

RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de

Many slides adapted from B. Schiele

Announcements Course webpage http://www.vision.rwth-aachen.de/teaching/ Slides will be made available on the webpage L2P electronic repository Exercises and supplementary materials will be posted on the L2P • Please subscribe to the lecture on the Campus system! > Important to get email announcements and L2P access!

Announcements Exercise sheet 1 is now available on L2P

- > Bayes decision theory
- > Maximum Likelihood
- Kernel density estimation / k-NN
- ⇒ Submit your results to Ishrat/Michael until evening of 29.04.
- · Work in teams (of up to 3 people) is encouraged
 - > Who is not part of an exercise team yet?

Classifying with Loss Functions • In general, we can formalize this by introducing a loss matrix L_{kj} $L_{kj} = loss \ for \ decision \ C_j \ if \ truth \ is \ C_k.$ • Example: cancer diagnosis $L_{cancer \ diagnosis} = \underbrace{\sharp}_{normal}^{\text{Cancer}} \begin{pmatrix} 0 & 1000 \\ 1 & 0 \end{pmatrix}$

Classifying with Loss Functions • Loss functions may be different for different actors. • Example: $L_{stocktrader}(subprime) = \begin{pmatrix} -\frac{1}{2}c_{gain} & 0 \\ 0 & 0 \end{pmatrix}$ $L_{bank}(subprime) = \begin{pmatrix} -\frac{1}{2}c_{gain} & 0 \\ 0 & 0 \end{pmatrix}$ $\Rightarrow \text{Different loss functions may lead to different Bayes optimal strategies.}$

• Optimal solution is the one that minimizes the loss. • But: loss function depends on the true class, which is unknown. • Solution: Minimize the expected loss $\mathbb{E}[L] = \sum_k \sum_j \int_{\mathcal{R}_j} L_{kj} p(\mathbf{x}, \mathcal{C}_k) \, \mathrm{d}\mathbf{x}$ • This can be done by choosing the regions \mathcal{R}_j such that $\mathbb{E}[L] = \sum_k L_{kj} p(\mathcal{C}_k | \mathbf{x})$ which is easy to do once we know the posterior class probabilities $p(\mathcal{C}_k | \mathbf{x})$.

Minimizing the Expected Loss

Minimizing the Expected Loss

 $R(\alpha_2|\mathbf{x}) > R(\alpha_1|\mathbf{x})$ $L_{12}p(C_1|\mathbf{x}) + L_{22}p(C_2|\mathbf{x}) > L_{11}p(C_1|\mathbf{x}) + L_{21}p(C_2|\mathbf{x})$ $(L_{12} - L_{11})p(C_1|\mathbf{x}) > (L_{21} - L_{22})p(C_2|\mathbf{x})$

$$\frac{(L_{12} - L_{11})}{(L_{21} - L_{22})} > \frac{p(\mathcal{C}_2 | \mathbf{x})}{p(\mathcal{C}_1 | \mathbf{x})} = \frac{p(\mathbf{x} | \mathcal{C}_2) p(\mathcal{C}_2)}{p(\mathbf{x} | \mathcal{C}_1) p(\mathcal{C}_1)}$$

$$\frac{p(\mathbf{x}|\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)} > \frac{(L_{21} - L_{22})}{(L_{12} - L_{11})} \frac{p(\mathcal{C}_2)}{p(\mathcal{C}_1)}$$

⇒ Adapted decision rule taking into account the loss.

Discriminant Functions

· Formulate classification in terms of comparisons

> Discriminant functions

$$y_1(x),\ldots,y_K(x)$$

> Classify x as class C_k if

$$y_k(x) > y_j(x) \ \forall j \neq k$$

• Examples (Bayes Decision Theory)

$$y_k(x) = p(\mathcal{C}_k|x)$$

$$y_k(x) = p(x|\mathcal{C}_k)p(\mathcal{C}_k)$$

$$y_k(x) = \log p(x|\mathcal{C}_k) + \log p(\mathcal{C}_k)$$

Different Views on the Decision Problem

- $y_k(x) \propto p(x|\mathcal{C}_k)p(\mathcal{C}_k)$
 - First determine the class-conditional densities for each class individually and separately infer the prior class probabilities.
 - > Then use Bayes' theorem to determine class membership.
 - ⇒ Generative methods
- $y_k(x) = p(\mathcal{C}_k|x)$
 - First solve the inference problem of determining the posterior class probabilities.
 - $\,\,\,\,\,\,\,\,\,\,$ Then use decision theory to assign each new x to its class.
 - ⇒ Discriminative methods
- Alternative
 - Directly find a discriminant function $\,y_k(x)\,$ which maps each input \boldsymbol{x} directly onto a class label.

Topics of This Lecture

- · Bayes Decision Theory
 - Basic concepts
 - Minimizing the misclassification rate
 - Minimizing the expected loss
 - Discriminant functions
- · Probability Density Estimation
 - General concepts
 - Gaussian distribution
- Parametric Methods
 - Maximum Likelihood approach
 - Bayesian vs. Frequentist views on probability
 - Bayesian Learning

Probability Density Estimation

- · Up to now
 - Bayes optimal classification
 - Based on the probabilities $p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)$
- · How can we estimate (=learn) those probability densities?
 - > Supervised training case: data and class labels are known.
 - Estimate the probability density for each class \mathcal{C}_k separately:

(For simplicity of notation, we will drop the class label \mathcal{C}_k in the following.)

Topics of This Lecture

- · Bayes Decision Theory
 - Basic concepts
 - Minimizing the misclassification rate
 - Minimizing the expected loss
 - Discriminant functions
- **Probability Density Estimation**
 - General concepts
 - Gaussian distribution

· Parametric Methods

- Maximum Likelihood approach
- Bayesian vs. Frequentist views on probability
- » Bayesian Learning

Parametric Methods

- Given
 - Data $X = \{x_1, x_2, ..., x_N\}$
 - Parametric form of the distribution with parameters $\boldsymbol{\theta}$
 - E.g. for Gaussian distrib.: $\theta = (\mu, \sigma)$

- Learning
 - $_{ imes}$ Estimation of the parameters heta
- Likelihood of θ
 - \triangleright Probability that the data X have indeed been generated from a probability density with parameters $\boldsymbol{\theta}$

$$L(\theta) = p(X|\theta)$$

Maximum Likelihood Approach

- · Computation of the likelihood
 - > Single data point: $p(x_n|\theta)$
 - Assumption: all data points are independent

$$L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$

Log-likelihood
$$E(\theta) = -\ln L(\theta) = -\sum_{n=1}^{N} \ln p(x_n|\theta)$$

- \succ Estimation of the parameters θ (Learning)
 - Maximize the likelihood
 - Minimize the negative log-likelihood

Maximum Likelihood Approach

- · Minimizing the log-likelihood
 - How do we minimize a function?

$$\frac{\partial}{\partial \theta} E(\theta) = -\frac{\partial}{\partial \theta} \sum_{n=1}^{N} \ln p(x_n|\theta) = -\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \theta} p(x_n|\theta)}{p(x_n|\theta)} \stackrel{!}{=} 0$$

Log-likelihood for Normal distribution (1D case)

$$E(\theta) = -\sum_{n=1}^{N} \ln p(x_n | \mu, \sigma)$$
$$= -\sum_{n=1}^{N} \ln \left(\frac{1}{\sqrt{2\pi\sigma}} \exp\left\{ -\frac{||x_n - \mu||^2}{2\sigma^2} \right\} \right)$$

Maximum Likelihood Approach

$$\begin{array}{ll} \bullet \ \, \mbox{Minimizing the log-likelihood} \\ \frac{\partial}{\partial \mu} E(\mu,\sigma) \ \, = \ \, -\sum_{n=1}^N \frac{\frac{\partial}{\partial \mu} p(x_n | \mu,\sigma)}{p(x_n | \mu,\sigma)} \\ \\ = \ \, -\sum_{n=1}^N -\frac{2(x_n-\mu)}{2\sigma^2} \\ \\ = \ \, \frac{1}{\sigma^2} \sum_{n=1}^N (x_n-\mu) \\ \\ = \ \, \frac{1}{\sigma^2} \left(\sum_{n=1}^N x_n - N\mu\right) \end{array}$$

$$\frac{\partial}{\partial \mu} E(\mu, \sigma) \stackrel{!}{=} 0 \qquad \Leftrightarrow \quad \hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

Maximum Likelihood Approach

We thus obtain

$$\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

"sample mean"

· In a similar fashion, we get

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \hat{\mu})^2$$

"sample variance"

- $\hat{\theta} = (\hat{\mu}, \hat{\sigma})$ is the Maximum Likelihood estimate for the parameters of a Gaussian distribution.
- · This is a very important result.
- · Unfortunately, it is wrong...

Maximum Likelihood Approach

- · Or not wrong, but rather biased...
- Assume the samples x_1 , x_2 , ..., x_N come from a true Gaussian distribution with mean μ and variance σ^2
 - We can now compute the expectations of the ML estimates with respect to the data set values. It can be shown that

$$\begin{split} \mathbb{E}(\mu_{\mathrm{ML}}) &= \ \mu \\ \mathbb{E}(\sigma_{\mathrm{ML}}^2) &= \ \left(\frac{N-1}{N}\right)\sigma^2 \end{split}$$

⇒ The ML estimate will underestimate the true variance.

· Corrected estimate:

$$ilde{\sigma}^2 = rac{N}{N-1}\sigma_{ ext{ML}}^2 = rac{1}{N-1}\sum_{n=1}^N (x_n - \hat{\mu})^2$$

Maximum Likelihood - Limitations

- · Maximum Likelihood has several significant limitations
 - > It systematically underestimates the variance of the distribution!
 - E.g. consider the case

$$N = 1, X = \{x_1\}$$

⇒ Maximum-likelihood estimate:

- > We say ML overfits to the observed data.
- We will still often use ML, but it is important to know about this

Deeper Reason

- Maximum Likelihood is a Frequentist concept
 - In the Frequentist view, probabilities are the frequencies of random, repeatable events.
 - These frequencies are fixed, but can be estimated more precisely when more data is available.
- This is in contrast to the Bayesian interpretation
 - In the Bayesian view, probabilities quantify the uncertainty about certain states or events.
 - This uncertainty can be revised in the light of new evidence.
- Bayesians and Frequentists do not like each other too well...

Bayesian vs. Frequentist View

- · To see the difference...
 - Suppose we want to estimate the uncertainty whether the Arctic ice cap will have disappeared by the end of the century.
 - This question makes no sense in a Frequentist view, since the event cannot be repeated numerous times.
 - In the Bayesian view, we generally have a prior, e.g. from calculations how fast the polar ice is melting.
 - If we now get fresh evidence, e.g. from a new satellite, we may revise our opinion and update the uncertainty from the prior.

 $Posterior \propto Likelihood \times Prior$

- This generally allows to get better uncertainty estimates for many situations.
- Main Frequentist criticism
 - The prior has to come from somewhere and if it is wrong, the result will be worse.

- · Conceptual shift
 - Maximum Likelihood views the true parameter vector $\boldsymbol{\theta}$ to be unknown, but fixed.
 - In Bayesian learning, we consider θ to be a random variable.
- This allows us to use knowledge about the parameters θ
 - $\,\,\mathbf{\hat{}}\,\,$ i.e. to use a prior for θ
 - Training data then converts this prior distribution on θ into a posterior probability density.

The prior thus encodes knowledge we have about the type of distribution we expect to see for θ .

Summary: ML vs. Bayesian Learning

- Maximum Likelihood
 - > Simple approach, often analytically possible.
 - > Problem; estimation is biased, tends to overfit to the data.
 - \Rightarrow Often needs some correction or regularization.
 - - Approximation gets accurate for $N o \infty$,

• Bayesian Learning

- > General approach, avoids the estimation bias through a prior.
- Problems:
 - Need to choose a suitable prior (not always obvious).
 - Integral over $\boldsymbol{\theta}$ often not analytically feasible anymore.
- But:
 - Efficient stochastic sampling techniques available (see Lecture 15).

(In this lecture, we'll use both concepts wherever appropriate)

References and Further Reading

· More information in Bishop's book

Gaussian distribution and ML: Ch. 1.2.4 and 2.3.1-2.3.4.

Bayesian Learning: Ch. 1.2.3 and 2.3.6.

Nonparametric methods: Ch. 2.5.

• Additional information can be found in Duda & Hart Ch. 3.2

ML estimation:

Bayesian Learning: Ch. 3.3-3.5

Ch. 4.1-4.5 Nonparametric methods:

Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

R.O. Duda, P.E. Hart, D.G. Stork Pattern Classification 2nd Ed., Wiley-Interscience, 2000