expect to see for θ .

- Bayesian view:
 - \succ Consider the parameter vector heta as a random variable.
 - When estimating the parameters, what we compute is

$$p(x|X) = \int p(x,\theta|X)d\theta \qquad \text{Assumption: given θ, this doesn't depend on X anymore} \\ p(x,\theta|X) = p(x|\theta,X)p(\theta|X)$$

$$p(x|X) = \int p(x|\theta)p(\theta|X)d\theta$$

This is entirely determined by the parameter θ (i.e. by the parametric form of the pdf).

$$p(x|X) = \int p(x|\theta)p(\theta|X)d\theta$$

$$p(\theta|X) = \frac{p(X|\theta)p(\theta)}{p(X)} = \frac{p(\theta)}{p(X)}L(\theta)$$

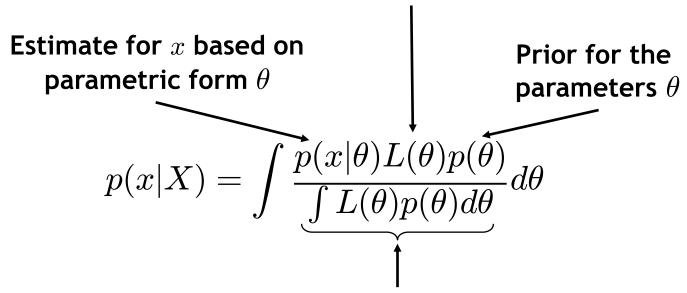
$$p(X) = \int p(X|\theta)p(\theta)d\theta = \int L(\theta)p(\theta)d\theta$$

Inserting this above, we obtain

$$p(x|X) = \int \frac{p(x|\theta)L(\theta)p(\theta)}{p(X)}d\theta = \int \frac{p(x|\theta)L(\theta)p(\theta)}{\int L(\theta)p(\theta)d\theta}d\theta$$

Discussion

Likelihood of the parametric form θ given the data set X.



Normalization: integrate over all possible values of θ

If we now plug in a (suitable) prior $p(\theta)$, we can estimate p(x|X) from the data set X.

Bayesian Density Estimation

Discussion

$$p(x|X) = \int p(x|\theta)p(\theta|X)d\theta = \int \frac{p(x|\theta)L(\theta)p(\theta)}{\int L(\theta)p(\theta)d\theta}d\theta$$

- > The probability $p(\theta|X)$ makes the dependency of the estimate on the data explicit.
- ightarrow If p(heta|X) is very small everywhere, but is large for one $\hat{ heta}$, then

$$p(x|X) \approx p(x|\hat{\theta})$$

 \Rightarrow The more uncertain we are about θ , the more we average over all parameter values.

Bayesian Density Estimation

Problem

- > In the general case, the integration over θ is not possible (or only possible stochastically).
- Example where an analytical solution is possible
 - > Normal distribution for the data, σ^2 assumed known and fixed.
 - Estimate the distribution of the mean:

$$p(\mu|X) = \frac{p(X|\mu)p(\mu)}{p(X)}$$

ightarrow Prior: We assume a Gaussian prior over μ ,

$$p(\mu) = \mathcal{N}\left(\mu|\mu_0, \sigma_0^2\right).$$

Sample mean:
$$\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

Bayes estimate:

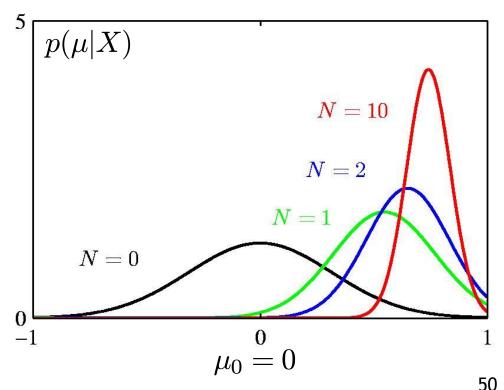
$$\mu_N = \frac{\sigma^2 \mu_0 + N \sigma_0^2 \bar{x}}{\sigma^2 + N \sigma_0^2}$$

$$\frac{1}{\sigma_N^2} = \frac{1}{\sigma_0^2} + \frac{N}{\sigma^2}$$

$$5 p(\mu|X)$$

Note:

	N = 0	$N o \infty$
μ_N	μ_0	$\mu_{ m ML}$
σ_N^2	σ_0^2	0



B. Leibe

Summary: ML vs. Bayesian Learning

Maximum Likelihood

- Simple approach, often analytically possible.
- Problem: estimation is biased, tends to overfit to the data.
 - ⇒ Often needs some correction or regularization.
- But:
 - Approximation gets accurate for $N o \infty$.

Bayesian Learning

- General approach, avoids the estimation bias through a prior.
- Problems:
 - Need to choose a suitable prior (not always obvious).
 - Integral over heta often not analytically feasible anymore.
- But:
 - Efficient stochastic sampling techniques available (see Lecture 15).

(In this lecture, we'll use both concepts wherever appropriate)

Pattern Classification

References and Further Reading

More information in Bishop's book

Gaussian distribution and ML: Ch. 1.2.4 and 2.3.1-2.3.4.

Bayesian Learning: Ch. 1.2.3 and 2.3.6.

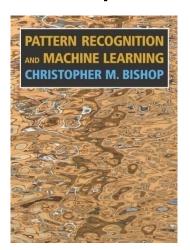
Nonparametric methods: Ch. 2.5.

Additional information can be found in Duda & Hart

ML estimation: Ch. 3.2

Bayesian Learning: Ch. 3.3-3.5

Nonparametric methods: Ch. 4.1-4.5



Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

Pattern Classification 2nd Ed., Wiley-Interscience, 2000