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Machine Learning - Lecture 2

Probability Density Estimation
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Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Manvy slides adapted from B. Schiele

Announcements

* Exercise sheet 1 is now available on L2P
» Bayes decision theory
> Maximum Likelihood
» Kernel density estimation / k-NN
= Submit your results to Ishrat/Michael until evening of 29.04.

* Work in teams (of up to 3 people) is encouraged
» Who is not part of an exercise team yet?

B. Leibe
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Topics of This Lecture

¢ Bayes Decision Theory
» Basic concepts
» Minimizing the misclassification rate
» Minimizing the expected loss
» Discriminant functions

¢ Probability Density Estimation
» General concepts
~ Gaussian distribution

e Parametric Methods
» Maximum Likelihood approach
» Bayesian vs. Frequentist views on probability
» Bayesian Learning

B. Leibe
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Announcements
¢ Course webpage
» http://www.vision.rwth-aachen.de/teaching/

» Slides will be made available on the webpage

e L2P electronic repository
» Exercises and supplementary materials will be posted on the L2P

¢ Please subscribe to the lecture on the Campus system!
» Important to get email announcements and L2P access!

B. Leibe

Course Outline

¢ Fundamentals (2 weeks)
» Bayes Decision Theory
» Probability Density Estimation

&4
¢ Discriminative Approaches (5 weeks)
» Linear Discriminant Functions
» Support Vector Machines
» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

¢ Generative Models (4 weeks)
» Bayesian Networks
» Markov Random Fields

B. Leibe
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RWTH/ACHEN
Recap: Bayes Decision Theory Concepts

e Concept 1: Priors (a priori probabilities) p(Ck)

» What we can tell about the probability before seeing the data.
» Example: — 92

aababaaba
baaaabaaba
abaaaabba

babaabaa

C =a
C,=b

¢ In general:

ide credit: Bernt Schiele B. Leibe
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Recap: Bayes Decision Theory Concepts Bayes Decision Theory Concepts
 Concept 2: Conditional probabilities p(X | Ck) « Concept 3: Posterior probabilities p(Ck | X)

» Let z be a feature vector.

» z measures/describes certain properties of the input.
- E.g. number of black pixels, aspect ratio, ...

» p(z|C,) describes its likelihood for class C.

» We are typically interested in the a posteriori probability, i.e.
the probability of class C) given the measurement vector z.

¢ Bayes’ Theorem:

2 o p(x|a) o p(C,|x)= p(xIC)p(C) _ p(xIC)pP(C)

a p(x)  2p(xIC)p(C)

'Z-’a . X 'Z-', ¢ Interpretation

i p(xIb) £ . Likelihood x Prior

§ : 3 Posterior = —

2 ; H Normalization Factor
RWTH/CHEN RWTH/CHEN

Bayes Decision Theory

p Mx |b) Likelihood

p(x|a)p(@ X

Bayesian Decision Theory
¢ Goal: Minimize the probability of a misclassification

The green and blue
regions stay constant.

Only the size of the

p(X | b) p(b) Likelihood x Prior red region varies!

= o

% S E = =

- X - |

S 3 .

"g’, Decision boundary "g” plmistake) = p(x € Rq1.Co) + p(x € Ro,Cq)

£ £ - [ '(xC)dx+/ p(x.Cy) dx

& - . s pPlx,Ca PIX, G .

3 p(alx) 7 P(O1X) pysrorior — Likelihood x Prior g . -

£ /k; NormalizationFactor, g

3 3 = | p(Clx)p(x)dx+ | p(Ci|x)p(x)dx

2 X . E Ry Ra .
slide credit: Bernt Schiele B. Leibe B. Leibe Image source; C,M, Bishop,
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Bayes Decision Theory Generalization to More Than 2 Classes

¢ Optimal decision rule
» Decide for C; if

p(Cilz) > p(Calx)
» This is equivalent to

p(|C1)p(C1) > p([Ca)p(Ca)

¢ Decide for class & whenever it has the greatest posterior
probability of all classes:

p(Cilx) > p(Cjlx) Vj# k

p((Cr)p(Cr) > p((C;)p(C;) Vi #k
» Which is again equivalent to (Likelihood-Ratio test)
p(|C1) _ p(Cs)
p(zlC2) ~ p(Ci)
H_/

Decision threshold 6

¢ Likelihood-ratio test
p(x|Cr) _ p(Cj) .
sy k
) pey 7
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Bayes Decision Theory

e Decision regions: R,, R,, R,, ...

Slide credit: Bernt Schiele B. Leibe

Classifying with Loss Functions

¢ In general, we can formalize this by introducing a
loss matrix L;;

Ly; = loss for decision C; if truth is Cy.

RWTHACHEN
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¢ Example: cancer diagnosis
Decision
cancer normal
I 5 cancer ( 0 1000 )
cancer diagnosis — 'g normal 1 0
B. Leibe 7
RWTH ACHET

Minimizing the Expected Loss

¢ Optimal solution is the one that minimizes the loss.

» But: loss function depends on the true class, which is unknown.

¢ Solution: Minimize the expected loss

E[L] = ZZ/ Lyjp(x,Cy) dx
AL,
¢ This can be done by choosing the regions R; such that
E[L] =3 Lijp(Cklx)
&

which is easy to do once we know the posterior class
probabilities p(Ck|x).

B. Leibe
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Classifying with Loss Functions

¢ Generalization to decisions with a loss function

. Differentiate between the possible decisions and the possible
true classes.

~ Example: medical diagnosis

- Decisions: diagnosis is sick or healthy
(or: further examination necessary)
- Classes: patient is sick or healthy

» The cost may be asymmetric:
loss(decision = healthy|patient = sick) >>

loss(decision = sick|patient = healthy)

Machine Learning Summer’15

de credit: Bernt Schiele B. Leibe

RWTH CHE
Classifying with Loss Functions

¢ Loss functions may be different for different actors.

“winyest” don t“
» Example: invest
1
3 —5Cgain 0
Lstocktrader(SprTlme) = ( 2 Og 0

. :
Lpank, (subprime) = < %gé;ln 8 ) ﬁ

= Different loss functions may lead to different Bayes optimal
strategies.

Machine Learning Summer’15

B. Leibe

Minimizing the Expected Loss

e Example:
» 2Classes: C,, C,
» 2 Decision: «,, a,
» Loss function: L(c;|C) = Ly;
» Expected loss (= risk R) for the two decisions:
Eq, [L] = R(aq|x) = Lup(Ci]x) + Laip(Calx)
Eo,[L] = R(az|x) = Li2p(C1|x) + Laop(Calx)

¢ Goal: Decide such that expected loss is minimized
. lLe. decide o, if R(az|x) > R(a|x)

wn
o
S
3
£
£
3
12}
o
£
c
£
©
Q
-
o
£
=
=
S
=

ide credit: Bernt Schiele B. Leibe




Minimizing the Expected Loss The Reject Option

p(Ci|z) p(Calz)

R(as|x) > R(az|x)
Li2p(Ci[x) + Lazp(Calx) > L11p(Cilx) + L21p(Calx)
(L2 — L11)p(Ci|x) > (Lo21 — La2)p(Calx)
(L12 — L11) p(C2[x) _ p(x|C2)p(C2)
(L21 — L) p(Cilx)  p(x|Ci)p(C1)

p(x|C1) - (L21 — La2) p(Co)
p(x|C2) (L12 — L11) p(C1)

0.0 : . .
reject region :

o Classification errors arise from regions where the largest
posterior probability p(Cx|x) is significantly less than 1.
» These are the regions where we are relatively uncertain about
class membership.
» For some applications, it may be better to reject the automatic
decision entirely in such a case and e.g. consult a human expert.

= Adapted decision rule taking into account the loss.

Machine Learning Summer’15
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Slide credit: Bernt Schiele B. Leibe B. Leibe

Image source: CM, Bishop,
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Different Views on the Decision Problem
« yr(z) o< p(z|Ch)p(C)

» First determine the class-conditional densities for each class

individually and separately infer the prior class probabilities.
» Then use Bayes’ theorem to determine class membership.
= Generative methods

* Y(x) = p(C|)
» First solve the inference problem of determining the posterior
class probabilities.
» Then use decision theory to assign each new z to its class.
= Discriminative methods

Discriminant Functions

¢ Formulate classification in terms of comparisons
» Discriminant functions

y1(x), ..., yx(x)
- Classify  as class G, if
k() > y;(x) Vi#k
+ Examples (Bayes Decision Theory)
yr(z) = p(Clz)
ye(z) = p(z|Cy)p(Ck)
ye(z) = logp(z|Ck) + log p(Cy)

¢ Alternative

» Directly find a discriminant function y;(z) which maps each
input z directly onto a class label.

Machine Learning Summer’15
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lide credit: Bernt Schiele B. Leibe B. Leibe

Topics of This Lecture Probability Density Estimation
¢ Up to now
» Bayes optimal classification
» Based on the probabilities p(x|ck)p(ck)

¢ How can we estimate (=learn) those probability
densities?
» Supervised training case: data and class labels are known.
. Estimate the probability density for each class Cy, separately:

P(x[Ck)

» (For simplicity of notation, we will drop the class label Cy, in the
following.)

¢ Probability Density Estimation
» General concepts
~ Gaussian distribution
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Probability Density Estimation The Gaussian (or Normal) Distribution
» Data: z,, 2,, 2,, T, - —|—|‘—|—|—x> ¢ One-dimensional case —_—

» Mean p
» Variance o2

¢ Estimate: p(z)

1 (z—p)?
Nz, 0 _Eh
(alp0%) = o exp s
e e ' ,
s T % T
£ 4 « Multi-dimensional case
3 3
71 ¢ Methods @ Mean
- Iz
E’ » Parametric representations g » Covariance X
s » Non-parametric representations H %,
% » Mixture models (next lecture) 2 L L
£ £ -~ Ll 1,
E E N(x|p,B) = WQXP{ f(x n)ET(x—p)
Slide credit: Bernt Schiele B. Leibe v B. Leibe Image source: C,M, Bishop,
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Gaussian Distribution - Properties Gaussian Distribution - Properties

¢ Central Limit Theorem

» “The distribution of the sum of N i.i.d. random variables
becomes increasingly Gaussian as N grows.”

e Quadratic Form -
» N depends on x through the exponent
A% = (x— p)' B (x — )
» Here, A is often called the
Mahalanobis distance from u to x.

» In practice, the convergence to a Gaussian can be very rapid.
» This makes the Gaussian interesting for many applications.

¢ Shape of the Gaussian

e Example: N uniform [0,1] random variables. $is a real, symmetric matrix

» We can therefore decompose it into its eigenvectors
D D
T _ 1
= § Aiwu] = E )Tlhllxr
i=1 i=1 "

L 2 e
and thus obtain A =% Y with o — i (x— p).
el
= Constant density on ellipsoids with main directions along the

eigenvectors u; and scaling factors v/ ;.
B. Leibe
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Image source; C,M, Bishop, 200¢
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Image source; C,M, Bishop,

B. Leibe
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Gaussian Distribution - Properties Gaussian Distribution - Properties

¢ Special cases

RWTH ACHET
» Full covariance matrix '
= = [oy] @

¢ The marginals of a Gaussian are again Gaussians:

27

1 10

" . zy
= General ellipsoid shape 5 pa— pzalzs =0.7)
e X
. . . @y
~ Diagonal covariance matrix
wn wn
5 3 = diag{c;} o os 5
£ £l
E = Axis-aligned ellipsoid ) E
a T3 @ Paszs)
= o
5 . i M)
< » Uniform variance 2 =
& 2 £
9 Y =01 S 0 0
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Image source: C.M, Bishop, 200d

32
Image source: C.M, Bishop, 200
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Topics of This Lecture

¢ Parametric Methods
» Maximum Likelihood approach
» Bayesian vs. Frequentist views on probability
» Bayesian Learning

B. Leibe

Maximum Likelihood Approach

¢ Computation of the likelihood
» Single data point: p($n|9)

» Assumption: all data points are 1ndependent

Hp In‘e)

L(0) = p(X|0) =

» Log-likelihood

N
E(0) = —InL(0) = — > Inp(z,|0)

n=1

» Estimation of the parameters 6 (Learning)
- Maximize the likelihood
- Minimize the negative log-likelihood

lide credit: Bernt Schiele B. Leibe
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Maximum Likelihood Approach
¢ Minimizing the log-likelihood

» How do we minimize a function?
= Take the derivative and set it to zero.

0 pzn|9 |
—E(0) = ~55 Zlnp z,|60) = Z 90 NIEAN

¢ Log-likelihood for Normal distribution (1D case)

N
- Z lnp(itnlﬂ, g

oyl =l
202

E(6) =

= Zln(

n=1

B. Leibe

=0

Machine Learning Summer’15

Machine Learning Summer’15

Parametric Methods

e Given
- Data X = {z1,2,..., 2N}
» Parametric form of the distribution
with parameters ¢
(1,0)

» E.g. for Gaussian distrib.: 0 =

¢ Learning
» Estimation of the parameters 6

o Likelihood of 6

» Probability that the data X have indeed been generated from a
probability density with parameters 6

L(0) = p(X10)

B. Leibe

Slide adapted from Bernt Schiele

Maximum Likelihood Approach
H pzal6)

+ We want to obtaind such that L(6) is maximized.

e Likelihood: L(6) =p(X|0) =

p(X|0)
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Maximum Likelihood Approach
« Minimizing the log-likelihood p(znlp, o) =
o N, Zp(@alu, o) I loapli®
—_ = - - —€ 20
8ME(N’O') 7;1 p(xnw7o_) \/27.”7.
v _2(1:"7#)
= 202
1 N
ey

_E(M7U)=0 < a=

B. Leibe
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Maximum Likelihood Approach
¢ We thus obtain

“sample mean”

“sample variance”

o« = (@1,6) is the Maximum Likelihood estimate for the
parameters of a Gaussian distribution.

¢ This is a very important result.
¢ Unfortunately, it is wrong...

B. Leibe
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Maximum Likelihood - Limitations

* Maximum Likelihood has several significant limitations
» It systematically underestimates the variance of the distribution!
» E.g. consider the case

N:]'7X:{xl}

= Maximum-likelihood estimate:

» We say ML overfits to the observed data.

» We will still often use ML, but it is important to know about this
effect.

“

lide adaoted from Bernt Schiele B. Leibe
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Bayesian vs. Frequentist View

¢ To see the difference...
» Suppose we want to estimate the uncertainty whether the Arctic
ice cap will have disappeared by the end of the century.

This question makes no sense in a Frequentist view, since the
event cannot be repeated numerous times.

In the Bayesian view, we generally have a prior, e.g. from
calculations how fast the polar ice is melting.

If we now get fresh evidence, e.g. from a new satellite, we may
revise our opinion and update the uncertainty from the prior.
Posterior o< Likelihood X Prior

This generally allows to get better uncertainty estimates for
many situations.

v

v

¢ Main Frequentist criticism

» The prior has to come from somewhere and if it is wrong, the

result will be worse. 3
B. Leibe
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Maximum Likelihood Approach
¢ Or not wrong, but rather biased...

¢ Assume the samples z,, z,, ..., = come from a true
Gaussian distribution with mean x and variance o2

» We can now compute the expectations of the ML estimates with
respect to the data set values. It can be shown that

E(pmp) = p
sota) = (552)

= The ML estimate will underestimate the true variance.

¢ Corrected estimate:
N .
~2 2 ~\2
T I N I™M T N HZZI(“ -

40
B. Leibe
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Deeper Reason

¢ Maximum Likelihood is a Frequentist concept

» In the Frequentist view, probabilities are the frequencies of
random, repeatable events.

» These frequencies are fixed, but can be estimated more
precisely when more data is available.

¢ This is in contrast to the Bayesian interpretation

» In the Bayesian view, probabilities quantify the uncertainty
about certain states or events.

» This uncertainty can be revised in the light of new evidence.

=

¢ Bayesians and Frequentists do not like /7\
each other too well...

B. Leibe
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RWTH ACHET
Bayesian Approach to Parameter Learning

¢ Conceptual shift

» Maximum Likelihood views the true parameter vector 6 to be
unknown, but fixed.

» In Bayesian learning, we consider ¢ to be a random variable.

* This allows us to use knowledge about the parameters ¢
posterior
p(01Y)

» i.e. to use a prior for ¢

» Training data then converts this
prior distribution on @ into prior
a posterior probability density. p(8)

» The prior thus encodes knowledge we have about the type of

distribution we expect to see for 6.
44

ide adapted from Rernt Schiele LA




RWTH//CHEN RWTH
Bayesian Learning Approach Bayesian Learning Approach
¢ Bayesian view: _
» Consider the parameter vector 6 as a random variable. p(:c\X) - /p(z\@)p(ﬂX)d@
> When estimating the parameters, what we compute is /\/
— . — p(X|0)p(0) _ p(6)
p(z|X) = /p(gc7 01X)do Assumption: given 0, this p(0|X) = ) p—)L(B)
doesn’t depend on X anymore &0

z,0|X) = p(z|9, 01X .
Pl ) = (el Zp(01%) o0 = [ oCxiop0)d0 — [ Lowio0)a0
palX) = [ plalo(o))d0

%/_/

This is entirely determined by the parameter 6
(i.e. by the parametric form of the pdf).

¢ Inserting this above, we obtain

o [ [

Machine Learning Summer’15
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slide adapted from Bernt Schiele B. Leibe lide credit: Bernt Schiele B. Leibe

Bayesian Learning Approach Bayesian Density Estimation

¢ Discussion ¢ Discussion

p(z|X) :/p(a:\e)p(mx Yo = /

Likelihood of the parametric
form 6 given the data set X. p(z|0)L(0)p(0)

TL(0)p(6)do a0

Estimate for = based on
parametric form 6

-
(2 X) = [ PEOLORO)
" L(9)p(0)dd
—

l

Normalization: integrate
over all possible values of 6

Prior for the

parameters 0

. The probability p(6]|X) makes the dependency of the estimate
on the data explicit.

. If p(0|X) is very small everywhere, but is large for one , then
p(z]X) ~ p(x|0)
= The more uncertain we are about 6, the more we average over
all parameter values.

» If we now plug in a (suitable) prior p(6), we can estimate p(z|X)
from the data set X.

Machine Learning Summer’15
Machine Learning Summer’15

47 48
B. Leibe

ide credit: Bernt Schiele B. Leibe
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Bayesian Density Estimation Bayesian Learning Approach
* Problem 1
» In the general case, the integration over  is not possible » Sample mean: z= N Z Tn
(or only possible stochastically).
¢ Bayes estimate:
¢ Example where an analytical solution is possible o2y + Nggjj o
» Normal distribution for the data, o2 assumed known and fixed. BN = o2 + Nog p(plX)
2 » Estimate the distribution of the mean: = i
E, E 1 1 n N N =10
X T 2T 3
£ p(ulX) = p(X|wp(k) £ ok op o2 =re
"’ p(X) .
= o . 4
= 5 * Note: 70N
g ~ Prior: We assume a Gaussian prior over /i, s |N=0 N—x N=0 Z W
Té plp) =N (.U‘H()a Ug) . E y Mo JIML /
s s oN i) 0 % 0 1
I} S =0
= 49 = Ho 50
Slide credit: Bernt Schiele B. Leibe ide adapted from Bernt Schiele B. Leibe Image source: CM, Bishon, 200
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Summary: ML vs. Bayesian Learning

RWTH/CET
References and Further Reading

e Maximum Likelihood

¢ More information in Bishop’s book
~ Simple approach, often analytically possible.

» Gaussian distribution and ML:  Ch. 1.2.4 and 2.3.1-2.3.4.

» Problem: estimation is biased, tends to overfit to the data. » Bayesian Learning: Ch. 1.2.3 and 2.3.6.
= Often needs some correction or regularization. » Nonparametric methods: Ch. 2.5.
- But: ¢ Additional information can be found in Duda & Hart
- Approximation gets accurate for N — oco. ML estimation: Ch. 3.2
« Bayesian Learning » Bayesian Learning: Ch. 3.3-3.5
. General approach, avoids the estimation bias through a prior. ~ Nonparametric methods: Ch. 4.1-4.5

» Problems:
- Need to choose a suitable prior (not always obvious).
- Integral over ¢ often not analytically feasible anymore.
» But:
- Efficient stochastic sampling techniques available (see Lecture 15).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

R.O. Duda, P.E. Hart, D.G. Stork

Pattern Classification

2" Ed., Wiley-Interscience, 2000
B. Leibe
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(In this lecture, we’ll use both concepts wherever appropriate)
B. Leibe
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